Profiling of Secondary Metabolites and Antimicrobial Activity of Crateva Religiosa G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CAPPARACEAE 1. BORTHWICKIA W. W. Smith, Trans. & Proc. Bot. Soc. Edinburgh 24: 175. 1912
CAPPARACEAE 山柑科 shan gan ke Zhang Mingli (张明理)1; Gordon C. Tucker2 Shrubs, trees, or woody vines, evergreen (deciduous in some Crateva), with branched or simple trichomes. Stipules spinelike, small, or absent. Leaves alternate or rarely opposite, simple or compound with 3[–9] leaflets. Inflorescences axillary or superaxillary, racemose, corymbose, subumbellate, or paniculate, 2–10-flowered or 1-flowered in leaf axil. Flowers bisexual or sometimes unisex- ual, actinomorphic or zygomorphic, often with caducous bracteoles. Sepals 4(–8), in 1 or 2 whorls, equal or not, distinct or basally connate, rarely outer whorl or all sepals connected and forming a cap. Petals (0–)4(–8), alternating with sepals, distinct, with or with- out a claw. Receptacle flat or tapered, often extended into an androgynophore, with nectar gland. Stamens (4–)6 to ca. 200; filaments on receptacle or androgynophore apex, distinct, inflexed or spiraled in bud; anthers basifixed (dorsifixed in Stixis), 2-celled, introrse, longitudinally dehiscent. Pistil 2(–8)-carpellate; gynophore ± as long as stamens; ovary ovoid and terete (linear and ridged in Borthwickia), 1-loculed, with 2 to several parietal placentae (3–6-loculed with axile placentation in Borthwickia and Stixis); ovules several to many, 2-tegmic; style obsolete or highly reduced, sometimes elongated and slender; stigma capitate or not obvious, rarely 3-branched. Fruit a berry or capsule, globose, ellipsoid, or linear, with tough indehiscent exocarp or valvately dehiscent. Seeds 1 to many per fruit, reniform to polygonal, smooth or with various sculpturing; embryo curved; endosperm small or absent. About 28 genera and ca. 650 species: worldwide in tropical, subtropical, and a few in temperate regions; four genera and 46 species (10 en- demic) in China. -
Of Total Alkaloid Extracts of Crateva Religiosa G. Forst. (Capparidaceae)
Journal of Medicinal Plants Studies 2018; 6(6): 175-179 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Antibacterial pharmacochemical activity “in vitro” of NAAS Rating: 3.53 JMPS 2018; 6(6): 175-179 total alkaloid extracts of Crateva religiosa G. forst. © 2018 JMPS Received: 24-09-2018 (Capparidaceae) versus amoxicillin + Clavulanic acid Accepted: 25-10-2018 on germs responsible of human common affections Ferdinand M Adounkpe Laboratoire National des Stupéfiants (LNS)/Centre Ferdinand M Adounkpe, Thierry CM Medehouenou, John R Klotoe and Béninois de la Recherche Scientifique et de l’Innovation Victorien T Dougnon (CBRSI), Université d’Abomey- Calavi. 03BP 1659 Cotonou, Abstract Bénin The phytochemical screening of Crateva religiosa G. Forst, a plant used in Benin in traditional veterinary medicine, has shown its richness in alkaloids. The objective of this study was to evaluate the antibacterial Thierry CM Medehouenou pharmacochemical activity "in vitro" of total alkaloids extracts of C. religiosa leaves and roots on Unité de Recherche en pathogenic germs in comparison to Amoxicillin + clavulanic acid (AMC), a conventional broad-spectrum Microbiologie Appliquée et antibiotic. The extraction of these alkaloids was made by the Stas-Otto method followed by thin layer Pharmacologie des Substances Naturelles/Laboratoire de chromatography. Total alkaloid extracts from leaves and roots were found to be more active than AMC Recherche en Biologie against species of Staphylococcus aureus (38), Escherichia coli (28), Klebsiella pneumoniae (26), Appliquée/Ecole Polytechnique Streptococcus agalactiae (23), and Citrobacter freundii (12) following agar-well diffusion method using d’Abomey-Calavi, 01BP 2009 two concentrations (50 mg/ml and 200 mg/ml). -
Indigenous Uses of Wild and Tended Plant Biodiversity Maintain Ecosystem Services in Agricultural Landscapes of the Terai Plains of Nepal
Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal Jessica P. R. Thorn ( [email protected] ) University of York https://orcid.org/0000-0003-2108-2554 Thomas F. Thornton University of Oxford School of Geography and Environment Ariella Helfgott University of Oxford Katherine J. Willis University of Oxford Department of Zoology, University of Bergen Department of Biology, Kew Royal Botanical Gardens Research Keywords: agrobiodiversity conservation; ethnopharmacology; ethnobotany; ethnoecology; ethnomedicine; food security; indigenous knowledge; medicinal plants; traditional ecological knowledge Posted Date: April 16th, 2020 DOI: https://doi.org/10.21203/rs.2.18028/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Ethnobiology and Ethnomedicine on June 8th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00382-4. Page 1/36 Abstract Background Despite a rapidly accumulating evidence base quantifying ecosystem services, the role of biodiversity in the maintenance of ecosystem services in shared human-nature environments is still understudied, as is how indigenous and agriculturally dependent communities perceive, use and manage biodiversity. The present study aims to document traditional ethnobotanical knowledge of the ecosystem service benets derived from wild and tended plants in rice- cultivated agroecosystems, compare this to botanical surveys, and analyse the extent to which ecosystem services contribute social-ecological resilience in the Terai Plains of Nepal. Method Sampling was carried out in four landscapes, 22 Village District Committees and 40 wards in the monsoon season. -
Atoll Research Bulletin No. 503 the Vascular Plants Of
ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll. -
Biogeography and Diversification of Brassicales
Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0). -
HANDBOOK of Medicinal Herbs SECOND EDITION
HANDBOOK OF Medicinal Herbs SECOND EDITION 1284_frame_FM Page 2 Thursday, May 23, 2002 10:53 AM HANDBOOK OF Medicinal Herbs SECOND EDITION James A. Duke with Mary Jo Bogenschutz-Godwin Judi duCellier Peggy-Ann K. Duke CRC PRESS Boca Raton London New York Washington, D.C. Peggy-Ann K. Duke has the copyright to all black and white line and color illustrations. The author would like to express thanks to Nature’s Herbs for the color slides presented in the book. Library of Congress Cataloging-in-Publication Data Duke, James A., 1929- Handbook of medicinal herbs / James A. Duke, with Mary Jo Bogenschutz-Godwin, Judi duCellier, Peggy-Ann K. Duke.-- 2nd ed. p. cm. Previously published: CRC handbook of medicinal herbs. Includes bibliographical references and index. ISBN 0-8493-1284-1 (alk. paper) 1. Medicinal plants. 2. Herbs. 3. Herbals. 4. Traditional medicine. 5. Material medica, Vegetable. I. Duke, James A., 1929- CRC handbook of medicinal herbs. II. Title. [DNLM: 1. Medicine, Herbal. 2. Plants, Medicinal.] QK99.A1 D83 2002 615′.321--dc21 2002017548 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. -
Capparaceae – Caper Family
CAPPARACEAE – CAPER FAMILY Plant: herbs, shrubs and trees and rarely woody vines Stem: Root: Leaves: simple or palmate, alternate; small stipules usually present Flowers: bisexual or unisexual; radially or bilaterally symmetrical; 4 sepals (up to 8); 4 petals (or none to many), often 2 larger than others; 4 stamens (or more); ovary superior, pistil often elevated; 2 carpels (or 4), 1-chambered ovary Fruit: usually a capsule, sometimes a berry or a nut; seeds reniform (kidney- shaped) Other: family not well defined at this time; most common in tropics but some occur in warmer temperate areas (some put Polanisia and Cleome in the Cleomaceae family); Dicotyledons Group Genera: 24+/- genera; locally Polanisia (clammyweed), Cleome (spider flower) – Some assign these plants to the Cleomaceae (Cleome Family) WARNING – family descriptions are only a layman’s guide and should not be used as definitive CAPPARACEAE – CAPER FAMILY Spider Flower [Pink Queen]; Cleome hassleriana Chod. (Introduced) Redwhisker Clammyweed; Polanisia dodecandra (L.) DC. (Introduced) Spider Flower [Pink Queen] USDA Cleome hassleriana Chod. (Introduced) Capparaceae (Caper Family) Mackinac Island, Mackinac County, Michigan Notes: 4-petaled flower on slender stalks, white to pink, stamens very long; leaves mostly palmate with 5-7 leaflets; stem with sticky hairs; garden escapee; mid to late summer [V Max Brown, 2008] Redwhisker USDA Clammyweed Polanisia dodecandra (L.) DC. (Introduced) Capparaceae (Caper Family) Maumee Bay State Park, Lucas County, Ohio Notes: 4-petaled flower, white to pink, narrowed at base, notched at top; stamens purplish to red; leaves with 3 leaflets, entire; fruit a pea-like pod; plant hairy; common on shores; bad odor; summer to fall (subspecies present) [V Max Brown, 2006]. -
Chapter 6 ENUMERATION
Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi. -
Crateva Adansonii
PHYTOCHEMICAL ANALYSIS AND THE ANTI- INFLAMMATORY ACTIVITIES OF METHANOL EXTRACT OF CRATEVA ADANSONII BY UWAH LYNDA OGECHI BC/2009/262 A PROJECT SUBMITTED TO THE DEPARTMENT OF BIOCHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF SCIENCE (B.SC) DEGREE IN BIOCHEMISTRY. FACULTY OF NATURAL SCIENCE CARITAS UNIVERSITY, AMORJI –NIKE EMENE, ENUGU STATE. SUPERVISOR: MR M. O. EZENWALI AUGUST, 2013 1 CERTIFICATION PAGE This is to certify that this project work was fully carried out by Uwah Lynda O. of the Department of Biochemistry, Faculty of Natural Science Caritas University –Nike Enugu State. Mr Moses Ezenwali DATE (Head of Department) …………………….. Mr Moses Ezenwali DATE Project supervisor ………………………. ……………………… External Supervisor DATE …………………… 2 DEDICATION This project work is dedicated to my creator in heaven and to my lovely parents and siblings. Who thought me to be hardworking and to my supervisor M.O Ezenwali and my humbly lecture Dr V. Ikpe. 3 ACKNOWLEDGEMENT I want to thank and acknowledge God’s almighty for his blessings in my life. I am grateful for his endless love, protection, guidance, grace upon me and my family. My sincere appreciation goes to my parents Mr. and Mrs Stephen Uwah for their love, care, prayers, advice and financial support. I also appreciate my siblings for their love. Ambrose Okeke,, friends and well-wisher. I also acknowledge the untiring effort to my supervisor Mr. Moses O. Ezenwali (H.O.D), my lecturers Dr V. Ikpe Mr P. Ugwudike, Mr Yusuf Omeh, Dr Charles Ishiwu, Mr Steve Eze Peter, who brought out their time to assist me and make suggestions to make this work a success. -
Download Article (PDF)
Rec. zool. Surv. India llO(Part-2) 121-129, 2010 A REPORT ON THE PIERID BUTTERFLIES (LEPIDOPTERA: INSECTA) FROM INDRA GANDHI NATIONAL PARK AND WILDLIFE SANCTUARY, TAMILNADU D. JEYABALAN* Zoological Survey of India, F.P.S. Building, 27, 1.L. Nehru Road Kolkata-700016, India INTRODUCTION Humid biome comprises primarily of wet evergreen, Indira Gandhi Wildlife Sanctuary and National Park sub-tropical evergreen, moist deciduous, dry (formerly known as the Anamalai Wildlife Sanctuary) deciduous, semi-evergreen and montane-shola lies in the Coimbatore District of Tamil N adu from grasslands. The terrain here is thickly wooded hills, 10 0 12Y2' to 11 °07'N latitude and 76°00' to 77°56Y2'E plateaus, deep valleys and rolling grasslands. Both southwest and northeast monsoons occur here. The area longitude at the southern part of the Nilgiri Biosphere is drained by several perennial and semi-perennial river Reserve in the Anamalai Hills. Altitude ranges from 340m systems like the Kallar and Sholaiar rivers and contains to 2,51 Om and annual rainfall varies between 800 mm to man-made reservoirs such as Aliar and Thirumurthy. 4500 mm. The climate is moderately warm almost The main geological formations in the area are throughout the year and fairly cold during the winter horneblende-biotite and garnetiferous biotite gneissus, months of November and December (Sekar and charnockites and plagiodase porphyry dykes. Soil on Ganesan, 2003). the slopes consists of sandy loam. The unique Indira Gandhi Wildlife Sanctuary and National Park ecological tract has an undulating topography and is one of the hot spots of biodiversity in the Western climate variations which support a wide variety of flora Ghats covering 958 sq. -
Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 16 | Issue 2 Article 8 1997 Wood Anatomy of Resedaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1997) "Wood Anatomy of Resedaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 16: Iss. 2, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol16/iss2/8 Aliso, 16(2), pp. 127-135 © 1998, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF RESEDACEAE SHERWIN CARLQUIST1 Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, CA 93105 ABSTRACT Quantitative and qualitative data are presented for seven species of four genera of Resedaceae. Newly reported for the family are helical striations in vessels, vasicentric and marginal axial paren chyma, procumbent ray cells, and perforated ray cells. Wood features of Resedaceae may be found in one or more of the families of Capparales close to it (Brassicaceae, Capparaceae, Tovariaceae). Lack of borders on pits of imperforate tracheary elements is likely a derived character state. Wood of Reseda is more nearly juvenile than that of the other genera in ray histology; this corresponds to the herba ceousness of Reseda. The quantitative features of wood of Resedaceae are intermediate between those of dicotyledonous annuals and those of dicotyledonous desert shrubs. Wood of Resedaceae appears especially xeromorphic in narrowness of vessels, a fact related to the subdesert habitats of shrubby species and to the dry conditions in which annual or short-lived perennial Resedaceae flower and fruit. -
Lessons from Cleomaceae, the Sister of Crucifers
Review Lessons from Cleomaceae, the Sister of Crucifers 1,2,3 4 5 1, Soheila Bayat, M. Eric Schranz, Eric H. Roalson, and Jocelyn C. Hall * Cleomaceae is a diverse group well-suited to addressing fundamental genomic Highlights and evolutionary questions as the sister group to Brassicaceae, facilitating As broadening the comparative land- scape becomes increasingly impor- transfer of knowledge from the model Arabidopsis thaliana. Phylogenetic and tant, Cleomaceae emerges as a taxonomic revisions provide a framework for examining the evolution of sub- valuable plant model for groundbreak- ing inquiries that reflect its genomic, stantive morphological and physiology diversity in Cleomaceae, but not nec- morphological, and physiological essarily in Brassicaceae. The investigation of both nested and contrasting diversity, especially when compared whole-genome duplications (WGDs) between Cleomaceae and Brassicaceae to sister family the Brassicaceae. allows comparisons of independently duplicated genes and investigation of Robust phylogenetic hypotheses are whether they may be drivers of the observed innovations. Further, a wealth of indispensable for providing an evolu- outstanding genetic research has provided insight into how the important tionary comparative framework and structure needed for taxonomic revi- alternative carbon fixation pathway, C4 photosynthesis, has evolved via differ- sions that impact on research ranging ential expression of a suite of genes, of which the underlying mechanisms are from genomics to physiology. being elucidated. A genome triplication is a potential driver of floral evolution as well as a powerful Cleomaceae as an Emerging Model to Its Sister Family Brassicaceae system in which to explore the conse- The plant family Cleomaceae presents a fascinating juxtaposition of diversity compared to its quences of increased genome size.