Todarodes Sagittatus) in North Norwegian Wale

Total Page:16

File Type:pdf, Size:1020Kb

Todarodes Sagittatus) in North Norwegian Wale NAFO SCI. Coun. Studies, 9: 125-132 Predatory R of the Flying Squid (Todarodes sagittatus) in North Norwegian Wale Anne Breiby and Malcolm Jobling Institute of Fisheries, University of Troms¢ N-9001 Troms¢, Norway Abstract Analysis of the gut contents of Todarodes sagittatus were carried out from samples which were obtained by jigging in coastal waters of northern Norway. The food was comprised predominantly of pelagic species, with polychaetes, crustaceans and fish being the major prey groups. Feeding indices provided evidence of a size-related shift in dietary composition, with increased reliance on fish prey as the squid increase in size. Use of otolith size-fish size relationships to estimate prey size indicated that the range of prey size increased with squid growth. The presence of relatively undigested pieces of squid in the gut contents was interpreted as being an artefact of the fishing technique, and it is suggested that the importance of cannibalism may have been overevaluated in other studies on the feeding habits of squids. The ways in which choice of sampling and analytical techniques may influence the results of dietary studies are discussed. I ntrodl.lction Materials and Methods Although the European flying squid (Todarodes Samples of T. sagittatus were collected at various sagittatus) is thought to occupy a key position in the times from October 1982 to October 1983. Although it food web of Arctic regions in the Northeast Atlantic, would have been desirable to have collected the sam­ comparatively little is known about its feeding biology, ples at one specific location, movements and availabil­ with the majority of available information being widely­ ity of squid made this impossible, Consequently, the scattered, unsystematic lists of the types of food orga­ samples were taken at several locations along the nisms (Wiborg, 1972, 1978,1979,1980,1981; Jonsson, north coast of Norway between Andenes and Kam(by­ 1980). The feeding habits of squids from other regions fjord (Fig, 1). Squid were captured by jigging in depths have been examined in more detail and the results of from the surface to 50 m. Jigging was not limited to several studies have shown that they feed on pelagic or particular periods of the day, and most of the samples semi-pelagic prey (Squires, 1957; Vinogradov and include squid which were obtained at different times Noskov, 1979; Macy, 1982; Mangold 1983; O'Sullivan within a given 24-hr period, Ten samples, varying in and Cullen, 1983). Although some authors have size from 10 to 170 individuals, were collected during reported that there is a change in dietary composition the course of nine research cruises. Relatively few (97) with increasing size of squid (see review by Mangold, male squid were captured, and the numbers in the 1983), most of these studies have been descriptive in samples varied between 0 and 53 individuals. Conse­ nature and few attempts at detailed analysis have been quently, this study refers predominantly to examina­ made, tion of the feeding habits of female squid, In the present study, the feeding habits of T. sagit­ Immediately after capture, the dorsal mantle tatus have been investigated and possible mechanisms length (ML) of each squid was measured to the nearest which lead to dietary changes are examined. Attempts 0.5 cm, and the alimentary tract was usually removed, were made to compare the findings with results of frozen in liquid nitrogen and stored at -200 C for later published studies, but comparison proved to be diffi­ analysis of gut contents in the laboratory. On some cult due to differences in methodology. Unlike occasions, whole squid were frozen and the alimentary researchers who have studied fish diets (e.g. Berg, tracts were removed in the laboratory, 1979; Hyslop, 1980), most of those who have studied the feeding habits of squids seem to be unaware of the After defrosting of the squid in the laboratory, gut importance of choice of methodology and of how the fullness (stomach and caecum) was estimated by analytical methods may affect the results and conclu­ using a 5-point scale which ranged from 0 (empty) to 4 sions. Consequently, a part of the discussion is (completely full). The gut contents were then trans­ devoted to methodology of feeding habit studies and ferred to a petri-dish and examined under a binocular the pitfalls to be avoided, microscope at magnifications of 6.4-40 x with direct 126 Sci. Council Studies. No.9, 1985 16" 22" hard fragments such as skeletal and jaw elements, parapodia, shell remains and otoliths. Skeletal ele­ 71 0 a 100 km ~ ments of invertebrates are often used for identification purposes and are well described in the literature. On the other hand, descriptions of the form and structure of fish otoliths are relatively scarce. In order to identify 70" fish prey from the otoliths that were recovered from the gut contents of squid, it was necessary to collect oto­ liths from different fish species. Fish were collected with small-meshed bottom and midwater trawls, and 69" the samples were selected to provide as wide a size range as possible for each species. Samples were fro­ zen immediately after capture, and, after defrosting in the laboratory, the standard length (SL) was measured. 68" Sagittal otoliths were removed from the fish and observed under a binocular microscope. Their lengths Fig. 1 Locations where samples of T. sagittatus were obtained were measured and photographs were made to serve along the north coast of Norway. as a ready means of identification. The otoliths were stored in 70% ethanol for use when needed to check illumination. The degree of digestive breakdown of the the identification of otoliths from the gut contents of gut contents was assessed by using a 6-point scale. squid. Furthermore, the linear relationships between with empty guts being classified as 0 and the numbers otolith length and fish length (Table 1) allowed the size 1 to 5 representing degrees of breakdown of the food. of the fish that were consumed by the squid to be The gut contents were generally of a pulp-like or soup­ estimated. like consistency, and the degree of digestive break­ down was most often assessed within the range of 3 to Results 5. This precluded the complete and accurate division of the food remains into specific prey for volumetric or The guts of the squid usually contained very small gravimetric analysis. Consequently, dietary composi­ amounts of well-digested food items, with more than tion was investigated by using indices which were 75% of the guts having a fullness index of 0 to 2. More based on the presence or absence of particular prey than 50% of the guts containing food were assessed as groups (Berg, 1979; Hyslop. 1980). The feeding indices digestive stages 4 and 5. This made identification of are defined as follows: individual prey items difficult and necessitated the use a) "Percentage occurrence" of a given dietary compo­ of small fragments of hard structures for identification nent was calculated as (100 x a)IN, where a is the purposes. The consequence of this is that the contribu­ number of guts containing component a and N is tion of soft-bodied prey to the squid diet is likely to be the total number of guts with food. This index is, underestimated. therefore, a measure of the proportion of squid that has consumed a particular prey. Prey items in the gut contents of squid were classi­ fied into 28 different categories, many of which were b) "Relative frequency of occurrence" of a given prey identified as being representatives of species or genera was calculated by the formula (100x a)La ... z. where of five major animal groups - Chaetognatha, Poly­ a is the number of guts containing component a chaeta, Mollusca, Crustacea and Pisces (Fig. 2). Some and La ... z is the sum of observations of all prey. prey items, such as the chaetognath Sagitta and the This index gives an estimate of how often a particu­ polychaete Eunice, were identified on only one occa­ lar prey appeared in the diet relative to other prey sion, whereas others, such as the polychaete Nereis types. pelagica were found in the guts of some squid from c) For each gut examined, a subjective assessment almost every sample. Two molluscs (Todarodes sagit­ was made of which prey contributed the greatest tatus and Limacina retroversa) were found in the gut biomass to the gut content, and this was termed the contents but the molluscan remains were most fre­ dominant prey. The"dominance" index for a partic­ quently squid suckers and pieces of arms. Among the ular prey was calculated as the proportion of all crustacean prey, the euphausiid Meganyctiphanes dominance values, i.e. (100 x A)IN, where A is the norvegica and the shrimp Pasiphaea sp. were recorded number of guts in which prey a dominated and N is most often, with other crustaceans, such as copepods, the number of guts that were assessed for domi­ being observed sporadically. Fish remains and otoliths nant prey. were found in the gut contents of some squid from each sampling period, and 11 fish species were identi­ As the gut contents of the squid were often well fied. In the samples where pelagic schooling species digested. prey species were usually identified from were identified (Clupea harengus, Mallotus villosus BREIBY and JOBLlNG: Feeding of Todarodes sagittatus off Norway 127 TABLE 1. Linear relationships between otolith length (Ol) and standard length (Sl) and the corresponding coefficients of determination (r') for various fish species. (Sl and Ol in mm.) Size No. Sl = a + b Ol range of Species (mm) fish a b r' Ammodytes tobianus 65-137 42 14.929 50.809 0.93 Clupea harengus 51-255 51 0.240 58.214 0.96 Gadus morhua 26-317 26 5.787 21.993 0.95 Mallotus villosus 62-145 63 25.333 41.780 0.82 Maurolicus mulleri 34-54 32 -7.229 32.091 0.73 Melanogrammus aeglefinus 20-180 20 8.890 17.764 0.98 Micromesisteus poutassou 56-318 27 -25.544 23.170 0.98 Sebastes sp.
Recommended publications
  • Mid-Atlantic Forage Species ID Guide
    Mid-Atlantic Forage Species Identification Guide Forage Species Identification Guide Basic Morphology Dorsal fin Lateral line Caudal fin This guide provides descriptions and These species are subject to the codes for the forage species that vessels combined 1,700-pound trip limit: Opercle and dealers are required to report under Operculum • Anchovies the Mid-Atlantic Council’s Unmanaged Forage Omnibus Amendment. Find out • Argentines/Smelt Herring more about the amendment at: • Greeneyes Pectoral fin www.mafmc.org/forage. • Halfbeaks Pelvic fin Anal fin Caudal peduncle All federally permitted vessels fishing • Lanternfishes in the Mid-Atlantic Forage Species Dorsal Right (lateral) side Management Unit and dealers are • Round Herring required to report catch and landings of • Scaled Sardine the forage species listed to the right. All species listed in this guide are subject • Atlantic Thread Herring Anterior Posterior to the 1,700-pound trip limit unless • Spanish Sardine stated otherwise. • Pearlsides/Deepsea Hatchetfish • Sand Lances Left (lateral) side Ventral • Silversides • Cusk-eels Using the Guide • Atlantic Saury • Use the images and descriptions to identify species. • Unclassified Mollusks (Unmanaged Squids, Pteropods) • Report catch and sale of these species using the VTR code (red bubble) for • Other Crustaceans/Shellfish logbooks, or the common name (dark (Copepods, Krill, Amphipods) blue bubble) for dealer reports. 2 These species are subject to the combined 1,700-pound trip limit: • Anchovies • Argentines/Smelt Herring •
    [Show full text]
  • Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus Thynnus L.) During Autumn Migrations to the Iceland Basin
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Dietary evidence of mesopelagic and pelagic foraging by Atlantic bluefin tuna (Thunnus thynnus L.) during autumn migrations to the Iceland Basin Olafsdottir, Droplaug; MacKenzie, Brian; Chosson-P, Valérie; Ingimundardottir, Thorey Published in: Frontiers in Marine Science Link to article, DOI: 10.3389/fmars.2016.00108 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olafsdottir, D., MacKenzie, B., Chosson-P, V., & Ingimundardottir, T. (2016). Dietary evidence of mesopelagic and pelagic foraging by Atlantic bluefin tuna (Thunnus thynnus L.) during autumn migrations to the Iceland Basin. Frontiers in Marine Science, 3, [108]. https://doi.org/10.3389/fmars.2016.00108 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ORIGINAL RESEARCH published: 28 June 2016 doi: 10.3389/fmars.2016.00108 Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus thynnus L.) during Autumn Migrations to the Iceland Basin Droplaug Olafsdottir 1*†, Brian R.
    [Show full text]
  • Working Group on Cephalopod Fisheries and Life History (WGCEPH)
    WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY (WGCEPH; outputs from 2019 meeting) VOLUME 2 | ISSUE 46 ICES SCIENTIFIC REPORTS RAPPORTS SCIENTIFIQUES DU CIEM ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] The material in this report may be reused for non-commercial purposes using the recommended cita- tion. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has owner- ship. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. This document is the product of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. ISSN number: 2618–1371 I © 2020 International Council for the Exploration of the Sea ICES Scientific Reports Volume 2 | Issue 46 WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY (WGCEPH; outputs from 2019 meeting) Recommended format for purpose of citation: ICES. 2020. Working Group on Cephalopod Fisheries and Life History (WGCEPH; outputs from 2019 meeting).
    [Show full text]
  • Estimation of Biomass, Production and Fishery Potential of Ommastrephid Squids in the World Ocean and Problems of Their Fishery Forecasting
    ICES CM 2004 / CC: 06 ESTIMATION OF BIOMASS, PRODUCTION AND FISHERY POTENTIAL OF OMMASTREPHID SQUIDS IN THE WORLD OCEAN AND PROBLEMS OF THEIR FISHERY FORECASTING Ch. M. Nigmatullin Atlantic Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), Dm. Donskoj Str. 5, Kaliningrad, 236000 Russia [tel. +0112-225885, fax + 0112-219997, e-mail: [email protected]] ABSTRACT 21 species of the nektonic squids family Ommastrephidae inhabits almost the entire waters of the World Ocean. It is the most commercial important group among cephalopods. Straight and expert evaluations of biomass were carried out for each species. In all ommastrephids the total instantaneous biomass is ~55 million t on average and total yearly production is ~ 400 million t (production/biomass coefficient - P/B = 5 in inshore species and 8 - in oceanic ones). Now there are 12-fished species, mainly 8 inshore ones. In 1984-2001 the yearly world catch of ommastrephids was about 1.5-2.2 million t (=50-65% of total cephalopod catch). The feasible ommastrephids fishery potential is ~ 6-9 million t including 4-7 million t of oceanic species. Thus ommastrephids are one of the most important resources for increasing high-quality food protein catch in the World Ocean. At the same time there are serious economical and technical difficulties to develop oceanic resources fishery, especially for Ommastrephes and Sthenoteuthis. A general obstacle in the real fishery operations and fishery forecasting for ommastrephids is their r-strategist ecological traits, related to monocyclia, short one-year life cycle, pelagic egg masses, paralarvae and fry, and accordingly high mortality rate during two last ontogenetic stages.
    [Show full text]
  • Ommastrephidae 199
    click for previous page Decapodiformes: Ommastrephidae 199 OMMASTREPHIDAE Flying squids iagnostic characters: Medium- to Dlarge-sized squids. Funnel locking appara- tus with a T-shaped groove. Paralarvae with fused tentacles. Arms with biserial suckers. Four rows of suckers on tentacular clubs (club dactylus with 8 sucker series in Illex). Hooks never present hooks never on arms or clubs. One of the ventral pair of arms present usually hectocotylized in males. Buccal connec- tives attach to dorsal borders of ventral arms. Gladius distinctive, slender. funnel locking apparatus with Habitat, biology, and fisheries: Oceanic and T-shaped groove neritic. This is one of the most widely distributed and conspicuous families of squids in the world. Most species are exploited commercially. Todarodes pacificus makes up the bulk of the squid landings in Japan (up to 600 000 t annually) and may comprise at least 1/2 the annual world catch of cephalopods.In various parts of the West- ern Central Atlantic, 6 species of ommastrephids currently are fished commercially or for bait, or have a potential for exploitation. Ommastrephids are powerful swimmers and some species form large schools. Some neritic species exhibit strong seasonal migrations, wherein they occur in huge numbers in inshore waters where they are accessable to fisheries activities. The large size of most species (commonly 30 to 50 cm total length and up to 120 cm total length) and the heavily mus- cled structure, make them ideal for human con- ventral view sumption. Similar families occurring in the area Onychoteuthidae: tentacular clubs with claw-like hooks; funnel locking apparatus a simple, straight groove.
    [Show full text]
  • Occurrence of Antarctic Flying Squid Todarodes Filippovaeadam, 1975 in Southern Indian Ocean R
    Indian Journal of Geo-Marine Sciences Vol. 44 (9), October 2015, pp. 1608-1612 Occurrence of Antarctic flying squid Todarodes filippovaeAdam, 1975 in Southern Indian Ocean R. Jeyabaskaran*, D. Prema, V. Kripa & K.K. Valsala Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi – 682 018, Kerala, India *[E-mail: [email protected]] Received 26 August 2013; revised 19 September 2013 Antarctic flying squid Todarodes filippovae is poorly known in Southern Indian Ocean. About 27 kg of T. filippovae consisting of 37 individuals were opportunistically collected on 1st February 2011 at 38º 59’S, 57º 29’E of northern Subtropical Convergence during the 5th Indian Expedition to Southern Ocean. Among the 37 individuals, 36 were females with dorsal mantle length (ML) of 331±21 mm. The ML of single male was 210 mm. Heavy metals detected in mantle samples were, Pb<DL, Cd 0.80 ± 0.64, Fe 22.62 ± 14.6, Mn 2.01 ± 0.3, Ni 6.0 ± 0.5, Cu 20.18 ± 2.4, Zn 111.61 ± 7.1 and Hg 1.64 ± 0.35 µg/g dry weight. These trace element concentrations were within the permissible limits recommended for human consumption. The present study gives the preliminary information about the abundance of T. filippovae in Southern Indian Ocean. [Keywords: Antarctic flying squid, Todarodes filippovae, hand jig, heavy metals, Southern Indian Ocean.] Introduction offshore over continental shelves and off-shelf Cephalopods are gaining economic over the deep ocean. They ascend close to the importance as evidenced by the rapid rise in their surface at night, but may migrate down to depths global landings over recent decades.
    [Show full text]
  • Lab 5: Phylum Mollusca
    Biology 18 Spring, 2008 Lab 5: Phylum Mollusca Objectives: Understand the taxonomic relationships and major features of mollusks Learn the external and internal anatomy of the clam and squid Understand the major advantages and limitations of the exoskeletons of mollusks in relation to the hydrostatic skeletons of worms and the endoskeletons of vertebrates, which you will examine later in the semester Textbook Reading: pp. 700-702, 1016, 1020 & 1021 (Figure 47.22), 943-944, 978-979, 1046 Introduction The phylum Mollusca consists of over 100,000 marine, freshwater, and terrestrial species. Most are familiar to you as food sources: oysters, clams, scallops, and yes, snails, squid and octopods. Some also serve as intermediate hosts for parasitic trematodes, and others (e.g., snails) can be major agricultural pests. Mollusks have many features in common with annelids and arthropods, such as bilateral symmetry, triploblasty, ventral nerve cords, and a coelom. Unlike annelids, mollusks (with one major exception) do not possess a closed circulatory system, but rather have an open circulatory system consisting of a heart and a few vessels that pump blood into coelomic cavities and sinuses (collectively termed the hemocoel). Other distinguishing features of mollusks are: z A large, muscular foot variously modified for locomotion, digging, attachment, and prey capture. z A mantle, a highly modified epidermis that covers and protects the soft body. In most species, the mantle also secretes a shell of calcium carbonate. z A visceral mass housing the internal organs. z A mantle cavity, the space between the mantle and viscera. Gills, when present, are suspended within this cavity.
    [Show full text]
  • Carinotetraodon Travancoricus) and Phylogeny of Tetraodontidae
    ACADEMY OF MARITIME EDUCATION AND TRAINING (AMET) (Declared as Deemed to be University u/s 3 of UGC Act 1956) 135, EAST COAST ROAD, KANATHUR, CHENNAI - 603 112. TAMILNADU, INDIA IMPACT OF THE COVID-19 PANDEMIC ON CANCER PATIENTS AND ITS MANAGEMENT-THE UNTOLD STORY A Report on Internship In Department of Marine Biotechnology By NEETI KOTHARI AMBT19004 MAY 2020 1 | P a g e INTERNSHIP CERTIFICATE This is to certify that Ms. Neeti Kothari (Reg. No. AMBT19004) of M.Sc., Marine Biotechnology 1st Year II Semester has done the work titled ” Impact of the Covid-19 Pandemic on Cancer Patients And Its Management-The Untold Story” as a part of Home Based Internship for a partial fulfilment of academic records. She has taken 45 hours to complete the work and her report was found to be excellent. Signature of the HOD Signature of the Mentor (Dr. L. Senthilnathan) (Dr. M. Jayaprakashvel) INTERNSHIP ALLOCATION REPORT 2019-20 Name of the Department: Marine Biotechnology (In view of advisory from the AICTE, internships for the year 2019-20 are offered by the Department itself to facilitate the students to take up required work from their home itself during the lock down period due to COVID-19 outbreak) Name of the Programme : M.Sc Marine Biotechnology Year of study and Batch/Group : I Year, Batch -12 Name of the Mentor : Dr. M. Jayaprakashvel Title of the assigned internship : Impact of the Covid-19 Pandemic on Cancer Patients And Its Management-The Untold Story Nature of Internship : Individual/Group Reg No of Students who are assigned with this internship: Reg.
    [Show full text]
  • Beak Growth Pattern of Purpleback Flying Squid Sthenoteuthis Oualaniensis in the Eastern Tropical Pacific Equatorial Waters
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/273483351 Beak growth pattern of purpleback flying squid Sthenoteuthis oualaniensis in the eastern tropical Pacific equatorial waters Article in Fisheries Science · March 2015 DOI: 10.1007/s12562-015-0857-8 CITATIONS READS 2 100 6 authors, including: Zhou Fang Xinjun Chen Shanghai Ocean University Shanghai Ocean University 22 PUBLICATIONS 36 CITATIONS 170 PUBLICATIONS 700 CITATIONS SEE PROFILE SEE PROFILE Bilin Liu Yong Chen Shanghai Ocean University University of Maine 38 PUBLICATIONS 268 CITATIONS 214 PUBLICATIONS 2,226 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Zhou Fang letting you access and read them immediately. Retrieved on: 28 August 2016 Fish Sci DOI 10.1007/s12562-015-0857-8 ORIGINAL ARTICLE Biology Beak growth pattern of purpleback flying squid Sthenoteuthis oualaniensis in the eastern tropical Pacific equatorial waters Zhou Fang · Luoliang Xu · Xinjun Chen · Bilin Liu · Jianhua Li · Yong Chen Received: 29 August 2014 / Accepted: 13 December 2014 © Japanese Society of Fisheries Science 2015 Abstract Cephalopod beaks maintain a stable morphol- length, and lower lateral wall length, which showed lin- ogy, implying that they can be used to explore ecological ear relationships with ML. The relationships between BW influences on squid life history. Understanding the beak and the six beak variables were best fitted with power growth pattern can help us to improve knowledge of the functions, and these functions can be used to estimate trophic characteristics of squids and to estimate squid squid biomass from beak variable values.
    [Show full text]
  • Wgceph Report 2018
    ICES WGCEPH REPORT 2018 ECOSYSTEM PROCESSES AND DYNAMICS STEERING GROUP ICES CM 2018/EPDSG:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 5-8 June 2018 Pasaia, San Sebastian, Spain International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5–8 June 2018, Pasaia, San Sebastian, Spain. ICES CM 2018/EPDSG:12. 194 pp. https://doi.org/10.17895/ices.pub.8103 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, imag- es, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other re- production requests, please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2019 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2018 | i Contents Executive summary ...............................................................................................................
    [Show full text]
  • <I>Todarodes Pacificus</I>
    BULLETIN OF MARINE SCIENCE, 71(2): 987–992, 2002 INVESTIGATION ON THE EARLY STAGES OF THE OMMASTREPHID SQUID TODARODES PACIFICUS NEAR THE OKI ISLANDS (SEA OF JAPAN) Jun Yamamoto, Shinya Masuda, Kazushi Miyashita, Ryosuke Uji and Yasunori Sakurai ABSTRACT The MOCNESS (Multiple Opening Closing Net and Environmental Sampling Sys- tem) was used to investigate the distribution of the early life stages of the Japanese com- mon squid Todarodes pacificus in the southwest Sea of Japan near the Oki Islands, a suspected spawning ground of this species. The largest catches of hatchling-sized paralarvae occurred at the surface layer (0–25 m), and paralarval mantle lengths increased with increasing sampling depth, suggesting that T. pacificus paralarvae gradually de- scend in the water column life cycle as they grow. There was no clear difference in the horizontal distribution among the different size groups. The ommastrehid squids Illex illecebrosus and Todarodes pacificus lay spherical, pe- lagic egg masses, which are slightly negative or neutrally buoyant (O’Dor and Balch, 1985; Bower and Sakurai, 1996). The optimum temperature range for T. pacificus em- bryo development and hatchling survival is 15–23ºC (Sakurai et al., 1996). After hatch- ing, paralarvae swim vertically to the surface from the egg masses (Bower and Sakurai, 1996). Based on these observations, a hypothetical scheme of the reproductive process of T. pacificus was proposed (Sakurai et al., 2000) in which the egg masses occur near the pycnocline, and after hatching, paralarvae swim to the surface. Information derived from field studies show most paralarvae occur at 25–50 m depth (Watanabe, 1965).
    [Show full text]
  • Overfishing of Small Pelagic Fishes Increases Trophic Overlap Between Immature and Mature Striped Dolphins in the Mediterranean Sea
    Overfishing of Small Pelagic Fishes Increases Trophic Overlap between Immature and Mature Striped Dolphins in the Mediterranean Sea Encarna Go´ mez-Campos1*, Assumpcio´ Borrell1, Luis Cardona1, Jaume Forcada2, Alex Aguilar1 1 Department of Animal Biology-Vertebrates, Institute of Biodiversity Research, Faculty of Biology, University of Barcelona, Barcelona, Spain, 2 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom Abstract The interactions among diet, ecology, physiology, and biochemistry affect N and C stable isotope signatures in animal tissues. Here, we examined if ecological segregation among animals in relation to sex and age existed by analyzing the signatures of d15Nandd13C in the muscle of Western Mediterranean striped dolphins. Moreover, we used a Bayesian mixing model to study diet composition and investigated potential dietary changes over the last two decades in this population. For this, we compared isotope signatures in samplesofstrandeddolphinsobtainedduringtwoepizootic events occurring in 1990 and 2007–2008. Mean d13C values for females and males were not significantly different, but age-related variation indicated d13C enrichment in both sexes, suggesting that females and males most likely fed in the same general areas, increasing their consumption of benthic prey with age. Enrichment of d15Nwasonlyobserved in females, suggesting a preference for larger or higher trophic level prey than males, which could reflect different nutritional requirements. d13C values showed no temporal variation, although the mean d15Nsignaturedecreased from 1990 to 2007–2008, which could indicate a dietary shift in the striped dolphin over the last two decades. The results of SIAR indicated that in 1990, hake and sardine together contributed to 60% on the diet of immature striped dolphins, and close to 90% for mature striped dolphins.
    [Show full text]