Working Group on Cephalopod Fisheries and Life History (WGCEPH)

Total Page:16

File Type:pdf, Size:1020Kb

Working Group on Cephalopod Fisheries and Life History (WGCEPH) WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY (WGCEPH; outputs from 2019 meeting) VOLUME 2 | ISSUE 46 ICES SCIENTIFIC REPORTS RAPPORTS SCIENTIFIQUES DU CIEM ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] The material in this report may be reused for non-commercial purposes using the recommended cita- tion. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has owner- ship. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. This document is the product of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. ISSN number: 2618–1371 I © 2020 International Council for the Exploration of the Sea ICES Scientific Reports Volume 2 | Issue 46 WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY (WGCEPH; outputs from 2019 meeting) Recommended format for purpose of citation: ICES. 2020. Working Group on Cephalopod Fisheries and Life History (WGCEPH; outputs from 2019 meeting). ICES Scientific Reports. 2:46. 121 pp. http://doi.org/10.17895/ices.pub.6032 Editors Gra ha m J. Pi erce • Jea n-Paul Robin • Ana Moreno • Da niel Oesterwind Authors Es ther Aba d • Ni cholas Badouvas • Ni kolaos Fotiadis • Ángel F. Gonzá lez • Ane Iri ondo • Ana Jua rez • Alexandra Karatza • Vladimir Laptikhovsky • Angela Larivain • Evgenia Lefkaditou • Fedor Lishchenko • Fá bi o L. Ma tos • Ana Moreno • Si lvia Monteiro • Da niel Oesterwind • Catalina Perales-Raya • Michael Petroni • Uwe Pi a tkowski • Gra ham J. Pi erce • Cri stina Pi ta • Anne Ma rie Power • Jea n-Paul Robin • Al - berto Rocha • El i na Sa mara • Ma rina Sa nturtun • Sóni a Seixas • Lui s Silva • Jenni fer Smi th • Ignacio So- brino • Julio Valeiras • Sebastian Villasante ICES | WGCEPH 2019 | I Contents i Executive summary .............................................................................................................................ii ii Expert group information ................................................................................................................. iii 1 ToR A: Cephalopod stock status and trends ...................................................................................... 1 1.1 I ntr oduc ti on ........................................................................................................................... 1 1.2 Trends in landings , dis cards and s urvey i ndices.................................................................. 5 2 ToR B: Preliminary assessments of the main cephalopod species in the ICES area .....................41 2.1 Trends in northeast Atla ntic c ephalopod s tocks ...............................................................41 2.2 Reviews of stock assessment and fisheries management of cephalopods .....................42 2.3 Theme Session H at the 2019 ICES ASC..............................................................................43 2.4 Forecasting abundance of Octopus vulgaris in the Gulf of Cadiz.....................................45 2.5 Preliminary diagnostics in NE Atlantic Cephalopod Stocks using Surplus Production Models ..............................................................................................................46 3 ToR C: Information on life history parameters................................................................................47 3.1 Manuscript on the life history and ecology of cephalopods in European waters ..........47 3.2 Other work on life his tory and ecol ogy of cephal opods in European waters.................49 4 ToR D: Social and economic profile of the cephalopod fisheries...................................................52 4.1 Review of the management of octopus fisheries in Europe ............................................52 4.2 Value-chai n of cephalopods fis heri es ................................................................................53 5 ToR E: Tools for identification cephalopod species and data collection .......................................54 5.1 Identification guide .............................................................................................................54 5.2 Da ta c oll ec tion r ecommenda tions .....................................................................................64 6 Actions list ..........................................................................................................................................69 7 References .........................................................................................................................................70 Annex 1: Lis t of par ti cipa nts ...............................................................................................................72 Annex 2: Resol uti ons...........................................................................................................................75 Annex 3: Supplementary Information and Working Documents ....................................................78 Working Document: Spanish Cephal opod landi ngs and discards..................................................81 Working Document: Preliminary diagnosis in Northeast Atlantic Cephalopod Stock using Stochas ti c Surplus Production models.............................................................................................92 II | ICES SCIENTIFIC REPORTS 2:46 | ICES i Executive summary The Working Group on Cephalopod Fisheries and Life History (WGCEPH) improves knowledge about and the assessment of cephalopods as an exploited resource WGCEPH report provides information on status and trends in cephalopod stocks; preliminary assessments of selected stocks update information on life history parameters; social and eco- nomic profile of the cephalopod fisheries; recommended tools for identification cephalopod spe- cies; updat ed best practices for data collection. Cuttlefish landings from the main fishing grounds (English Channel and Bay of Biscay) have decreased in recent years, although landings by UK vessels in the English Channel have in- creased. Squid landings are still mainly reported at family level, making it harder to infer stock status and trends. Loliginid squid landings have increased in northern areas and decreased in southern areas. Survey data suggest a decrease in abundance of L. forbesii and an increase in L. vulgaris. Abundance of ommastrephid squid fluctuates widely with occasional peaks, the timing and size of which varies between species and areas. Octopus are mainly landed in southern Europe and comprise mainly of Octopus vulgaris. Abundance varies widely from year to year with no clear trends. Commercial LPUE and survey CPUE follow similar trends in some areas. An update is provided on progress with stock assessment. An assessment exercise using pro- duction models gave satisfactory results for loliginid squid and cuttlefish in several areas. A forecasting model for Octopus vulgaris, driven by environmental variables and a recruitment in- dex, is also presented. WGCEPH members organised a theme session (H, on non-quota and data- poor species) at the ICES Annual Science Conference (ASC) 2019. Several presentations during this session, linked to WGCEPH work, are summarised. New review and synthesis work carried out on cephalopod life history, management of octopus fisheries and markets for cephalopods is summarised and is expected to be submitted for publi- cation shortly. Relevant work was also presented at the ICES ASC 2019. Progress with North Sea identification guide is described and the list of identification guides and keys has been updated. Current fishery data collection for cephalopods in the EU is described and proposals for improved data collection are presented. Fundamentally, this requires full iden- tification of cephalopod landings to species. Increased frequency of sampling would facilitate in- season stock assessment. ICES | WGCEPH 2019 | III ii Expert group information Expert group name Working Group on Cephalopod Fisheries and Life History (WGCEPH) Expert group cycle multia nnual Year cycle started 2017 Reporting year in cycle 3/3 Chairs Graham Pierce, Spain Jean-Paul Robin, France Meeting venues and dates 6–9 June 2017, Funcha l, Madeira, Portugal (19 participa nts) 5–8 June 2018, Pasaia, San Sebastian, Spain (11 participants) 4–7 June 2019, Athens, Greece (18 participants) ICES | WGCEPH 2019 | 1 1 ToR A: Cephalopod stock status and trends ToR A: Report on cephalopod stock status and trends: Update, quality check and analyse rele- vant data on European fishery statistics (landings, directed effort, discards and survey catches) across the ICES area. 1.1 Introduction Updated data on Northeast Atlantic fishery statistics and survey catches for cephalopods was obtained via the “Fisheries Data call 2019” call issued by ICES for all working groups. The call w as launched on 30 January 2019. A correction related to discards data for cephalopod
Recommended publications
  • Mid-Atlantic Forage Species ID Guide
    Mid-Atlantic Forage Species Identification Guide Forage Species Identification Guide Basic Morphology Dorsal fin Lateral line Caudal fin This guide provides descriptions and These species are subject to the codes for the forage species that vessels combined 1,700-pound trip limit: Opercle and dealers are required to report under Operculum • Anchovies the Mid-Atlantic Council’s Unmanaged Forage Omnibus Amendment. Find out • Argentines/Smelt Herring more about the amendment at: • Greeneyes Pectoral fin www.mafmc.org/forage. • Halfbeaks Pelvic fin Anal fin Caudal peduncle All federally permitted vessels fishing • Lanternfishes in the Mid-Atlantic Forage Species Dorsal Right (lateral) side Management Unit and dealers are • Round Herring required to report catch and landings of • Scaled Sardine the forage species listed to the right. All species listed in this guide are subject • Atlantic Thread Herring Anterior Posterior to the 1,700-pound trip limit unless • Spanish Sardine stated otherwise. • Pearlsides/Deepsea Hatchetfish • Sand Lances Left (lateral) side Ventral • Silversides • Cusk-eels Using the Guide • Atlantic Saury • Use the images and descriptions to identify species. • Unclassified Mollusks (Unmanaged Squids, Pteropods) • Report catch and sale of these species using the VTR code (red bubble) for • Other Crustaceans/Shellfish logbooks, or the common name (dark (Copepods, Krill, Amphipods) blue bubble) for dealer reports. 2 These species are subject to the combined 1,700-pound trip limit: • Anchovies • Argentines/Smelt Herring •
    [Show full text]
  • Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus Thynnus L.) During Autumn Migrations to the Iceland Basin
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Dietary evidence of mesopelagic and pelagic foraging by Atlantic bluefin tuna (Thunnus thynnus L.) during autumn migrations to the Iceland Basin Olafsdottir, Droplaug; MacKenzie, Brian; Chosson-P, Valérie; Ingimundardottir, Thorey Published in: Frontiers in Marine Science Link to article, DOI: 10.3389/fmars.2016.00108 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olafsdottir, D., MacKenzie, B., Chosson-P, V., & Ingimundardottir, T. (2016). Dietary evidence of mesopelagic and pelagic foraging by Atlantic bluefin tuna (Thunnus thynnus L.) during autumn migrations to the Iceland Basin. Frontiers in Marine Science, 3, [108]. https://doi.org/10.3389/fmars.2016.00108 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ORIGINAL RESEARCH published: 28 June 2016 doi: 10.3389/fmars.2016.00108 Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus thynnus L.) during Autumn Migrations to the Iceland Basin Droplaug Olafsdottir 1*†, Brian R.
    [Show full text]
  • Wgceph Report 2018
    ICES WGCEPH REPORT 2018 ECOSYSTEM PROCESSES AND DYNAMICS STEERING GROUP ICES CM 2018/EPDSG:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 5-8 June 2018 Pasaia, San Sebastian, Spain International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5–8 June 2018, Pasaia, San Sebastian, Spain. ICES CM 2018/EPDSG:12. 194 pp. https://doi.org/10.17895/ices.pub.8103 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, imag- es, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other re- production requests, please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2019 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2018 | i Contents Executive summary ...............................................................................................................
    [Show full text]
  • Overfishing of Small Pelagic Fishes Increases Trophic Overlap Between Immature and Mature Striped Dolphins in the Mediterranean Sea
    Overfishing of Small Pelagic Fishes Increases Trophic Overlap between Immature and Mature Striped Dolphins in the Mediterranean Sea Encarna Go´ mez-Campos1*, Assumpcio´ Borrell1, Luis Cardona1, Jaume Forcada2, Alex Aguilar1 1 Department of Animal Biology-Vertebrates, Institute of Biodiversity Research, Faculty of Biology, University of Barcelona, Barcelona, Spain, 2 British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom Abstract The interactions among diet, ecology, physiology, and biochemistry affect N and C stable isotope signatures in animal tissues. Here, we examined if ecological segregation among animals in relation to sex and age existed by analyzing the signatures of d15Nandd13C in the muscle of Western Mediterranean striped dolphins. Moreover, we used a Bayesian mixing model to study diet composition and investigated potential dietary changes over the last two decades in this population. For this, we compared isotope signatures in samplesofstrandeddolphinsobtainedduringtwoepizootic events occurring in 1990 and 2007–2008. Mean d13C values for females and males were not significantly different, but age-related variation indicated d13C enrichment in both sexes, suggesting that females and males most likely fed in the same general areas, increasing their consumption of benthic prey with age. Enrichment of d15Nwasonlyobserved in females, suggesting a preference for larger or higher trophic level prey than males, which could reflect different nutritional requirements. d13C values showed no temporal variation, although the mean d15Nsignaturedecreased from 1990 to 2007–2008, which could indicate a dietary shift in the striped dolphin over the last two decades. The results of SIAR indicated that in 1990, hake and sardine together contributed to 60% on the diet of immature striped dolphins, and close to 90% for mature striped dolphins.
    [Show full text]
  • CEPHALOPODS A3a.3.1 Introduction
    Offshore Energy SEA A3a.3 CEPHALOPODS A3a.3.1 Introduction This section describes the biology and ecology of the main cephalopod species found within UK waters. Cephalopods are short-lived, carnivorous invertebrates with rapid growth rates that play an important role in marine food webs. Two superorders of the class Cephalopoda are found within the area: the Decapodiformes (squid and cuttlefish) and the Octopodiformes (octopuses). Most cephalopods lack an external shell and are highly mobile predators. They possess complex eyes, similar to those of vertebrates and are often regarded as the most intelligent of invertebrates. The importance of cephalopod stocks to commercial fisheries is increasing, as fish stocks dwindle and become subject to tighter management (Boyle & Pierce 1994). Much of the work carried out on cephalopod distributions and abundances in UK waters is based on landings data and routine research vessel surveys co- ordinated by ICES. Information on the life history, distribution and abundance of these species has been taken from a review of UK cephalopods produced by Hastie et al. (2008), unless otherwise cited. An overview of important cephalopod species in UK waters is provided, followed by a brief description of features specific to each Regional Sea. A3a.3.2 UK context A number of species occur in UK waters, with varying degrees of frequency. Most cephalopods will be in one of five groups: the long-finned squids (Lolignids), the short-finned squids (Ommastrephids), bobtails (Sepiolids), cuttlefish and octopuses. Among the most frequently recorded species are: the long-finned squids, Alloteuthis subulata and Loligo forbesii; the short finned squid, Todarodes sagittatus; other squids, Gonatus fabricii and Onychoteuthis banksii; the bobtail squids, Rossia macrosoma, Sepiola atlantica and Sepietta oweniana; the octopus, Eledone cirrhosa.
    [Show full text]
  • SEA5 Cephalopods
    Strategic Environmental Assessment – SEA 5 - Cephalopods An Overview of Cephalopods Relevant to the SEA 5 Area A review on behalf of the Department of Trade and Industry Gabriele Stowasser, Graham J. Pierce, Jianjun Wang and M. Begoña Santos. Department of Zoology, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ. Contents 1. Introduction ............................................................................................................................ 2 2. Life history and distribution................................................................................................... 3 2.1. Long-finned squid...................................................................................................... 3 2.2. Short-finned squid...................................................................................................... 5 2.3. Deep-water squid ....................................................................................................... 7 2.4. Other cephalopods ..................................................................................................... 7 3. Ecology: trophic interactions ................................................................................................. 9 4. Fisheries and trends in abundance........................................................................................ 11 4.1. Squid ........................................................................................................................ 12 4.2. Octopus...................................................................................................................
    [Show full text]
  • I Rozporządzenia
    31.3.2009 PL Dziennik Urzędowy Unii Europejskiej L 87/1 I (Akty przyjęte na mocy Traktatów WE/Euratom, których publikacja jest obowiązkowa) ROZPORZĄDZENIA ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 216/2009 z dnia 11 marca 2009 r. w sprawie przekazywania przez paDstwa czBonkowskie prowadzące poBowy na okre[lonych obszarach, innych ni| póBnocny Atlantyk, danych statystycznych o poBowach nominalnych (przeksztaBcenie) (Tekst mający znaczenie dla EOG) PARLAMENT EUROPEJSKI I RADA UNII EUROPEJSKIEJ, ryboBówstwa oraz zapewnienie niezbędnej infrastruktury do przetwarzania i kontroli wiarygodno[ci powy|szych uwzględniając Traktat ustanawiający Wspólnotę Europejską, danych jest pierwszym i podstawowym obowiązkiem w szczególno[ci jego art. 285 ust. 1, paDstw czBonkowskich. uwzględniając wniosek Komisji, (5) Kilka paDstw czBonkowskich wystąpiBo z wnioskiem o przedkBadanie danych w innej formie albo za pomocą stanowiąc zgodnie z procedurą okre[loną w art. 251 Traktatu (1), innych [rodków komunikacji ni| okre[lone w załącz- niku V (odpowiednik kwestionariuszy Statlant). a tak|e mając na uwadze, co następuje: (1) Rozporządzenie Rady (WE) nr 2597/95 z dnia 23 paz- (6) Zrodki konieczne do wykonania niniejszego rozporządze- dziernika 1995 r. w sprawie przekazywania przez paDstwa nia powinny zostać przyjęte zgodnie z decyzją Rady 1999/ czBonkowskie prowadzące poBowy na niektórych obsza- 486/WE z dnia 28 czerwca 1999 r., ustanawiającą warunki rach, innych ni| póBnocny Atlantyk, danych statystycznych wykonywania uprawnieD wykonawczych przyznanych dotyczących poBowów nominalnych (2) zostaBo kilkakrotnie Komisji (4). znacząco zmienione (3). Poniewa| mają być do niego wprowadzone kolejne zmiany, nale|y je przeredagować w celu zapewnienia jasno[ci. (7) W szczególno[ci nale|y przyznać Komisji uprawienienie do dostosowywania wykazów statystycznych obszarów poBo- (2) Wspólnota Europejska uzyskaBa czBonkostwo w Organizacji wowych lub ich podrejonów i gatunków.
    [Show full text]
  • Feeding Habits of Neon Flying Squid Ommastrephes Bartramii in the Transitional Region of the Central North Pacific
    MARINE ECOLOGY PROGRESS SERIES Vol. 266: 173–184, 2004 Published January 30 Mar Ecol Prog Ser Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific Hikaru Watanabe1,*, Tsunemi Kubodera2, Taro Ichii1, Shigeyuki Kawahara1 1National Research Institute of Far Seas Fisheries, 5-7-1 Orido Shimizu, Shizuoka 424-8633, Japan 2National Science Museum, 3-23-1 Hyakunin-cho Shinjyuku, Tokyo 169-0073, Japan ABSTRACT: We examined the feeding habits of the neon flying squid Ommastrephes bartramii from late spring to mid-summer in relation to its northward migration in the transitional waters of the cen- tral North Pacific. The winter–spring cohort (ca. 15 to 25 cm in May and 20 to 35 cm in July) and the autumn cohort (ca. 30 to 45 cm in May and 35 to 50 cm in July) were identified by their dorsal man- tle lengths. In May and July, the winter–spring cohort was distributed only in the transition zone (TZ) south of the subarctic boundary. This cohort preyed primarily on crustaceans such as euphausiids and amphipods in May, but in July, their primary prey shifted to the sternoptychid fish Maurolicus imper- atorius. In May, the larger-sized autumn cohort was also distributed only in the TZ, but in July, these individuals migrated to the transitional domain (TD) north of the subarctic boundary. The main prey of the autumn cohort were micronektonic animals that dominated the TZ in May: the transitional- water myctophid Symbolophorus californiensis, and 2 subtropical myctophids, Ceratoscopelus warm- ingi and Electrona risso. Secondary important prey items included the transitional-water squid Onychoteuthis borealijaponica and subarctic gonatid squids such as Gonatus berryi and Berryteuthis anonychus.
    [Show full text]
  • Report of the Report of the Working Group on Cephalopod
    ICES WGCEPH REPORT 2017 SCICOM STEERING GROUP ON ECOSYSTEM PROCESSES AND DYNAMICS ICES CM 2017/SSGEPD:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 6-9 June 2017 Funchal, Madeira, Portugal International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2018. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 6–9 June 2017, Funchal, Madeira, Portugal. ICES CM 2017/SSGEPD:12. 132 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2018 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2017 | i Contents Executive summary ................................................................................................................ 3 1 Administrative details .................................................................................................. 4 2 Terms of Reference ........................................................................................................ 4 3 Summary of Work plan ...............................................................................................
    [Show full text]
  • A1a.3 Cephalopods A1a.3.1 UK Context This Section Describes the Biology and Ecology of the Main Cephalopod Species Found Within UK Waters
    Offshore Energy SEA 3: Appendix 1 Environmental Baseline A1a.3 Cephalopods A1a.3.1 UK context This section describes the biology and ecology of the main cephalopod species found within UK waters. Cephalopods are short-lived, carnivorous invertebrates with rapid growth rates that play an important role in marine food webs. Two superorders of the class Cephalopoda are found within the area: the Decapodiformes (squid and cuttlefish) and the Octopodiformes (octopuses). Most cephalopods lack an external shell and are highly mobile predators. They possess complex eyes, similar to those of vertebrates and are often regarded as the most intelligent of invertebrates. The importance of cephalopod stocks to commercial fisheries is increasing, as fish stocks dwindle and become subject to tighter management (Boyle & Pierce 1994). Much of the work carried out on cephalopod distributions and abundances in UK waters is based on landings data and routine research vessel surveys co- ordinated by ICES. Information on the life history, distribution and abundance of these species comes from reviews of north-east Atlantic and European cephalopods produced by Hastie et al. (2009b) and Jereb et al. (2015), and references cited within. An overview of important cephalopod species in UK waters is provided, followed by a brief description of features specific to each Regional Sea. A number of species occur in UK waters, with varying degrees of frequency. Most cephalopods are of one of five groups: the long-finned squids (Loliginids), the short-finned squids (Ommastrephids), bobtails (Sepiolids), cuttlefish and octopuses. Among the most frequently recorded species are: the long-finned squids, Alloteuthis subulata and Loligo forbesii; the short finned squid, Todarodes sagittatus; other squids, Gonatus fabricii and Onychoteuthis banksii; the bobtail squids, Rossia macrosoma, Sepiola atlantica and Sepietta oweniana; the octopus, Eledone cirrhosa.
    [Show full text]
  • Todarodes Sagittatus) in North Norwegian Wale
    NAFO SCI. Coun. Studies, 9: 125-132 Predatory R of the Flying Squid (Todarodes sagittatus) in North Norwegian Wale Anne Breiby and Malcolm Jobling Institute of Fisheries, University of Troms¢ N-9001 Troms¢, Norway Abstract Analysis of the gut contents of Todarodes sagittatus were carried out from samples which were obtained by jigging in coastal waters of northern Norway. The food was comprised predominantly of pelagic species, with polychaetes, crustaceans and fish being the major prey groups. Feeding indices provided evidence of a size-related shift in dietary composition, with increased reliance on fish prey as the squid increase in size. Use of otolith size-fish size relationships to estimate prey size indicated that the range of prey size increased with squid growth. The presence of relatively undigested pieces of squid in the gut contents was interpreted as being an artefact of the fishing technique, and it is suggested that the importance of cannibalism may have been overevaluated in other studies on the feeding habits of squids. The ways in which choice of sampling and analytical techniques may influence the results of dietary studies are discussed. I ntrodl.lction Materials and Methods Although the European flying squid (Todarodes Samples of T. sagittatus were collected at various sagittatus) is thought to occupy a key position in the times from October 1982 to October 1983. Although it food web of Arctic regions in the Northeast Atlantic, would have been desirable to have collected the sam­ comparatively little is known about its feeding biology, ples at one specific location, movements and availabil­ with the majority of available information being widely­ ity of squid made this impossible, Consequently, the scattered, unsystematic lists of the types of food orga­ samples were taken at several locations along the nisms (Wiborg, 1972, 1978,1979,1980,1981; Jonsson, north coast of Norway between Andenes and Kam(by­ 1980).
    [Show full text]
  • A Gap Analysis of the Distributions of Cephalopod Species Worldwide with a Focus on Commercially Important Species
    A Gap Analysis of the Distributions of Cephalopod Species Worldwide with a Focus on Commercially Important Species Alexandra Stikas Fries Abstract Cephalopods are valuable species as they provide ecological functions and are also important commercially and scientifically. This study attempts to adequately describe the distribution of Class Cephalopoda as well as focusing on a few commercial species ranges. Data from an extensive literature search and several databases such as OBIS and AquaMaps were analyzed to show areas where information is lacking due to no research conducted in the area versus where literature research is excluded from OBIS. For the species distributions modeled in AquaMaps, an accuracy assessment was performed to show if all of the locations where the species have been found would be included within the suspected range. Recommendations for more research or greater conservation actions will also be given for each of the commercial species examined. Fisheries data on the commercial species will be compared to the distributional extents to show where better management practices might be needed. Introduction The cephalopod class is a fascinating and diverse set of species that are important biologically, commercially and scientifically. They exist in all marine habitats worldwide and provide a large part of the total global biomass of all marine species (Clarke, 1996). Scientific knowledge of cephalopod distributions and abundances is important to understand their contribution not only to ecological relationships but also to overall energy flow and transfer of materials (Piatkowski et al. 2001). Overall, cephalopod species have been mostly ignored in the past and thought of as being a disturbance and useless bycatch.
    [Show full text]