Chinese Japanese Flying Squid (JFS) Fisheries Improvement Scoping Report

Total Page:16

File Type:pdf, Size:1020Kb

Chinese Japanese Flying Squid (JFS) Fisheries Improvement Scoping Report Chinese Japanese Flying Squid (JFS) Fisheries Improvement Scoping Report December 2018 Ocean Outcomes (O2) Contacts: Songlin Wang, China Program Director Qing Fang, Consultant Dr. Jocelyn Drugan, Analytics Team Director and Fishery Scientist Rich Lincoln, Founder and Senior Advisor www.oceanoutcomes.org 1 Chinese JFS Fishery Improvement Scoping Report: October 2018 TABLE OF CONTENTS 1. BACKGROUND .............................................................................................................................................. 4 1.1 OVERVIEW OF FISHERY PRE-ASSESSMENT .......................................................................................................................... 4 1.2 OVERVIEW OF FIP SCOPING .................................................................................................................................................... 5 2. STOCK AND FISHERY DESCRIPTION ...................................................................................................... 6 2.1 SPECIES AND STOCK .................................................................................................................................................................. 6 2.2 FISHERY OVERVIEW .................................................................................................................................................................. 9 2.2.1 Location ............................................................................................................................................................................. 9 2.2.2 Gear, seasons and other characteristics .......................................................................................................... 11 2.2.3 Seasonal characteristics of the domestic JFS fishery ................................................................................. 12 2.2.4 Catch information ...................................................................................................................................................... 12 3. SQUID SECTOR SUPPLY CHAIN OVERVIEW ....................................................................................... 14 3.1 GLOBAL ...................................................................................................................................................................................... 14 3.2 CHINA......................................................................................................................................................................................... 14 3.2.1 China’s national squid export overview........................................................................................................... 15 3.3 CHINA’S LIKELY JFS SQUID IMPORT TRADE ..................................................................................................................... 21 4. ANALYSIS OF PARTNER JFS SUPPLY CHAINS .................................................................................... 22 4.1 TRAWL FISHERY SUPPLY SECTOR ....................................................................................................................................... 22 4.1.1 Landing - first purchase .......................................................................................................................................... 22 4.1.2 Post landing materials storage ........................................................................................................................... 22 4.1.3 Processing and export .............................................................................................................................................. 23 4.2 JFS PURSE SEINE SUPPLY CHAIN (ZHEJIANG) .................................................................................................................. 24 4.3 JFS GILLNET SUPPLY CHAIN (SHANDONG) ....................................................................................................................... 24 4.4 FURTHER ANALYSIS OF CHINESE JFS TRAWL FISHERY BASED IN SHANDONG ........................................................ 25 4.4.1 South Korea .................................................................................................................................................................. 26 4.4.2 Japan ................................................................................................................................................................................ 27 4.4.3 North Korea .................................................................................................................................................................. 27 4.4.4 Role of transshipment vessels and transshipment at sea ........................................................................ 28 4.4.5 Potential challenges for meeting area fished purchase specifications ............................................. 29 4.4.6 Possible management approach to address domestic JFS fishery interests ................................... 30 4.5 VESSEL FISHING AREA VERIFICATION ................................................................................................................................ 30 4.5.1 AIS evaluation.............................................................................................................................................................. 30 4.5.2 Future verification efforts ...................................................................................................................................... 32 5. FISHERY SUSTAINABILITY PERFORMANCE ...................................................................................... 32 5.1 PRE-ASSESSMENT AND FISHERY IMPROVEMENT NEED BY MSC PERFORMANCE INDICATOR ............................. 33 5.2 FURTHER SCOPING CONSIDERATIONS................................................................................................................................ 37 5.2.1 Non-trawl gear............................................................................................................................................................ 37 5.2.2 Trawl fishery insights from scoping investigations ................................................................................... 38 5.2.3 Issues and recommendations from 2017 monitoring ............................................................................... 39 6. STAKEHOLDER MAPPING AND ENGAGEMENT ................................................................................. 40 6.1 KEY GOVERNMENT MANAGEMENT AUTHORITIES........................................................................................................... 40 6.1.1 Oceanic and Fishery Bureau of Shandong Province .................................................................................. 41 www.oceanoutcomes.org 2 Chinese JFS Fishery Improvement Scoping Report: October 2018 6.1.2 Zhejiang Province Ocean and Fisheries Bureau .......................................................................................... 43 6.2 SCIENCE INSTITUTES .............................................................................................................................................................. 43 6.2.1 Shandong Marine Resource and Environment Research Institute (SMRERI) ............................... 43 6.2.2 Marine Fishery Institute of Zhejiang Province ............................................................................................. 44 6.3 KEY CHINESE SEAFOOD INDUSTRY ASSOCIATIONS ......................................................................................................... 44 6.3.1 Chinese Aquatic Products Processing and Marketing Alliance (CAPPMA) ..................................... 44 6.4 CHINESE JFS SUPPLY SECTOR .............................................................................................................................................. 45 6.4.1 Processors ...................................................................................................................................................................... 45 6.4.2 Catching sector ........................................................................................................................................................... 45 6.5 INTERNATIONAL BUYERS AND RETAIL PARTNERS ......................................................................................................... 46 6.6 OCEAN OUTCOMES (O2) ...................................................................................................................................................... 46 6.7 OTHER NGOS........................................................................................................................................................................... 47 7. FIP IMPLEMENTATION ........................................................................................................................... 47 7.1 YEAR 1 (2018) FIP ACTIVITIES – PATHWAY TO LAUNCH ........................................................................................... 47 7.2 FIP STRUCTURAL CONSIDERATIONS .................................................................................................................................. 48 7.2.1 O2’s role .......................................................................................................................................................................... 48 7.2.2 FIP Industry Commission
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • European Anchovy Engraulis Encrasicolus (Linnaeus, 1758) From
    European anchovy Engraulis encrasicolus (Linnaeus, 1758) from the Gulf of Annaba, east Algeria: age, growth, spawning period, condition factor and mortality Nadira Benchikh, Assia Diaf, Souad Ladaimia, Fatma Z. Bouhali, Amina Dahel, Abdallah B. Djebar Laboratory of Ecobiology of Marine and Littoral Environments, Department of Marine Science, Faculty of Science, University of Badji Mokhtar, Annaba, Algeria. Corresponding author: N. Benchikh, [email protected] Abstract. Age, growth, spawning period, condition factor and mortality were determined in the European anchovy Engraulis encrasicolus populated the Gulf of Annaba, east Algeria. The age structure of the total population is composed of 59.1% females, 33.5% males and 7.4% undetermined. The size frequency distribution method shows the existence of 4 cohorts with lengths ranging from 8.87 to 16.56 cm with a predominance of age group 3 which represents 69.73% followed by groups 4, 2 and 1 with respectively 19.73, 9.66 and 0.88%. The VONBIT software package allowed us to estimate the growth parameters: asymptotic length L∞ = 17.89 cm, growth rate K = 0.6 year-1 and t0 = -0.008. The theoretical maximum age or tmax is 4.92 years. The height-weight relationship shows that growth for the total population is a major allometry. Spawning takes place in May, with a gonado-somatic index (GSI) of 4.28% and an annual mean condition factor (K) of 0.72. The total mortality (Z), natural mortality (M) and fishing mortality (F) are 2.31, 0.56 and 1.75 year-1 respectively, with exploitation rate E = F/Z is 0.76 is higher than the optimal exploitation level of 0.5.
    [Show full text]
  • R M , July1979 Rum, Jlilio1979
    FA0 Fisheriee Circular No. 706 FIR/C706 FA0 Cimulaire mur lee p8ohes No 706 FAO, CirouLerem de Pom~fbNo 706 SELECTED BIBLIOUUPHY ON PELAGIC FISH EGG AND LARVA SURVEYS BIBLIOWHIE SELECTIVE SUR LES PROSPECTIONS D'OEUFS ET DE LAFNFS DE POISSONS PELAGIQUES BIBLIOWA SELECCIONADA SOBRE RECONOCIMIEN'IQS DE HUEVOS Y LARVAS DE PECES PEZAOICOS Prepared by/Prdparge par/Preparada por Paul E. Smith Southwest Fisheries Center La Jolla, California, U.S.A. t /Y Sally L. Richardem Oregon State University Corvallis, Oregon, U.S.A. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ORGANISATION DES NATIONS UNIES POUR L'ALIMZNTATIW ET L'AaRICUL'NRE ORC;BFIZACI(YN DE LAS NACI- UNIDAS PAR4 LA AaRICUL"RA Y LA ALIMENTACION Rm, July1979 Ram, juillet 1979 Rum, jlilio1979 -1- 1. SCOPE, COVERAGE AND ORGAMI~TION This bibliography is intended to provide aocass to published information on ichthyo- plankton survey methods, identification of fish -,and larvae, and results of meyn thet have been carried out in the put. Although the bibliograpb in selective, its coverage in- cludes all published works through 1973, and it htu been extended by the addition of all papers resented at the Oban Symposium and publinhed in the eJwposiun proceedings (Blazter, J.H.S. red.) 1974. The early life history of firh. SpringarcVerlsg, Berlin). The fint five seotiau of this bibliomp4y list worh by name and drte anly aooordinn to subject category. Section 2 containe refer.noe8 on survey equipment and mothods. Section 3 includes descriptions of early life rtages organized by taxonomic group. Section 4 lists references on species identification of fish aggm and larva4 by region (specifically, by FA0 etatietical area).
    [Show full text]
  • Length-Weight Relationship of Neon Flying Squid Ommastrephes Bartramii (Cephalopoda: Ommastrephidae) Caught from Indian Sector of Southern Ocean
    Indian Journal of Geo-Marine Science Vol. 43(8), August 2014, pp 1581-1584 Length-weight relationship of neon flying squid Ommastrephes bartramii (Cephalopoda: Ommastrephidae) caught from Indian sector of Southern Ocean. *Aneesh Kumar K. V1#., Pravin P1., Ragesh N2 & Meenakumari B3. 1Central Institute of Fisheries Technology, Matsyapuri, Willingdon Island. Cochin-682029, India, 2Central Marine Fisheries Research Institute, Cochin- 682018, India, 3Indian Council of Agricultural Research, Krishi Anusandhan Bhavan 2, New Delhi-110012, India #Present address: Centre for Marine Living Resources and Ecology Kendriya Bhavan, CSEZ P.O., Cochin-682037, India *[E. Mail: [email protected]] Received 1 July 2013; revised 7 August 2013 Length-weight relationship of the Neon flying squid Ommastrephes bartramii, caught from the Indian Sector of Southern Ocean was estimated as male W= 0.0235 L 3.05 (R2 = 0.990719) and females W= 0.0283 L 2.99 (R2 = 0.919944). The species follows an isometric growth pattern and no significant difference was observed between both sexes. [Key words: Length- Weight Relation, Squid, Ommastrephes bartramii, Southern Ocean] Introduction Ommastrephes bartramii (Lesueur, 1821) is a morphometric characters gives a better idea for widely distributed oceanic ommastrephid species understanding the relationship between the species throughout the subtropical and temperate waters of and to compare same species in different both northern and southern hemisphere and geographical areas8. The study of the individual excluded from the equatorial waters of all three growth pattern gives an insight about the population oceans1 and forms a major fishery in the Japanese dynamics of the species such as growth and squid fisheries in the Pacific Ocean2.
    [Show full text]
  • Chub Mackerel, Scomber Japonicus (Perciformes: Scombridae), a New Host Record for Nerocila Phaiopleura (Isopoda: Cymothoidae)
    生物圏科学 Biosphere Sci. 56:7-11 (2017) Chub mackerel, Scomber japonicus (Perciformes: Scombridae), a new host record for Nerocila phaiopleura (Isopoda: Cymothoidae) 1) 2) Kazuya NAGASAWA * and Hiroki NAKAO 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kamiura, Saeki, Oita 879-2602, Japan Abstract An ovigerous female of Nerocila phaiopleura Bleeker, 1857 was collected from the caudal peduncle of a chub mackerel, Scomber japonicus Houttuyn, 1782 (Perciformes: Scombridae), at the Hōyo Strait located between the western Seto Inland Sea and the Bungo Channell in western Japan. This represents a new host record for N. phaioplueura and its fourth record from the Seto Inland Sea and adjacent region. Key words: Cymothoidae, fish parasite, Isopoda, Nerocila phaiopleura, new host record, Scomber japonicus INTRODUCTION The Hōyo Strait is located between the western Seto Inland Sea and the Bungo Channell in western Japan. This strait is famous as a fishing ground of two perciform fishes of high quality, viz., chub mackerel, Scomber japonicus Houttuyn, 1782 (Scombridae), and Japanese jack mackerel, Trachurus japonicus (Temminck and Schlegel, 1844) (Carangidae), both of which are currently called“ Seki-saba” and“ Seki-aji”, respectively, as registered brands (e.g., Ishida and Fukushige, 2010). The brand names are well known nationwide, and the price of the fishes is very high (up to 5,000 yen per kg). Under these situations, the fishermen working in the strait pay much attention to the parasites of the fishes they catch because those fishes are almost exclusively eaten raw as“ sashimi.” Recently, a chub mackerel infected by a large parasite on the body surface (Fig.
    [Show full text]
  • Hairtail and Frostfish (Trichiuridae) Exploitation Status Undefined
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Hairtail and Frostfish (Trichiuridae) EXPLOITATION STATUS UNDEFINED No local biological information available for either species in this group, but growth and maturity have been studied for Trichiurus lepturus from the East China Sea, where it supports a major fishery. SCIENTIFIC NAME STANDARD NAME COMMENT Trichiurus lepturus largehead hairtail Lepidopus caudatus frostfish Trichiurus lepturus Image © Bernard Yau Background The hairtail is commonly around 100 cm in length and about 2 kg in weight but reaches a The largehead hairtail (Trichiurus lepturus) maximum length of about 220 cm and weight belongs to the family Trichiuridae which, of 3.5 kg. worldwide, includes nine genera and about 30 species generally referred to as cutlassfishes or Overseas studies have observed that adults scabbardfishes. Off NSW, at least four species feed at the surface during the day, and retreat of trichiurids are found in deepwater, but the to deeper waters at night. In contrast, juveniles most well known member of the family to most and small adults tend to feed at night at the people is the hairtail, found in shallow coastal surface, and aggregate into schools at depths waters and estuaries. during the day. The adult hairtail diet consists mainly of fish with occasional squid and A cosmopolitan species, the largehead hairtail crustaceans, whereas juveniles mainly feed on is subject to significant fisheries off many planktonic crustaceans, euphausiids and small Asian countries, particularly China and Korea. fish. The world catch reportedly now exceeds 1.5 million t annually. In eastern Australia, Reported landings in NSW generally range hairtail occasionally school in coastal bays between 10 and 25 t with catches greatest and estuaries where they may be targeted during March-May.
    [Show full text]
  • Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗
    Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗ I examine the estimated economic, ecological, and food security effects of future fishery management reform in Asia. Without climate change, most Asian fisheries stand to gain substantially from reforms. Optimizing fishery management could increase catch by 24% and profit by 34% over business- as-usual management. These benefits arise from fishing some stocks more conservatively and others more aggressively. Although climate change is expected to reduce carrying capacity in 55% of Asian fisheries, I find that under climate change large benefits from fishery management reform are maintained, though these benefits are heterogeneous. The case for reform remains strong for both catch and profit, though these numbers are slightly lower than in the no-climate change case. These results suggest that, to maximize economic output and food security, Asian fisheries will benefit substantially from the transition to catch shares or other economically rational fishery management institutions, despite the looming effects of climate change. Keywords: Asia, climate change, fisheries, rights-based management JEL codes: Q22, Q28 I. Introduction Global fisheries have diverged sharply over recent decades. High governance, wealthy economies have largely adopted output controls or various forms of catch shares, which has helped fisheries in these economies overcome inefficiencies arising from overfishing (Worm et al. 2009) and capital stuffing (Homans and Wilen 1997), and allowed them to turn the corner toward sustainability (Costello, Gaines, and Lynham 2008) and profitability (Costello et al. 2016). But the world’s largest fishing region, Asia, has instead largely pursued open access and input controls, achieving less long-run fishery management success (World Bank 2017).
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Implementation of Rio+20 Ocean Outcomes
    Implementation of Rio+20 Ocean Outcomes: Challenges and Opportunities Policy Brief for the International Marine Protected Areas Congress (IMPAC3), Marseille and Corsica, October 21-26, 2013 ________________________________________________________________ Implementation of Rio+20 Ocean Outcomes: Challenges and Opportunities Biliana Cicin-Sain, Director, Gerard J. Mangone Center for Marine Policy, University of Delaware, and President, Global Ocean Forum ([email protected]), Joseph Appiott, Policy Researcher, Gerard J. Mangone Center for Marine Policy, University of Delaware ([email protected]), and Marisa Van Hoeven, Policy Researcher, Gerard J. Mangone Center for Marine Policy, University of Delaware ([email protected]) INTRODUCTION This paper reviews important developments at the global level relevant to the achievement of ecosystem-based, integrated governance of oceans and coasts with an emphasis on the processes and outcomes of the United Nations Conference on Sustainable Development (Rio+20) and on the implementation of Rio+20 outcomes. The paper first provides a general commentary on the Rio+20 outcomes, followed by a specific discussion on the ocean outcomes of Rio+20, focusing especially on how these relate to existing global commitments on oceans emanating from the 1992 United Nations Conference on Environment and Development (UNCED) and the 2002 World Summit on Sustainable Development (WSSD). A subsequent section addresses issues in the implementation of Rio+20 outcomes. A concluding section addresses what needs to be done at global, national, and regional levels to achieve Rio+20 implementation and the full implementation of global ocean commitments from the 1992 and 2002 summits.1 The 3rd International Marine Protected Areas Congress (IMPAC 3), taking place in Marseille and Corsica, France, 21-27 October 2013, provides an opportunity to review progress made and major lessons learned from efforts undertaken, or lack thereof, to implement major commitments emanating from UNCED, the WSSD, and Rio+20.
    [Show full text]
  • Squid and Octopus
    Sector Improvement Profile: Squid and Octopus More than half (52%) of global production is yellow- or red-rated, indicating that improvements are needed, and 45% is status unknown. Our improvement efforts prioritize: • The 27% of global squid and octopus production that is red-rated; and • The 39% within the scope of Sustainable Fisheries Partnership’s Target 75 Initiative. Red-rated Species Source country Argentine shortfin squid Argentina Common octopus Mexico, Portugal, Spain Common squids nei Indonesia, Thailand Japanese flying squid Japan Mexican four-eyed octopus Mexico Octopuses nei Indonesia, Mauritania, Morocco, Philippines Various squids nei China, India The Monterey Bay Aquarium’s Seafood Watch Program ratings are based on specific location and production method information and make exceptions for specific brands. For detailed information, visit the Seafood Watch recommendations on squid and octopus. FIP or AIP Where available, the links below lead to detailed information about FIPs listed on FisheryProgress.org. Species Source country Day Octopus Madagascar California Two-Spot Octopus Mexico Giant Pacific Octopus Japan Japanese Flying Squid China Jumbo Squid Mexico, Peru Mitre Squid China Red octopus Chile, Mexico Octopus China The Seafood Certification & Ratings Collaboration unites five global seafood certification and ratings programs working together to coordinate our tools and increase our impact so that more seafood producers move along a clear path toward environmental sustainability and social responsibility. Learn
    [Show full text]
  • Learning About Our Favourite Squid Species
    Cephalopod Science Investigations LEARNING ABOUT OUR FAVOURITE SQUID SPECIES By Cushla Dromgool-Regan Eimear Manning & Anna Quinn www.EXPLORERS.ie The Explorers Education Programme is funded by the Marine Institute Explorers Education Programme engage with primary schools, teachers and children, creating marine leaders and ocean champions. The Explorers Education Programme team provides engaging activities, resources and support for teachers, children and the education network, delivering ocean literacy to primary schools. We aim to inspire children and educators to learn about our marine and maritime identity and heritage, as well as making informed and responsible decisions regarding the ocean and its resources. We communicate about the ocean in a meaningful way, increasing the awareness and understanding of our marine biodiversity, the environment, as well as the opportunities and social benefits of our ocean wealth. To help inspire children learning about the ocean, we have developed a series of teaching materials and resources about Squid! Check out our Explorers books: Cephalopod Science Investigations – Learning about Squid 101; My CSI Squid Workbook. Also, see our interactive film: Cephalopod Science Investigations – Learning about Squid 101 and Dissection. For more information about our Squid series see www.explorers.ie CEPHALOPOD SCIENCE INVESTIGATIONS LEARNING ABOUT OUR FAVOURITE SQUID SPECIES AUTHORS Cushla Dromgool-Regan Eimear Manning Anna Quinn PUBLISHED BY Marine Institute First published in 2021 Marine Institute, Rinville, Oranmore, Galway All or parts of the content of this publication may be reproduced without further permission for education purposes, provided the author and publisher are acknowledged. Authors: Cushla Dromgool-Regan, The Camden Education Trust; Eimear Manning, The Camden Education Trust; & Anna Quinn, Galway Atlantaquaria.
    [Show full text]