Characterisation of Genomic Islands in Neisseria Meningitidis

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Genomic Islands in Neisseria Meningitidis Characterisation of genomic islands in Neisseria meningitidis Maria Chiara Erminia Catenazzi A Thesis Submitted for the Degree of Doctor of Philosophy (PhD) University of York Department of Biology August 2013 Abstract Neisseria meningitidis asymptomatically colonises the nasopharynx of about 10 % of the human population. This bacterium is an accidental pathogen, with N. meningitidis serogroup B being the main cause of meningitis and septicaemia in developed countries. Strain MC58 has a genome size of 2,272,360 bp and contains 2160 ORFs, more than half of which have already been assigned a function. Nine conserved genomic islands that are absent from the closely related commensal species N. lactamica were identified and comprise 38 genes. Of these, 14 still encode proteins of unknown function. Two of these islands (pathogenic islands 4 and 8) were investigated, and the genes crucial for two further islands (pathogenic islands 3 and 5) involved in polyamine biosynthesis were successfully knocked out in this work. Genomic island 4 contains six genes, which encode proteins that are involved in the 2-methylcitrate pathway; these genes are clustered together to form the prp operon. Several genes belonging to this pathway ( prpC , NMB0432 and ackA-1) were knocked out, and the resulting mutants were unable to utilise propionic acid, which is the substrate for the pathway being investigated. Saliva from over 300 healthy students was analysed for propionic acid content, and the data were compared to the meningococcal carriage status. No significant correlation, however, was found between the concentration of this fatty acid and the carriage status. Genomic island 8 contains coding sequences for the two hypothetical proteins NMB1048 and NMB1049. NMB1049 has been shown to regulate the expression of the divergently transcribed NMB1048 but not prpC . NMB1049 is, in fact, a putative LysR-Type transcriptional regulator. Both genomic islands were also investigated for their involvement in N. meningitidis carriage or infection. Human blood samples from several healthy individuals were inoculated with N. meningitidis MC58, and results showed that only half of the blood samples had bactericidal effects. These results were independent of the strain used, as they were similar for the wild-type and the mutants in the prpC and NMB1049 genes. The catabolism of propionic acid seems to give an advantage to N. meningitidis in colonising the adult nasopharynx. i Table of Contents Abstract ................................................................................................................. i Table of Contents ....................................................................................................... ii List of Figures ........................................................................................................... vii List of Tables ........................................................................................................... xiii List of Abbreviations ............................................................................................... xv Acknowledgements ................................................................................................. xvii Author’s declaration ............................................................................................. xviii Chapter 1 - General introduction ............................................................................ 1 1.1 Microflora present in the oral cavity .............................................................. 1 1.2 Bacteria and the role of propionic acid .......................................................... 3 1.2.1 Propionic acid abundance ....................................................................... 3 1.2.2 Bacteria that synthesise propionic acid .................................................... 4 1.2.3 Pathways generating propionyl-CoA and propionic acid ....................... 5 1.3 Overview of the genus Neisseria ................................................................... 7 1.3.1 Neisseria lactamica ................................................................................. 9 1.3.2 Neisseria gonorrhoeae .......................................................................... 11 1.3.3 Neisseria meningitidis ........................................................................... 11 1.4 Microbiology of Neisseria meningitidis ...................................................... 13 1.5 Carriage and pathogenicity of Neisseria meningitidis ................................. 14 1.6 Vaccine candidates for Neisseria meningitidis ............................................ 17 1.7 Genomic differences between N. meningitidis and the other bacteria ......... 20 1.7.1 Genomic differences between N. meningitidis and . coli ................... 20 1.7.2 Genomic differences between N. lactamica , N. gonorrhoeae and N. meningitidis ........................................................................................... 22 1.8 Aims and objectives of this work ................................................................. 33 ii Chapter 2 - Materials and Methods ....................................................................... 34 2.1 Bacterial strains and plasmids used in this work ......................................... 34 2.1.1 Bacterial strains used in this work ........................................................ 34 2.1.2 Plasmids used in this work .................................................................... 35 2.2 Growth of bacterial strains ........................................................................... 36 2.2.1 Preparation of scherichia coli DH5α and BL21 (DE3) competent cells .............................................................................................................. 36 2.2.2 Growth of scherichia coli DH5α ........................................................ 38 2.2.3 Growth of scherichia coli BL21 (DE3) for overexpression of the protein NMV_1164 ............................................................................... 39 2.2.4 Growth of Neisseria meningitidis ......................................................... 43 2.2.5 Growth of Veillonella spp. for co-culture with Neisseria meningitidis 48 2.2.6 x vivo growth of Neisseria meningitidis in human whole blood ........ 48 2.2.7 Bacterial growth curves ........................................................................ 50 2.2.8 Preparation of . coli cell stocks .......................................................... 50 2.2.9 Preparation of wild-type and mutant N. meningitidis cell stocks ......... 51 2.2.10 Preparation of antibiotic selective media .............................................. 51 2.3 Molecular techniques ................................................................................... 52 2.3.1 Polymerase chain reaction (PCR) ......................................................... 52 2.3.2 pCR® -Blunt II- TOPO® cloning and transformation ......................... 55 2.3.3 Transformation of . coli strain DH5α ................................................. 56 2.3.4 Isolation of plasmid DNA ..................................................................... 56 2.3.5 Preparation of pHP45 $, tetracycline and chloramphenicol cassettes .. 57 2.3.6 Endonuclease restriction digestion of DNA ......................................... 58 2.3.7 Agarose gel electrophoresis and DNA gel extraction ........................... 59 2.3.8 Ligation of DNA fragments .................................................................. 60 2.3.9 TSB transformation of N. meningitidis strain MC58 ............................ 62 2.3.10 Determination of DNA or RNA concentration ..................................... 63 2.3.11 DNA sequencing and data analysis ...................................................... 64 2.3.12 Preparation and purification of total RNA from N. meningitidis ......... 64 2.3.13 Preparation of cDNA ............................................................................ 66 2.3.14 Quantitative Real-Time PCR (RT-PCR) and analysis of gene expression ............................................................................................. 67 iii 2.3.15 Collection and handling of human saliva ............................................. 69 2.4 Analytic chemistry techniques ..................................................................... 70 2.4.1 Gas chromatography (GC) .................................................................... 70 2.5 Protein techniques ........................................................................................ 71 2.5.1 Disruption of cells and preparation of soluble extract .......................... 71 2.5.2 Protein purification ............................................................................... 72 2.5.3 SDS-PAGE ........................................................................................... 73 2.5.4 Coomassie Staining of SDS gels .......................................................... 75 2.5.5 PD-10 Buffer exchange ........................................................................ 75 2.5.6 Quantification with Bradford Assay and storage of proteins ............... 76 2.5.7 Electrophoretic Mobility Shift Assay (EMSA) with DNA 130-mers ... 77 2.5.8 Sybr® Safe and Silver Staining of EMSA gels .................................... 80 2.5.9 Fluorescence Anisotropy ...................................................................... 81 Chapter 3 - Defence against propionic
Recommended publications
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Bacterial Diversity and Functional Analysis of Severe Early Childhood
    www.nature.com/scientificreports OPEN Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India Balakrishnan Kalpana1,3, Puniethaa Prabhu3, Ashaq Hussain Bhat3, Arunsaikiran Senthilkumar3, Raj Pranap Arun1, Sharath Asokan4, Sachin S. Gunthe2 & Rama S. Verma1,5* Dental caries is the most prevalent oral disease afecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidifcation due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3–V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were signifcantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with signifcant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of bioflm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound bioflm formation and augmented the growth and enhanced bioflm formation in S. mutans in both dual and multispecies cultures. Interaction among more than 700 species of microbiota under diferent micro-ecological niches of the human oral cavity1,2 acts as a primary defense against various pathogens. Tis has been observed to play a signifcant role in child’s oral and general health.
    [Show full text]
  • Vaccine Antigens Expressed During Natural Mucosal Infection
    Article Integrated Bioinformatic Analyses and Immune Characterization of New Neisseria gonorrhoeae Vaccine Antigens Expressed during Natural Mucosal Infection Tianmou Zhu 1, Ryan McClure 2, Odile B. Harrison 3 , Caroline Genco 1 and Paola Massari 1,* 1 Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; [email protected] (T.Z.); [email protected] (C.G.) 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; [email protected] 3 Department of Zoology, University of Oxford, Oxford OX1 3SY, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-617-636-0431 Received: 20 September 2019; Accepted: 14 October 2019; Published: 17 October 2019 Abstract: There is an increasingly severe trend of antibiotic-resistant Neisseria gonorrhoeae strains worldwide and new therapeutic strategies are needed against this sexually-transmitted pathogen. Despite the urgency, progress towards a gonococcal vaccine has been slowed by a scarcity of suitable antigens, lack of correlates of protection in humans and limited animal models of infection. N. gonorrhoeae gene expression levels in the natural human host does not reflect expression in vitro, further complicating in vitro-basedvaccine analysis platforms. We designed a novel candidate antigen selection strategy (CASS), based on a reverse vaccinology-like approach coupled with bioinformatics. We utilized the CASS to mine gonococcal proteins expressed during human mucosal infection, reported in our previous studies, and focused on a large pool of hypothetical proteins as an untapped source of potential new antigens. Via two discovery and analysis phases (DAP), we identified 36 targets predicted to be immunogenic, membrane-associated proteins conserved in N.
    [Show full text]
  • Isolation of Neisseria Sicca from Genital Tract
    Al-Dorri (2020): Isolation of N sicca from genital tract Dec, 2020 Vol. 23 Issue 24 Isolation of Neisseria sicca from genital tract Alaa Zanzal Ra'ad Al-Dorri1* 1. Department of Medical Microbiology, Tikrit University/ College of Medicine (TUCOM), Iraq. *Corresponding author:[email protected] (Al-Dorri) Abstract In the last few decades some researchers has focused on N. meningitidis and N. gonorrhoeae in attempts to understand the pathogenesis of the diseases produced by these organisms. Although little attention has been paid to the other neisseria species since they are considered harmless organisms of little clinical importance although they can cause infections. In this paper, pathological features and the clinical of high vaginal and cervical infections caused by Neisseria sicca are described, which are normal inhabitants of the human respiratory tract as in oropharynx and can act as opportunistic pathogens when present in other sites such as female genital tract. We note they usually infect married women at a young age group who were multipara and active sexual women. N.sicca was resistant to most antibiotics that were used while the doxycycline was the most effective antibiotic against N.sicca. Keywords: Neisseria sicca,genital tract infection, pharyngeal carriage, colonization, antimicrobial resistance How to cite this article: Al-Dorri AZR (2020): Isolation of Neisseria sicca from genital tract, Ann Trop Med & Public Health; 23(S24): SP232417. DOI:http://doi.org/10.36295/ASRO.2020.232417 Introduction: Neisseria is considered as a genus of b-Proteobacteria, which are absolute symbionts in human mucosal surfaces. 8 species of Neisseria have been reported and they normally colonize the mucosal surfaces of humans [1, 2].
    [Show full text]
  • Atypical, Yet Not Infrequent, Infections with Neisseria Species
    pathogens Review Atypical, Yet Not Infrequent, Infections with Neisseria Species Maria Victoria Humbert * and Myron Christodoulides Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK; [email protected] * Correspondence: [email protected] Received: 11 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause. Keywords: Neisseria species; Neisseria meningitidis; Neisseria gonorrhoeae; commensal; pathogenesis; host adaptation 1.
    [Show full text]
  • Microevolution of Neisseria Lactamica During Nasopharyngeal Colonisation Induced by Controlled Human Infection
    ARTICLE DOI: 10.1038/s41467-018-07235-5 OPEN Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection Anish Pandey1, David W. Cleary 1,2,3, Jay R. Laver1, Andrew Gorringe4, Alice M. Deasy5,6, Adam P. Dale1,2, Paul D. Morris5,6, Xavier Didelot7,9, Martin C.J. Maiden 8 & Robert C. Read 1,2,3 1234567890():,; Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually- excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial micro- evolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase- variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypo- thetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution. 1 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK. 2 Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton SO166YD, UK. 3 Institute for Life Sciences, University of Southampton, Southampton SO166YD, UK. 4 Public Health England, Porton Down, Salisbury SP40JG, UK.
    [Show full text]
  • Application for Consent to Release a GMO – Organisms Other Than Higher Plants
    Department for Environment, Food and Rural Affairs Application for consent to release a GMO – organisms other than higher plants Part A1: Information required under schedule 2 of the Genetically Modified (Deliberate Release) Regulations 2002 Part I General information 1. The name and address of the applicant and the name, qualifications and experience of the scientist and of every other person who will be responsible for planning and carrying out the release of the organisms and for the supervision, monitoring and safety of the release. Clinical & Experimental Sciences, LC72 (MP814) South Academic Block, Southampton General Hospital, Tremona Road, Southampton, UK. Public Health England, Porton Down, Salisbury SP4 0JG, UK 2. The title of the project. “Experimental challenge of the human nasopharynx with recombinant Neisseria lactamica expressing the meningococcal type V autotransporter protein, Neisseria Adhesin A (NadA)”. 1 Part II Information relating to the organisms Characteristics of the donor, parental and recipient organisms 3. Scientific name and taxonomy. Donor: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria meningitidis Taxonomy ID: 122586 Recipient: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria lactamica Taxonomy ID: 869214 The purpose of the genetic modification is to construct a strain of the exclusively human, nasopharyngeal commensal bacterium, Neisseria lactamica (Nlac) that expresses on its surface the outer membrane protein, Neisseria Adhesin A (NadA). NadA is an adhesin protein found in the close relative of Nlac, Neisseria meningitidis (Nmen), which is the causative agent of meningococcal disease. The genetically modified organism (GMO) will be used to investigate the role of NadA in the colonisation of the nasopharynx and associated immune responses in a controlled human bacterial challenge.
    [Show full text]
  • A Genomic Approach to Bacterial Taxonomy: an Examination and Proposed Reclassification of Species Within the Genus Neisseria
    Microbiology (2012), 158, 1570–1580 DOI 10.1099/mic.0.056077-0 A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria Julia S. Bennett,1 Keith A. Jolley,1 Sarah G. Earle,1 Craig Corton,2 Stephen D. Bentley,2 Julian Parkhill2 and Martin C. J. Maiden1 Correspondence 1Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Julia S. Bennett 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [email protected] In common with other bacterial taxa, members of the genus Neisseria are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus Neisseria have been analysed using whole-genome sequence data. As genetic material belonging to the accessory genome is widely shared among different taxa but not present in all isolates, this analysis indexed nucleotide sequence variation within sets of genes, specifically protein-coding genes that were present and directly comparable in all isolates. Variation in these genes identified seven species groups, which were robust to the choice of genes and phylogenetic clustering methods used. The groupings were largely, but not completely, congruent with current species designations, with some minor changes in nomenclature and the reassignment of a few isolates necessary. In particular, these data showed that isolates classified as Neisseria polysaccharea are polyphyletic and probably include more than one taxonomically distinct organism.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Pathogenic Neisseriae: Surface Modulation, Pathogenesis and Infection Control
    REVIEWS Pathogenic neisseriae: surface modulation, pathogenesis and infection control Mumtaz Virji Abstract | Although renowned as a lethal pathogen, Neisseria meningitidis has adapted to be a commensal of the human nasopharynx. It shares extensive genetic and antigenic similarities with the urogenital pathogen Neisseria gonorrhoeae but displays a distinct lifestyle and niche preference. Together, they pose a considerable challenge for vaccine development as they modulate their surface structures with remarkable speed. Nonetheless, their host-cell attachment and invasion capacity is maintained, a property that could be exploited to combat tissue infiltration. With the primary focus on N. meningitidis, this Review examines the known mechanisms used by these pathogens for niche establishment and the challenges such mechanisms pose for infection control. Neisseria meningitidis (meningococcus) and Neisseria surface variation also poses a substantial problem in gonorrhoeae (gonococcus), the well known agents of developing effective vaccines against several strains of epidemic meningitis and gonorrhoea, respectively, are N. meningitidis and against N. gonorrhoeae. Although related Gram-negative bacteria that specifically infect multicomponent vaccines are being developed, the humans; both pathogens prefer to inhabit distinct available vaccines fall short of combating all virulent human mucosal niches and cause markedly different strains7,8. diseases (FIG. 1). One important difference between the An array of molecules is produced by bacteria pathogens is that almost all clinically important N. men- to enable them to colonize and/or infect the host, ingitidis strains are encapsulated, whereas N. gonorrhoeae including adhesins, which are key factors that are strains lack capsule biosynthetic genes. N. meningitidis required for initial colonization of human mucosal is a frequent asymptomatic colonizer of the human sites.
    [Show full text]
  • The Pathogenic Potential of Commensal Species of Neisseria
    J Clin Pathol: first published as 10.1136/jcp.36.2.213 on 1 February 1983. Downloaded from J Clin Pathol 1983;36:213-223 The pathogenic potential of commensal species of Neisseria AP JOHNSOON From the Division of Communicable Diseases, MRC Clinical Research Centre, Watford Road, Harrow, Middlesex, HAl 3UJ SUMMARY Although Neisseria species other than N gonorrhoeae and N meningitidis normally comprise part of the commensal bacterial flora of the oropharynx, they may occasionally act as opportunistic pathogens. Infections in which these organisms have been implicated include cases of endocarditis, meningitis, septicaemia, otitis, bronchopneumonia and possibly genital tract disease. In this paper, the clinical and pathological features of such infections are described, together with a discusssion of factors that may contribute to their development. In most textbooks of medical microbiology, the catarrhalis, M cinereus, M flavus, i, ii and iii, copyright. genus Neisseria is considered to contain only two M pharyngis siccus, Diplococcus mucosus and pathogenic species, namely, N gonorrhoeae and D crassus. In an early review, Wilson and Smith3 N meningitidis. The other members of the genus are considered the classification of these organisms to be generally regarded as harmless inhabitants of the unsatisfactory and suggested that apart from the oropharynx. There is ample evidence in the liter- meningococcus, all Gram-negative cocci found in the ature, however, that these normally non-pathogenic oropharynx should be classified as a single group species are capable ofproducing infection in a variety called either D pharyngis or N pharyngis. This of anatomical sites including the heart, nervous suggestion was not, however, generally adopted.
    [Show full text]
  • Findings from the Microbiota of Tooth Apical Periodontitis and the Search for Pathogen Forgranulomatous InAmmation
    Findings from the microbiota of tooth apical periodontitis and the search for pathogen forgranulomatous inammation Yuanyuan Wang Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Hao Xu Xi'an Medical University Minghui Wei Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Yuhong Wang Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Wenzhe Wang Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Bin Feng Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Jia Ju Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Xinwen Wang ( [email protected] ) Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology https://orcid.org/0000-0001-6880-8098 Yuan Liu Fourth Military Medical University School of Stomatology: Air Force Medical University School of Stomatology Research Keywords: Apical periodontitis, Granulomatous inammation, Orofacial granulomatosis, Proteobacteria, Neisseria subava Posted Date: August 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-746573/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Title page: Findings from the microbiota of tooth apical periodontitis and the search for pathogen for granulomatous inflammation Yuanyuan Wang1,2, Hao Xu3, Minghui Wei1,2, Yuhong Wang1,2, Wenzhe Wang1,2, Bin Feng2,4, Jia Ju2,4, Xinwen Wang1,2, Yuan Liu2,5 Authorship note: YYW and HX are co‐first authors. Conflict of interest: The authors declare no potential conflicts of interest with respect to the authorship and publication of this article.
    [Show full text]