Isolation of Neisseria Sicca from Genital Tract

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Neisseria Sicca from Genital Tract Al-Dorri (2020): Isolation of N sicca from genital tract Dec, 2020 Vol. 23 Issue 24 Isolation of Neisseria sicca from genital tract Alaa Zanzal Ra'ad Al-Dorri1* 1. Department of Medical Microbiology, Tikrit University/ College of Medicine (TUCOM), Iraq. *Corresponding author:[email protected] (Al-Dorri) Abstract In the last few decades some researchers has focused on N. meningitidis and N. gonorrhoeae in attempts to understand the pathogenesis of the diseases produced by these organisms. Although little attention has been paid to the other neisseria species since they are considered harmless organisms of little clinical importance although they can cause infections. In this paper, pathological features and the clinical of high vaginal and cervical infections caused by Neisseria sicca are described, which are normal inhabitants of the human respiratory tract as in oropharynx and can act as opportunistic pathogens when present in other sites such as female genital tract. We note they usually infect married women at a young age group who were multipara and active sexual women. N.sicca was resistant to most antibiotics that were used while the doxycycline was the most effective antibiotic against N.sicca. Keywords: Neisseria sicca,genital tract infection, pharyngeal carriage, colonization, antimicrobial resistance How to cite this article: Al-Dorri AZR (2020): Isolation of Neisseria sicca from genital tract, Ann Trop Med & Public Health; 23(S24): SP232417. DOI:http://doi.org/10.36295/ASRO.2020.232417 Introduction: Neisseria is considered as a genus of b-Proteobacteria, which are absolute symbionts in human mucosal surfaces. 8 species of Neisseria have been reported and they normally colonize the mucosal surfaces of humans [1, 2]. Although some studies have described eleven other species that colonizes humans, only two are pathogens, N.gonorrhoeae and N.meningitidis oftentimes cause infections [3]. Neisseria meningitides cause septicemia and meningitis, whilst Neisseria gonorrhoeae causes transmitted sexual disease. For of their importance to public global health, the former researches completed have focused fundamentally on the two pathogens, leading to the identification of large factor virulence that is substantial for humans in infection. Neisseria species are Gram-negative bacteria, diplococci resemble coffee beans, sometimes appear as tetrads, and they grow at 37°C when viewed microscopically. Neisseria is positive for both catalase and oxidase [3]. Several Neisseria could be diagnosed via fermentation of sugars from which they will products acid. For like, N.gonorrheae products acid from only glucose, but N.meningitidis produces acid from maltose and glucose [3]. New reports show that commensal Neisseria as well has the genes associated with virulence.N. meningitidisand N. gonorrhoeae cause important diseases distributed world-wide, the dominance of which is subordinate on the availability and widespread utilizer of gonococcal vaccines and meningococcal. The nature of the organism’s heterogeneity, variability, poor immunogenicity onto components surface should be affected the development of Neisseria vaccines [4, 5, 6]. Therefore, the study focused each on a fixed number of genes virulence or only one commensal genome. The total virulence gene content of the Neisseria genus is unknown. Neisseria sicca differs from other commensal Neisseria because it causes disease in healthy individuals [6]. One of the protective Annals of Tropical Medicine & Public Health http://doi.org/10.36295/ASRO.2020.232417 Al-Dorri (2020): Isolation of N sicca from genital tract Dec, 2020 Vol. 23 Issue 24 mechanisms of N. meningitidis is the presence of a polysaccharide capsule that surrounds the outer membrane of the bacterium and protects the bacteria against immune defense mechanisms, while N. gonorrhea does not possess such capsule. Both commensal and pathogenic Neisseria have lipooligosaccharide (LOS) consisting of a core polysaccharide and lipid A instead of lipopolysaccharide (LPS) and play an important role in the pathogenesis of pathogenic species. Commensal Neisseria also has LOS but can express additional structures not found in the pathogenic strains.N. sicca was responsible for a fatal case of endocarditis in healthy adult males, this isolate from commensal species represents an increase in virulence of this organism to invade the host and survive in the blood [7]. LOS acts as an endotoxin against antibiotics, and it is a high stimulator to the human immune system [8]. Regarding the cultural features of N. sicca are Gram-negative diplococcus bacteria, while colonies appear as dry, wrinkled, adherent colonies but smooth colonies may form catalase positive. Most N. sicca strains are not pigmented while others strains can be pigmented, for differentiation among N. subflava and N. sicca we can use the characteristic of lacking pigmentation. N.sicca produces acid from glucose, maltose, sucrose, and fructose but not for lactose [9]. For the past 70 years, antibiotics were used successfully for the treatment of the pathogenic Neisseria (N. gonorrhea and N. meningitides) infections. Although resistance to antibiotics is increasing. The mechanisms of antibiotic resistance in gonococci and meningococci should be elucidated in order todesign novel antimicrobials to avoid this problem [10]. Neisseria sicca/subflava are considered as one of normal flora are found in the greater tract respiratory and oral cavity of humans and rarely cause meningitis, endocarditis, urethritis, pneumonia, spondylitis, and bacteremia. There is little literature that explains the clinical features and management of iatrogenic meningitis caused by N. sicca/subflava[11, 12]. The human mucosal surfaces have variation in the Neisseria species which leads to the increase in the probability of genetic exchange between the bacteria [13, 14]. Because these infections are more associated with gonococci and meningococci, we should be careful during identification of all Neisseria recovered from blood, cerebrospinal fluid, and gynecologic specimens. The aim of this work: to investigate the pathological features and the clinical of high vaginal and cervical infections caused by Neisseria sicca are described, which are normal inhabitants of the human respiratory tract as in oropharynx and can act as opportunistic pathogens when present in other sites such as female genital tract. Methods and materials Study the population was composed of (215) married women, at aged among 15–49 years old, who attending the outpatient of gynecological and obstetric clinic in Tikrit Teaching Hospital and private clinics in Tikrit province. Most of the patients were suffering from colored vaginal discharge, itching or irritation, and sometimes bad odor, dysuria (pain during urination), and dyspareunia (pain during intercourse). All patients were interviewed and careful history taken from them by special questioners of parity, bad obstetric history, used contraceptive, drugs, level of education, resident, and husband occupation. The patients excluded from this study included presenting with diabetes mellitus (DM), received corticosteroids (CS) drug, malignancy, vaginal bleeding, and menstrual bleeding and received antimicrobial or antibiotic drugs less than one week. By using unlubricated sterile Cusco's speculum was inserted into vaginal women in the lithotomy position. The lateral, posterior vaginal fornix and cervix were swabbed with two sterile cotton-tipped applicators. One of the Annals of Tropical Medicine & Public Health http://doi.org/10.36295/ASRO.2020.232417 Al-Dorri (2020): Isolation of N sicca from genital tract Dec, 2020 Vol. 23 Issue 24 swabs was put in the tube with 1 – 2 ml of sterile Amies transport media and transported to the microbiological laboratory in TUCOM, were cultured and another swab for microscopic examination (wet mount and Gram stain). A pH strip placed in contact with the secretions on the speculum for measuring vaginal pH. Bacterial infection was clinically diagnosed when the vaginal pH > 4.5 this indicates dimensioned in normal Lactobacilli flora, while in candida vaginitis there is no elevated in pH. Gram stain usually used to determine the vaginal flora, clue cells, leukocyte counts, which were evaluated in five different fields. The vaginal discharge present on the swab directly transferred to the glass slide, the smear was fixing by heating, and then Gram staining was done. Swabs were inoculated directly on to selective media such as Columbia blood agar base (Himedia/India), with supplement FD 056 (Himedia/India) vial contains antibiotics (Nalidixic acid 15 mg, Gentamicin sulfate 2 mg and Amphotericin B 1 mg) each one vial added to cooled (45-50 OC) of 500 ml of sterilized this media along with 5% human blood mixed well. Plates were incubated anaerobically at 37 OC for 48 hours in candle jar to provide 5- 10% CO2 tension. Another swab streaked the Blood agar, Chocolate agar and MacConkey's agar, which were incubated at the microaerophilic atmosphere. Catalase and oxidase tests were positive, also the suspicious colonies investigated by further biochemical testing and usage of Api System (analytical profile index) for identification of bacteria including RapIDTM NH ONE System (remel) was used for diagnosis and identification of Neisseria sicca [15]. Disk diffusion method (Kirby Bauer test) The susceptibility of Neisseria sicca against various antibiotics was studied, using the Kirby-Bauer method. The used disk in this method was 5 mm in diameter and the
Recommended publications
  • Avoidance of Mechanisms of Innate Immune Response by Neisseria Gonorrhoeae
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 4, 367–373 DOI: 10.21307/PM–2019.58.4.367 AVOIDANCE OF MECHANISMS OF INNATE IMMUNE RESPONSE BY NEISSERIA GONORRHOEAE Jagoda Płaczkiewicz* Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Submitted in July, accepted in October 2019 Abstract: Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacteria and an etiological agent of the sexually transmitted disease – gonorrhea. N. gonorrhoeae possesses many mechanism to evade the innate immune response of the human host. Most are related to serum resistance and avoidance of complement killing. However the clinical symptoms of gonorrhea are correlated with a significant pres- ence of neutrophils, whose response is also insufficient and modulated by gonococci. 1. Introduction. 2. Adherence ability. 3. Serum resistance and complement system. 4. Neutrophils. 4.1. Phagocytosis. 4.1.1. Oxygen- dependent intracellular killing. 4.1.2. Oxygen-independent intracellular killing. 4.2. Neutrophil extracellular traps. 4.3. Degranulation. 4.4. Apoptosis. 5. Summary UNIKANIE MECHANIZMÓW WRODZONEJ ODPOWIEDZI IMMUNOLOGICZNEJ PRZEZ NEISSERIA GONORRHOEAE Streszczenie: Neisseria gonorrhoeae (gonokok) to Gram-ujemna dwoinka będąca czynnikiem etiologicznym choroby przenoszonej drogą płciową – rzeżączki. N. gonorrhoeae posiada liczne mechanizmy umożliwiające jej unikanie wrodzonej odpowiedzi immunologicznej gospodarza. Większość z nich związana jest ze zdolnością gonokoków do manipulowania układem dopełniacza gospodarza oraz odpor- nością tej bakterii na surowicę. Jednakże symptomy infekcji N. gonorrhoeae wynikają między innymi z obecności licznych neutrofili, których aktywność jest modulowana przez gonokoki. 1. Wprowadzenie. 2. Zdolność adherencji. 3. Surowica i układ dopełniacza. 4. Neutrofile. 4.1. Fagocytoza. 4.1.1. Wewnątrzkomórkowe zabijanie zależne od tlenu. 4.1.2.
    [Show full text]
  • Potential of Metabolomics to Reveal Burkholderia Cepacia Complex Pathogenesis and Antibiotic Resistance
    MINI REVIEW published: 13 July 2015 doi: 10.3389/fmicb.2015.00668 Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance Nusrat S. Shommu 1, Hans J. Vogel 1 and Douglas G. Storey 2* 1 Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, 2 Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis Edited by: in CF patients and have developed resistance to most of the commonly used Steve Lindemann, Pacific Northwest National antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still Laboratory, USA not fully understood. This mini review discusses the established and potential virulence Reviewed by: determinants of Bcc and some of the contemporary strategies including transcriptomics Joanna Goldberg, Emory University School and proteomics used to identify these traits. We also propose the application of metabolic of Medicine, USA profiling, a cost-effective modern-day approach to achieve new insights. Tom Metz, Pacific Northwest National Keywords: Burkholderia cepacia complex, virulence, antibiotic resistance, metabolomics, cystic fibrosis Laboratory, USA *Correspondence: Burkholderia cepacia Complex in Cystic Fibrosis Douglas G. Storey, Microbiology Research Group, Burkholderia cepacia complex (Bcc) is a group of at least 17 Gram-negative b-proteobacteria that Department of Biological are phenotypically related but genetically discrete (Mahenthiralingam et al., 2005; Vanlaere et al., Sciences, University of Calgary, 2008, 2009).
    [Show full text]
  • Neisseria Gonorrhoeae Infection by Functioning Igm Memory B Cells
    Vigorous Response of Human Innate Functioning IgM Memory B Cells upon Infection by Neisseria gonorrhoeae This information is current as Nancy S. Y. So, Mario A. Ostrowski and Scott D. of October 1, 2021. Gray-Owen J Immunol 2012; 188:4008-4022; Prepublished online 16 March 2012; doi: 10.4049/jimmunol.1100718 http://www.jimmunol.org/content/188/8/4008 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/03/16/jimmunol.110071 Material 8.DC1 http://www.jimmunol.org/ References This article cites 69 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/188/8/4008.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Vigorous Response of Human Innate Functioning IgM Memory B Cells upon Infection by Neisseria gonorrhoeae Nancy S.
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Immunomodulatory Potential of Polysaccharides from Coriolus Versicolor Against Intracellular Bacteria Neisseria Gonorrhoeae
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.12/June-2019/1.pdf Open Access Immunomodulatory potential of polysaccharides from Coriolus versicolor against intracellular bacteria Neisseria gonorrhoeae Manikya Pramudya and Sri Puji Astuti Wahyuningsih Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia. Corresponding author: Sri Puji Astuti Wahyuningsih, e-mail: [email protected] Co-author: MP: [email protected] Received: 14-12-2018, Accepted: 09-04-2019, Published online: 01-06-2019 doi: 10.14202/vetworld.2019.735-739 How to cite this article: Pramudya M, Wahyuningsih SPA (2019) Immunomodulatory potential of polysaccharides from Coriolus versicolor against intracellular bacteria Neisseria gonorrhoeae, Veterinary World, 12(6): 735-739. Abstract Background and Aim: For many years, people use natural products from the plant and fungal to improve immune response against microorganism. This study aimed to investigate the immunomodulatory properties of polysaccharides (PS) from Coriolus versicolor in mice infected by intracellular bacteria Neisseria gonorrhoeae. Materials and Methods: Thirty-six female BALB/C mice were divided into six groups: Normal control, negative control, positive control, P1 (PS before infection), P2 (PS after infection), and P3 (PS before and after infection). PS were administrated for 10 days. N. gonorrhoeae was infected twice with 2 weeks gap from the first to second exposure with a dose of 106 cells. 1 week after the end of treatment, level of oxidants, innate immune responses, and adaptive immune responses were measured. Results: This study showed that PS administration could restore the number of leukocytes as normal but could not enhance the number of phagocytes and its activity.
    [Show full text]
  • CTA with Carbohydrates Is a Semi-Solid Medium Suitable for the Determination of Fermentation Reactions of Fastidious Microorganisms
    Administrative Offices Phone: 207-873-7711 Fax: 207-873-7022 Customer Service Phone: 1-800-244-8378 P.O. Box 788 Fax: 207-873-7022 Waterville, Maine 04903-0788 RT. 137, China Road Winslow, Maine 04901 TECHNICAL PRODUCT INFORMATION CYSTINE TRYPTIC AGAR [CTA] w/ or w/o CARBOHYDRATES Catalog No: T1400 Control (w/o Carbohydrates) T1410 CTA w/DEXTROSE T1440 CTA w/MALTOSE T1420 CTA w/FRUCTOSE T1445 CTA w/MANNITOL T1430 CTA w/LACTOSE T1450 CTA w/SUCROSE T1435 CTA w/XYLOSE T0340 CTA w/SORBOSE T0350 CTA w/INULIN T0355 CTA w/SORBITOL INTENDED USE: CTA with carbohydrates is a semi-solid medium suitable for the determination of fermentation reactions of fastidious microorganisms. CTA medium without carbohydrates is suitable for maintenance of organisms, and for detection of motility. HISTORY/SUMMARY: CTA medium has been accepted for the determination of carbohydrate utilization for a number of fastidious organisms, particularly Neisseria species and anaerobes. It has also been reported useful in fermentation studies of yeast. As a maintenance medium without carbohydrates, it supports the growth of organisms such as Neisseria, Pasteurella, Streptococci, Brucella, Corynebacteria and others. Motility can be detected in the semisolid medium when inoculated by stab line. PRINCIPLES: The base medium is free of carbohydrates and meat extracts. It contains Cystine and Casein Peptone as nutrients for the growth of fastidious organisms. Phenol red is added as an indicator of fermentation reactions. Carbohydrates are usually incorporated in the medium in 1% final concentrations. If a microorganism is inoculated in the medium containing a carbohydrate, and is capable of fermenting it, the medium indicator will turn from orange red to yellow.
    [Show full text]
  • Vaccine Antigens Expressed During Natural Mucosal Infection
    Article Integrated Bioinformatic Analyses and Immune Characterization of New Neisseria gonorrhoeae Vaccine Antigens Expressed during Natural Mucosal Infection Tianmou Zhu 1, Ryan McClure 2, Odile B. Harrison 3 , Caroline Genco 1 and Paola Massari 1,* 1 Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; [email protected] (T.Z.); [email protected] (C.G.) 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; [email protected] 3 Department of Zoology, University of Oxford, Oxford OX1 3SY, UK; [email protected] * Correspondence: [email protected]; Tel.: +1-617-636-0431 Received: 20 September 2019; Accepted: 14 October 2019; Published: 17 October 2019 Abstract: There is an increasingly severe trend of antibiotic-resistant Neisseria gonorrhoeae strains worldwide and new therapeutic strategies are needed against this sexually-transmitted pathogen. Despite the urgency, progress towards a gonococcal vaccine has been slowed by a scarcity of suitable antigens, lack of correlates of protection in humans and limited animal models of infection. N. gonorrhoeae gene expression levels in the natural human host does not reflect expression in vitro, further complicating in vitro-basedvaccine analysis platforms. We designed a novel candidate antigen selection strategy (CASS), based on a reverse vaccinology-like approach coupled with bioinformatics. We utilized the CASS to mine gonococcal proteins expressed during human mucosal infection, reported in our previous studies, and focused on a large pool of hypothetical proteins as an untapped source of potential new antigens. Via two discovery and analysis phases (DAP), we identified 36 targets predicted to be immunogenic, membrane-associated proteins conserved in N.
    [Show full text]
  • Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers
    Cancer Prevention and Epidemiology Research Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers Brandilyn A. Peters1, Jing Wu1,2, Zhiheng Pei2,3,4, Liying Yang5, Mark P. Purdue6, Neal D. Freedman6, Eric J. Jacobs7, Susan M. Gapstur7, Richard B. Hayes1,2, and Jiyoung Ahn1,2 Abstract Bacteria may play a role in esophageal adenocarcinoma (EAC) conditional logistic regression adjusting for BMI, smoking, and and esophageal squamous cell carcinoma (ESCC), although alcohol. We found the periodontal pathogen Tannerella forsythia evidence is limited to cross-sectional studies. In this study, we to be associated with higher risk of EAC. Furthermore, we found examined the relationship of oral microbiota with EAC and ESCC that depletion of the commensal genus Neisseria and the species risk in a prospective study nested in two cohorts. Oral bacteria Streptococcus pneumoniae was associated with lower EAC risk. were assessed using 16S rRNA gene sequencing in prediagnostic Bacterial biosynthesis of carotenoids was also associated with mouthwash samples from n ¼ 81/160 EAC and n ¼ 25/50 ESCC protection against EAC. Finally, the abundance of the periodontal cases/matched controls. Findings were largely consistent across pathogen Porphyromonas gingivalis trended with higher risk of ESCC. both cohorts. Metagenome content was predicted using PiCRUST. Overall, our findings have potential implications for the early We examined associations between centered log-ratio trans- detection and prevention of EAC and ESCC. Cancer Res; 77(23); formed taxon or functional pathway abundances and risk using 6777–87. Ó2017 AACR. Introduction intake, and smoking for EAC, and alcohol drinking, low fruit/ vegetable intake, and smoking for ESCC (4), but the etiology Esophageal cancer is the eighth most common cancer and sixth of these diseases cannot be fully explained by these factors.
    [Show full text]
  • Atypical, Yet Not Infrequent, Infections with Neisseria Species
    pathogens Review Atypical, Yet Not Infrequent, Infections with Neisseria Species Maria Victoria Humbert * and Myron Christodoulides Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK; [email protected] * Correspondence: [email protected] Received: 11 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 Abstract: Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause. Keywords: Neisseria species; Neisseria meningitidis; Neisseria gonorrhoeae; commensal; pathogenesis; host adaptation 1.
    [Show full text]
  • Microevolution of Neisseria Lactamica During Nasopharyngeal Colonisation Induced by Controlled Human Infection
    ARTICLE DOI: 10.1038/s41467-018-07235-5 OPEN Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection Anish Pandey1, David W. Cleary 1,2,3, Jay R. Laver1, Andrew Gorringe4, Alice M. Deasy5,6, Adam P. Dale1,2, Paul D. Morris5,6, Xavier Didelot7,9, Martin C.J. Maiden 8 & Robert C. Read 1,2,3 1234567890():,; Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually- excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial micro- evolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase- variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypo- thetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution. 1 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK. 2 Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton SO166YD, UK. 3 Institute for Life Sciences, University of Southampton, Southampton SO166YD, UK. 4 Public Health England, Porton Down, Salisbury SP40JG, UK.
    [Show full text]
  • Application for Consent to Release a GMO – Organisms Other Than Higher Plants
    Department for Environment, Food and Rural Affairs Application for consent to release a GMO – organisms other than higher plants Part A1: Information required under schedule 2 of the Genetically Modified (Deliberate Release) Regulations 2002 Part I General information 1. The name and address of the applicant and the name, qualifications and experience of the scientist and of every other person who will be responsible for planning and carrying out the release of the organisms and for the supervision, monitoring and safety of the release. Clinical & Experimental Sciences, LC72 (MP814) South Academic Block, Southampton General Hospital, Tremona Road, Southampton, UK. Public Health England, Porton Down, Salisbury SP4 0JG, UK 2. The title of the project. “Experimental challenge of the human nasopharynx with recombinant Neisseria lactamica expressing the meningococcal type V autotransporter protein, Neisseria Adhesin A (NadA)”. 1 Part II Information relating to the organisms Characteristics of the donor, parental and recipient organisms 3. Scientific name and taxonomy. Donor: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria meningitidis Taxonomy ID: 122586 Recipient: Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; Neisseria lactamica Taxonomy ID: 869214 The purpose of the genetic modification is to construct a strain of the exclusively human, nasopharyngeal commensal bacterium, Neisseria lactamica (Nlac) that expresses on its surface the outer membrane protein, Neisseria Adhesin A (NadA). NadA is an adhesin protein found in the close relative of Nlac, Neisseria meningitidis (Nmen), which is the causative agent of meningococcal disease. The genetically modified organism (GMO) will be used to investigate the role of NadA in the colonisation of the nasopharynx and associated immune responses in a controlled human bacterial challenge.
    [Show full text]
  • A Genomic Approach to Bacterial Taxonomy: an Examination and Proposed Reclassification of Species Within the Genus Neisseria
    Microbiology (2012), 158, 1570–1580 DOI 10.1099/mic.0.056077-0 A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria Julia S. Bennett,1 Keith A. Jolley,1 Sarah G. Earle,1 Craig Corton,2 Stephen D. Bentley,2 Julian Parkhill2 and Martin C. J. Maiden1 Correspondence 1Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Julia S. Bennett 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [email protected] In common with other bacterial taxa, members of the genus Neisseria are classified using a range of phenotypic and biochemical approaches, which are not entirely satisfactory in assigning isolates to species groups. Recently, there has been increasing interest in using nucleotide sequences for bacterial typing and taxonomy, but to date, no broadly accepted alternative to conventional methods is available. Here, the taxonomic relationships of 55 representative members of the genus Neisseria have been analysed using whole-genome sequence data. As genetic material belonging to the accessory genome is widely shared among different taxa but not present in all isolates, this analysis indexed nucleotide sequence variation within sets of genes, specifically protein-coding genes that were present and directly comparable in all isolates. Variation in these genes identified seven species groups, which were robust to the choice of genes and phylogenetic clustering methods used. The groupings were largely, but not completely, congruent with current species designations, with some minor changes in nomenclature and the reassignment of a few isolates necessary. In particular, these data showed that isolates classified as Neisseria polysaccharea are polyphyletic and probably include more than one taxonomically distinct organism.
    [Show full text]