Framework for Cyber-Physical Systems: Volume 2, Working Group Reports

Total Page:16

File Type:pdf, Size:1020Kb

Framework for Cyber-Physical Systems: Volume 2, Working Group Reports NIST Special Publication 1500-202 Framework for Cyber-Physical Systems: Volume 2, Working Group Reports Version 1.0 Cyber-Physical Systems Public Working Group Smart Grid and Cyber-Physical Systems Program Office Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-202 NIST Special Publication 1500-202 Framework for Cyber-Physical Systems: Volume 2, Working Group Reports Version 1.0 Cyber-Physical Systems Public Working Group Smart Grid and Cyber-Physical Systems Program Office Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-202 June 2017 U.S. Department of Commerce Wilbur L. Ross Jr., Secretary National Institute of Standards and Technology Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology National Institute of Standards and Technology (NIST) Special Publication 1500-202 163 pages (June 2017) NIST Special Publication series 1500 is intended to capture external perspectives related to NIST standards, measurement, and testing-related efforts. These external perspectives can come from industry, academia, government, and others. These reports are intended to document external perspectives and do not represent official NIST positions. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1500-202 Natl. Inst. Stand. Technol. Spec. Publ. 1500-202, 163 pages (June 2017) CODEN: NSPUE2 This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-202 Framework for Cyber-Physical Systems: Volume 2, Working Group Reports Revision Tracking Version Date Editor Changes 1.0 20170320 ERG First Release Version This publication is available free of charge from: http s ://doi.org/10.6028/NIST.SP. 1500 - 202 Framework for Cyber-Physical Systems: Volume 2: Working Group Reports Table of Contents Table of Contents .............................................................................................................. i Table of Figures ................................................................................................................ ii Table of Tables ................................................................................................................ iii Disclaimer ....................................................................................................................... iv Acknowledgement ........................................................................................................... v Executive Summary ......................................................................................................... vi This publication is available free of charge from: http 1 Introduction .............................................................................................................. 1 1.1 Overview ...................................................................................................................... 1 1.2 Purpose and Scope ...................................................................................................... 1 1.3 Organization of This Document ................................................................................... 2 2 Report of the Cybersecurity and Privacy Sub-Group: Trustworthiness ........................ 2 2.1 Overview ...................................................................................................................... 3 2.2 CPS Cybersecurity and Privacy Risk ............................................................................. 4 2.3 Moving from Classic Cybersecurity Properties to Cross-Property Risk Management15 3 Report of the Data Interoperability Sub-group ......................................................... 29 3.1 Overview .................................................................................................................... 29 3.2 Data Interoperability Topics from the CPS Viewpoint .............................................. 33 4 Report of the Timing Sub-group ............................................................................... 78 4.1 Introduction ............................................................................................................... 79 s ://doi.org/10.6028/NIST.SP. 4.2 Time Awareness in CPS ............................................................................................. 85 4.3 Managing Timing and Latency in CPS ........................................................................ 92 4.4 Secure and Resilient Time ....................................................................................... 100 5 Report of the Use Case Sub-group .......................................................................... 108 5.1 Background .............................................................................................................. 108 5.2 Analysis Method ...................................................................................................... 113 1500 5.3 Supporting CPS Use Case Examples with Evaluation .............................................. 118 - 202 Appendix A. References ................................................................................................ 125 Appendix B. Definitions and Acronyms ......................................................................... 136 B.1 Definitions ............................................................................................................... 136 B.2 Acronyms ................................................................................................................. 149 i Framework for Cyber-Physical Systems: Volume 2, Working Group Reports Table of Figures Figure 1: Evolution of Systems Design Property Silos ............................................................ 17 Figure 2: Recommended Interdisciplinary Design Approach to CPS Engineering .................. 18 Figure 3: Physical, Analog, and Cyber Components of CPS .................................................... 21 This publication is available free of charge from: http Figure 4: CPS Risk Properties .................................................................................................. 24 Figure 5: Applying Risk Analysis to CPS ................................................................................... 25 Figure 6: Merger of Different Sources of Data ....................................................................... 38 Figure 7: Data Fusion Today.................................................................................................... 38 Figure 8: Simplified Topology of Networks for a Chemical Plant ........................................... 42 Figure 9: Continuous Refinement of Privacy Risk Management ............................................ 54 Figure 10: Double-Blind Authentication Scheme ................................................................... 55 Figure 11: Common Data Services .......................................................................................... 69 Figure 12: Taxonomy of Data .................................................................................................. 72 s Figure 13: On-Time Marker ..................................................................................................... 80 ://doi.org/10.6028/NIST.SP. Figure 14: Architecture of a CPS Node and Environment ....................................................... 88 Figure 15: Domains and Multiple Timescales in Time-Aware CPSs ........................................ 94 Figure 16: CPS Network Manager Configuring a CPS ............................................................. 95 Figure 17: Time-Aware CPS Device Model .............................................................................. 97 Figure 18: Requirements Decomposition into Primitives ..................................................... 114 1500 - Figure 19: Example of Reference Architecture Model of "Manufacturing" System-of-Interest 202 ............................................................................................................................................... 119 ii Framework for Cyber-Physical Systems: Volume 2, Working Group Reports Table of Tables Table 1: Elements of Secure Timing ...................................................................................... 101 Table 2: Survey of Time Distribution Methods ..................................................................... 102 Table 3: Principal Threat Vectors in an Unsecured Time Network ....................................... 106 This publication is available free of charge from: http Table 4: List of Stakeholders ................................................................................................. 112 Table 5: CPS Application Domain Examples.......................................................................... 112 Table 6: CPS Example Template ............................................................................................ 115 Table 7: Requirements Categories .......................................................................................
Recommended publications
  • Social Determinants of Unmet Hospitalisation
    Nagulapalli, S 2013 Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross-sectional study.” Journal of Open Public Health Data 1(1):e6, DOI: http://dx.doi.org/10.5334/jophd.af DATA PAPER Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross- sectional study.” Srikant Nagulapalli1 2 1 Government of Andhra Pradesh, India 2 Collector and District Magistrate of Nellore, Andhra Pradesh, India The dataset is of a health survey amongst the 21.5 million poor families of the Indian state of Andhra Pradesh conducted during April and May 2013. The dataset captures individual characteristics and household characteristics of the past 365 days. Data was collected by 2022 trained field staff of Aarogyasri Health Care Trust (AHCT) of Government of Andhra Pradesh using a questionnaire mod- elled after that used for the health surveys by National Sample Survey Organisation of India. Keywords: health survey of Andhra Pradesh; Rajiv Aarogyasri; unmet hospitalisation need Funding statement The data is not the result of any funded project. (1) Overview (2) Methods Context Steps a) Design of questionnaire: National Sample Survey Spatial coverage Organisation (NSSO), Ministry of Statistics, Government Description: 23 districts Adilabad, Nizamabad, Karimna- of India conducts yearly consumer expenditure surveys as gar, Warangal, Hyderabad, Rangareddy, Medak, Mahbub- well as focussed surveys on health care. The health survey nagar, Nalgonda, Anantapur, Kurnool, Kadapa, Chittoor, questionnaire and the consumer expenditure question- Nellore, Prakasam, Guntur, Krishna, Khammam, West naire used for the 60th round (2004-05) of NSSO were Godavari, East Godavari, Visakhapatnam, Vizianagaram integrated by suitably abridging the consumer expendi- and Srikakulam of Andhra Pradesh state, India were cov- ture details and used for this survey.
    [Show full text]
  • The BPL Dilemma
    Reprinted with permission from CQ VHF Magazine, Spring 2004 issue. Copyright CQ Communications 2004 The BPL Dilemma Hams claim Broadband over Power Lines will interfere with their on-the-air operations. The utility companies claim not. Read how they are both right . sort of. By Gary Pearce,* KN4AQ still academic. They haven’t encountered Because of the importance of the it yet. I will provide a quick tutorial. Broadband over Power Lines (BPL) The basics of BPL are simple. It is a issue, “FM” columnist Gary Pearce, method of delivering high-speed internet KN4AQ, devotes his space this time to the to homes and small businesses using the investigation of a BPL test site and the local power lines that crisscross neigh- surrounding area. He will be back in the borhoods either overhead or under- next issue of CQ VHF with his regular ground. This is a brilliantly obvious idea column material. —N6CL (“the wires are already there!”) that was delayed because the AC power grid is a really noisy, crappy signal-delivery ince last fall, I’ve been up to my medium for anything above 60 Hz. The eyeballs in BPL—Broadband over march of technology, however, is mak- Power Lines—and its effect on ing it feasible. It is the third method of Samateur radio. If you’re up on current TV doing that, following DSL (Digital culture, you can call it “HF Eye for the FM Subscriber Line) on the phone lines and Guy.” Our area has been “lucky” enough cable TV (nobody’s come up with a cute to host one of the few BPL trials, courtesy name or acronym for broadband over of my local power company, Progress cable TV; they just call it “cable”).
    [Show full text]
  • ABBREVIATIONS EBU Technical Review
    ABBREVIATIONS EBU Technical Review AbbreviationsLast updated: January 2012 720i 720 lines, interlaced scan ACATS Advisory Committee on Advanced Television 720p/50 High-definition progressively-scanned TV format Systems (USA) of 1280 x 720 pixels at 50 frames per second ACELP (MPEG-4) A Code-Excited Linear Prediction 1080i/25 High-definition interlaced TV format of ACK ACKnowledgement 1920 x 1080 pixels at 25 frames per second, i.e. ACLR Adjacent Channel Leakage Ratio 50 fields (half frames) every second ACM Adaptive Coding and Modulation 1080p/25 High-definition progressively-scanned TV format ACS Adjacent Channel Selectivity of 1920 x 1080 pixels at 25 frames per second ACT Association of Commercial Television in 1080p/50 High-definition progressively-scanned TV format Europe of 1920 x 1080 pixels at 50 frames per second http://www.acte.be 1080p/60 High-definition progressively-scanned TV format ACTS Advanced Communications Technologies and of 1920 x 1080 pixels at 60 frames per second Services AD Analogue-to-Digital AD Anno Domini (after the birth of Jesus of Nazareth) 21CN BT’s 21st Century Network AD Approved Document 2k COFDM transmission mode with around 2000 AD Audio Description carriers ADC Analogue-to-Digital Converter 3DTV 3-Dimension Television ADIP ADress In Pre-groove 3G 3rd Generation mobile communications ADM (ATM) Add/Drop Multiplexer 4G 4th Generation mobile communications ADPCM Adaptive Differential Pulse Code Modulation 3GPP 3rd Generation Partnership Project ADR Automatic Dialogue Replacement 3GPP2 3rd Generation Partnership
    [Show full text]
  • ISO/IEC JTC 1 N13604 ISO/IEC JTC 1 Information Technology
    ISO/IEC JTC 1 N13604 2017-09-17 Replaces: ISO/IEC JTC 1 Information Technology Document Type: other (defined) Document Title: Study Group Report on 3D Printing and Scanning Document Source: SG Convenor Project Number: Document Status: This document is circulated for review and consideration at the October 2017 JTC 1 meeting in Russia. Action ID: ACT Due Date: 2017-10-02 Pages: Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932; Facsimile: 1 212 840 2298; Email: [email protected] Study Group Report on 3D Printing and Scanning September 11, 2017 ISO/IEC JTC 1 Plenary (October 2017, Vladivostok, Russia) Prepared by the ISO/IEC JTC 1 Study Group on 3D Printing and Scanning Executive Summary The purpose of this report is to assess the possible contributions of JTC 1 to the global market enabled by 3D Printing and Scanning. 3D printing, also known as additive manufacturing, is considered by many sources as a truly disruptive technology. 3D printers range presently from small table units to room size and can handle simple plastics, metals, biomaterials, concrete or a mix of materials. They can be used in making simple toys, airplane engine components, custom pills, large buildings components or human organs. Depending on process, materials and precision, 3D printer costs range from hundreds to millions of dollars. 3D printing makes possible the manufacturing of devices and components that cannot be constructed cost-effectively with other manufacturing techniques (injection molding, computerized milling, etc.). It also makes possible the fabrications of customized devices, or individual (instead of identical mass-manufactured) units.
    [Show full text]
  • Deliverable D7.5: Standards and Methodologies Big Data Guidance
    Project acronym: BYTE Project title: Big data roadmap and cross-disciplinarY community for addressing socieTal Externalities Grant number: 619551 Programme: Seventh Framework Programme for ICT Objective: ICT-2013.4.2 Scalable data analytics Contract type: Co-ordination and Support Action Start date of project: 01 March 2014 Duration: 36 months Website: www.byte-project.eu Deliverable D7.5: Standards and methodologies big data guidance Author(s): Jarl Magnusson, DNV GL AS Erik Stensrud, DNV GL AS Tore Hartvigsen, DNV GL AS Lorenzo Bigagli, National Research Council of Italy Dissemination level: Public Deliverable type: Final Version: 1.1 Submission date: 26 July 2017 Table of Contents Preface ......................................................................................................................................... 3 Task 7.5 Description ............................................................................................................... 3 Executive summary ..................................................................................................................... 4 1 Introduction ......................................................................................................................... 5 2 Big Data Standards Organizations ...................................................................................... 6 3 Big Data Standards ............................................................................................................. 8 4 Big Data Quality Standards .............................................................................................
    [Show full text]
  • ISO Mai.Xlsx
    Standard reference Title 1 ISO/IEC 23006-1:2018 Information technology -- Multimedia service platform technologies -- Part 1: Architecture 2 ISO 21001:2018 Educational organizations -- Management systems for educational organizations -- Requirements with guidance for use 3 ISO 17832:2018 Non-parallel steel wire and cords for tyre reinforcement 4 ISO 7240-5:2018 Fire detection and fire alarm systems -- Part 5: Point type heat detectors 5 ISO 18541-6:2018 Road vehicles -- Standardized access to automotive repair and maintenance information (RMI) -- Part 6: L-Category vehicle specific RMI use cases and requirements 6 ISO 1083:2018 Spheroidal graphite cast irons -- Classification 7 ISO 5496:2006/Amd 1:2018 Sensory analysis -- Methodology -- Initiation and training of assessors in the detection and recognition of odours -- Amendment 1 8 ISO/TS 19392-1:2018 Paints and varnishes -- Coating systems for wind-turbine rotor blades -- Part 1: Minimum requirements and weathering 9 ISO/TS 19392-2:2018 Paints and varnishes -- Coating systems for wind-turbine rotor blades -- Part 2: Determination and evaluation of resistance to rain erosion using rotating arm 10 ISO/TS 19392-3:2018 Paints and varnishes -- Coating systems for wind-turbine rotor blades -- Part 3: Determination and evaluation of resistance to rain erosion using water jet 11 ISO 4730:2017/Amd 1:2018 Essential oil of Melaleuca, terpinen-4-ol type (Tea Tree oil) -- Amendment 1: Enantiomeric distribution 12 ISO 20558-1:2018 Plastics -- Poly(phenylene sulfide) (PPS) moulding and extrusion materials
    [Show full text]
  • Section 9 Summary of Results 9.1 Introduction 9.2
    SECTION 9 SUMMARY OF RESULTS 9.1 INTRODUCTION Section 9.2 summarizes the results of NTIA’s preliminary investigations (Sections 2 – 5). These investigations helped refine the scope and approach of NTIA’s analyses and established certain technical assumptions. Section 9.3 summarizes the results of NTIA’s Phase 1 analyses of interference risks (Section 6), measurement procedures (Section 7) and techniques for prevention and mitigation of interference (Section 8). Section 9.4 summarizes matters requiring further study. 9.2 PRELIMINARY INVESTIGATIONS 9.2.1 Descriptions of BPL Systems NTIA identified three architectures for access BPL networks (Section 2): (1) BPL systems using different frequencies on medium- and low-voltage power lines for networking within a neighborhood and extensions to users’ premises, respectively; (2) BPL use of only medium voltage lines for networking within a neighborhood, with other technologies being used for network extensions to users’ premises; and (3) BPL use of the same frequencies on medium- and low-voltage power lines for networking in a neighborhood and extensions to users’ premises. Responses of BPL manufacturers and operators to the FCC’s BPL NOI generally indicate that BPL systems will operate at or near the Part 15 field strength limits in order to achieve maximum throughput and distance separation between BPL devices. NTIA addressed simple BPL deployment models in the Phase 1 interference risk analyses (Section 6). Specifically, a single BPL device and associated power lines were considered for cases of potential interference to ground-based radio receivers and several co-frequency BPL devices were assumed to be deployed throughout the area covered by an aircraft receiver antenna.
    [Show full text]
  • G3/0'4 18909 I
    TECHNICAL MEMORANDUM (NASA) 91 A MICRO-COMPUTER BASED SYSTEM TO COMPUTE MAGNETIC VARIATION A microcomputer-based implementation of a magnetic variation model for the continental United States is presented. The implementation computes magnetic variation as a function of latitude and longitude for general aviation receivers such as Loran-C. by Rajan Kaul Avionics Engineering Center Department of Electrical and Computer Engineering Ohio University Athens, Ohio 45701 March 1984 Prepared for National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 Grant No. NOR 36-009-017 (NASA-CR-1713376) A MICRO-COMPUTER BASED B84-20506 SYSTEM TO COMPUTE MAGNETIC VARIATION (Ohio Univ,) 26 p HC A03/IF A01 CSCL 17G Unclas G3/0'4 18909 I. INTRODUCTION A Mathematical model of magnetic variation in the continental United States (COT48) has been implemented in the Ohio University Loran-C receiv­ er. The model is based on a least squares fit of a polynomial function. The implementation on the micro-processor based Loran-C receiver is pos­ sible with the help of a math chip, Am9511 manufactured by Advanced Micro Devices, which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter (M6520) is used to communicate between the 6502 based micro-computer and the 9511 math chip. The implementation pro­ vides magnetic variation data to the pilot as a function of latitude and longitude. This report briefly describes the model and the real time implementation in the receiver. II. THE MATHEMATICAL MODEL The model was developed at the United States Geological Survey (USGS) by Fabiano et al. [11, by performing least squares analysis on more than 34,000 data measurements taken between 1900 and 1974.
    [Show full text]
  • Report ITU-R SM.2451-0 (06/2019)
    Report ITU-R SM.2451-0 (06/2019) Assessment of impact of wireless power transmission for electric vehicle charging on radiocommunication services SM Series Spectrum management ii Rep. ITU-R SM.2451-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU- R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Broadband Over Power Lines a Foundation for the Utility of the Future
    Broadband over Power Lines a Foundation for the Utility of the Future Jay M. Bradbury Duke Energy Regulatory Manager – Powerline Communications October 26, 2006 LSU Center for Energy Studies – Energy Summit 2006 Topics • BPL Explored a Primer • The Duke Experience • BPL as an Enabler of the Utility of the Future 1 BPL Explored A Primer 2 BPL Defined • Access Broadband Over Power Line (Access BPL). A carrier current system installed and operated on an electric utility service as an unintentional radiator that sends radio frequency energy on frequencies between 1.705 MHz and 80 MHz over medium voltage lines or low voltage lines to provide broadband communications and is located on the supply side of the utility service’s points of interconnection with customer premises. Access BPL does not include power line carrier systems as defined in Section 15.3(t) of this part or In-House BPL systems as defined in Section 15.3(gg) of this part. (FCC) – Electric utility companies can use Access BPL systems to monitor, and thereby more effectively manage, their electric power distribution operations. – Access BPL systems can also deliver high speed Internet and other broadband services to homes and businesses. • In-House Broadband Over Power line (In-House BPL). A carrier current system, operating as an unintentional radiator, that sends radio frequency energy to provide broadband communications on frequencies between 1.705 MHz and 80 MHz over low- voltage electric power lines that are not owned, operated or controlled by an electric service provider. The electric power lines may be aerial (overhead), underground, or inside walls, floors or ceilings of user premises.
    [Show full text]
  • COUNTY PURCHASING AGENT Fort Bend County, Texas
    COUNTY PURCHASING AGENT Fort Bend County, Texas Gilbert D. Jalomo, Jr., CPPB (281) 341-8640 County Purchasing Agent Fax (281) 341-8645 December 14, 2015 TO: All Prospective Bidders RE: Addendum No. 1 – Fort Bend County Bid 16-041 - Construction of Traffic Signalization to Serve the Intersection of South Mason Road at Delta Lake Drive Addendum 1: See attached is addendum 1. Vendors are to use the Addendum 1 document while preparing their bid response. ****************************************************************************** Immediately upon your receipt of this addendum, please fill out the following information and fax this page to the Fort Bend County Purchasing Department at (281) 341-8645. _______________________________________________________________________ Company Name _______________________________________________________________________ Signature of person receiving addendum Date If you have any questions please contact this office. Sincerely, Debbie Kaminski, CPPB Assistant Purchasing Agent 301 Jackson, Suite 201 ∙ Richmond, TX 77469 December 11, 2015 Ms. Debbie Kaminski, CPBB Assistant County Purchasing Agent Fort Bend County – Purchasing Department 301 Jackson Street, Suite 201 – Travis Annex Richmond, TX 77469 RE: Plans for Construction of Traffic Signalization to Serve the Intersection of S. Mason Road @ Delta Lake Drive – Addendum #1 Dear Ms. Kaminski, Enclosed please find documents pertaining to Addendum No. 1 for the construction of Traffic Signalization to Serve the Intersection of S. Mason Road @ Delta Lake Drive. BID DOCUMENTS: 1. Remove Specification 16730 – ITS Controller Cabinet Assembly and replace with Specification TS2-1, P44 Cabinet with 16 Position Back panel, attached. 2. Remove Specification 16731 – Model 2070 Controller Unit and replace with Specification TS2-1, P44 Cabinet with 16 Position Back panel, attached. 3. Add Special Specification 8775 – 5.8 Ghz Wireless Ethernet Radio, attached.
    [Show full text]
  • Technical Report
    TECHNICAL REPORT SEMICOLON : STATE OF THE ART REPORT NO 2008-0996 DET NORSKE VERITAS DET NORSKE VERITAS TECHNICAL REPORT Date of first issue: Project No: DET NORSKE VERITAS AS 1. December 2008 Approved by: Organisational unit: 1322 Høvik Jon Ølnes Norway Principal Engineer Tel: Client: Client ref.: Fax: http://www.dnv.com NO 945 748 931 MVA Summary: Report No: Subject Group: 2008-0996 Indexing terms Report title: Keywords Service Area Semicolon: State Of The Art Market Sector Work carried out by: Terje Grimstad, Per Myrseth, Henrik Smith- Unrestricted distribution (internal and external) Meyer, Lasse Udjus, Hans Solli-Sæther, Dag Belsnes, Tore Christiansen, Riitta Hellman, Birger Unrestricted distribution within DNV Møller-Pedersen, Audun Stolpe, Arild Waaler, Jim Yang. Limited distribution within DNV after 3 years Work verified by: No distribution (confidential) Date of this revision: Revision No: Number of pages: <rev> 143 © 2002 Det Norske Veritas AS All rights reserved. This publication or parts thereof may not be reproduced or transmitted in any form or by any means, including photocopying or recording, without the prior written consent of Det Norske Veritas AS. Semicolon_SOTA_v1.0 DET NORSKE VERITAS Report No: 2008-0996 TECHNICAL REPORT Table of Contents Page 1 EXECUTIVE SUMMARY.............................................................................................................3 2 INTRODUCTION..........................................................................................................................3 2.1 Norwegian
    [Show full text]