Testing and Evaluation for the Atomic Clock in Different Location

Total Page:16

File Type:pdf, Size:1020Kb

Testing and Evaluation for the Atomic Clock in Different Location 2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013) Testing and Evaluation for the Atomic Clock in Different Location Wei Li Yongliang Xu National Time Service Center/ Key Lab of Time-frequency National Time Service Center/ Key Lab of Precision Standard of the Chinese Academy of Sciences, Navigation and Timing Technology of the Chinese Xi’an, China Academy of Sciences, Xi’an, China [email protected] [email protected] Shifeng Li National Time Service Center/ Key Laboratory of Precision Navigation and Timing Technology of the Chinese Academy of Sciences, Xi’an, China [email protected] Abstract—The national standard time, UTC(NTSC) kept by system, the deviation of BPL broadcasting time to UTC NTSC takes part in the international time comparison for a should be within 100 nanoseconds. long time, which has high stability and accuracy. It can test and In this article, the BPL broadcasting clock is tested and its evaluate the atomic clock in different location through the performance is evaluated through comparison with UTC technology of remote time comparison. In the BPL system, (NTSC) using the remote time comparison method. time-frequency standard is generated by the cesium atomic clock whose performance has a direct impact on time service II. THE BASIC CRITERIA FOR TESTING AND EVALUATION precision. In addition, according to the international In the time and frequency measurement, the frequency telecommunications union (ITU) requirement, broadcasting standard or clock to be measured is called the device under clock is needed to keep to the UTC within 100ns. In this paper, the testing criteria, data collection, processing method, test. The measurement is a process to compare the device performance evaluation parameter and calculation model are under test and the standard (or reference), two elements must studied. Relying on the high-performance time standard of be paid attention to as follows: NTSC and the GPS CV link, the BPL broadcasting clock testing A. Reference selection and evaluation system is set up, the time difference of broadcasting clock and UTC (NTSC) is got, and the time The accuracy of the reference must be at least 3 times difference of broadcasting clock and UTC is got through the higher than the object measured; one order of magnitude is international time comparison link of NTSC. According to the the best. all kinds of data, the performance of broadcasting clock is B. Measurement method selection evaluated, the results shows that the broadcasting clock stability reach to the 3.3e-14 a day, 1.7e-14 in 5 days, the time Some time comparison method is needed to measure the deviation to UTC is within 20ns. object under test, the error of the time comparison links must be less than the object being measured 3 times. There are two Keywords- Test; performance evaluation; GPS CV methods to meet that requirement. (1) Choose high-precision time comparison method, to I. INTRODUCTION meet the requirements of testing and evaluation. (2) Optimizing the measurement method, accumulating Chinese coordinated universal time, UTC (NTSC) as a measurement data, and use mathematical method to process national standard time is kept by the national time service the measurement data to reduce various types of errors. center, which takes part in international time comparison for a long time, has a very high degree of stability and accuracy. III. TESTING AND EVALUATION METHODS OF BPL The BPL long system built in our country is the ground- BROADCASTING CLOCK based high precision time services system using loran-c pulse signal first time. In BPL systems, time and frequency A. Basic principle standard is produced by the cesium atomic clock, as the According to the basic principles of testing and evaluation, broadcasting clock, its performance has a direct impact on the UTC (NTSC) is regarded as the reference, the BPL time service precision. In addition, as a important time service broadcasting clock as the object under test. The time system, according to the requirement of ITU[1] to time service difference between the CLOCK ( BPL ) and UTC © 2013. The authors - Published by Atlantis Press 94 (NTSC)is obtained through GPS CV link, it is shown as 2) The processing method of receiver internal Figure 1. observation data. The REFGPS in the file outputted by GPS If there are two GPS CV receiver in the ground station A receiver is the time difference of CLOCK (BPL) and satellite and B with precise coordinates. The two stations observe the i 、UTC (NTSC) and satellite i, which have been added the same satellite at the same time. So we can get the follows: several modified items. The CLOCK (BPL) - UTC (NTSC) ΔtiA = t i− t A (1) is calculated through the selection of the same GPS CV file Δt = t− t (2) according to the output files of two GPS CV receivers, iB i B including the PRN (satellite number), satellite elevation, CL Formula (1) is the time difference of satellite i and A, formula (2) is the time difference of satellite i and B. (types), MJD, HHMMSS (start time tracking) and TRKL Using formula (1) - formula (2), the time difference of A (trace length), etc. 3) The smoothing method of GPS CV data. Because of and B is t : BA the measurement noise and various kinds of measurement ΔtiA − Δ tiB =()() t i − t A − t i − t B = t B − t A = t BA (3) errors (such as the ionosphere additional time delay, etc.), the GPS CV can completely offset clock error, the most of the real-time data can't reflect the quality level of atomic clocks ephemeris error, can also partly offset the ionosphere delay itself. GPS CV needs to process the data more than one day and tropospheric delay error[4], this is the main reason why using the method of statistical analysis after the exchange of the GPS CV has the high precision. observation data to get a better time comparison results. So the data processing method has become the key to raise the transmission precision. There are many smoothing filter GPS Satellite methods, Vondrak smoothing method is the usual method used internationally. Vondrak smoothing method is a method of curve fitting to eliminate the random error in the measurement data. This GPS CV GPS CV method can smooth the measurement data in a reasonable Receiver Receiver manner in the case of unknown form fitting function. Vondrak smoothing essentially has the function of unilateral Data Data UTC Special data CLOCK UTC processin communication link processin (NTSC) (PU) filter in data processing, it can be used as a digital filter. This g g method is put forward by Vondrak, a astronomer of NTSC BPL System [5] Czechoslovakia in 1969 . Supposing there is measurement data x( i= 1,2,3... N ) , Figure 1. The principle diagram of broadcasting clock testing and i evaluation the fundamental of Vondrak smoothing method is: Q= F +λ2 s = min (4) B. GPS CV method N ' 2 1) GPS CV basic principle. GPS CV method was put F=∑ Pi () xi − X i (5) forward by the American National Standards Institute in i=1 1980 [2] [3], its basic principle is shown as figure 2. The two N −3 2 3 ' ground station receive the same satellite signal at the same SX=∑() Δ i (6) time, then the time comparison between two atomic clocks i=1 As the formula shown, is the unknown smoothed are fulfilled through data exchange. X i value, Pi is the weight of the measured data. GPS Satellite F is Vondrak smoothing goodness of fit. S represents the sum of third-order differential square of smoothed value, if the third-order differential of a curve is very small, then obviously this curve is very smooth, so that S is the smoothness. λ2 is a given positive coefficient, which adjust the relationship between the goodness of fit and the degree of smoothing. In the extreme case, when λ2 tends to ∞, to make t A the formula (4) up to the minimum value, S must tends to 0, t B then a smooth quadratic parabola is got through the Vondrak smoothing. Conversely, if λ2 tends to 0, to make the formula Station A (4) up to the minimum value, F must be close to zero, then a Station B smooth is got. It is shown from the Vondrak smoothing basic principles Figure 2. The principle diagram of GPS CV that this method is to seek a compromise curve, which is 95 between the absolute curve approximation of the frequency offset contains time-varying noise, oscillator data measurement data and absolute curve smoothness, the degree are usually non-stationary. For stationary data, the number of of compromise is controlled by λ2 . The formula (4) is a measurements increases, the mean and variance converge to combination distribution, the idea of Vondrak smoothing the same value; for non-stationary data, the mean and method make the combination distribution to reach the variance does not converge to a certain value. Conversely, minimum value to estimate a reasonable smooth curve. when increasing the number of measurements, the average C. Index calculation model value will be slidably changed. For this reason, some non- 1) Accuracy and calculation model. Frequency accuracy classical methods are used to represent time domain stability refers to the consistency degree between the output of time frequency signal. That statistical properties is called frequency of device under test and the nominal frequency, it Allan variance, and it is the variance calculated by the time indicates the correctness of the oscillator output. The method difference dada sampled for the second time. to calculate the frequency accuracy by time difference 1 1 N −2 ))) 2 (9) comparison is called time difference method.
Recommended publications
  • Social Determinants of Unmet Hospitalisation
    Nagulapalli, S 2013 Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross-sectional study.” Journal of Open Public Health Data 1(1):e6, DOI: http://dx.doi.org/10.5334/jophd.af DATA PAPER Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross- sectional study.” Srikant Nagulapalli1 2 1 Government of Andhra Pradesh, India 2 Collector and District Magistrate of Nellore, Andhra Pradesh, India The dataset is of a health survey amongst the 21.5 million poor families of the Indian state of Andhra Pradesh conducted during April and May 2013. The dataset captures individual characteristics and household characteristics of the past 365 days. Data was collected by 2022 trained field staff of Aarogyasri Health Care Trust (AHCT) of Government of Andhra Pradesh using a questionnaire mod- elled after that used for the health surveys by National Sample Survey Organisation of India. Keywords: health survey of Andhra Pradesh; Rajiv Aarogyasri; unmet hospitalisation need Funding statement The data is not the result of any funded project. (1) Overview (2) Methods Context Steps a) Design of questionnaire: National Sample Survey Spatial coverage Organisation (NSSO), Ministry of Statistics, Government Description: 23 districts Adilabad, Nizamabad, Karimna- of India conducts yearly consumer expenditure surveys as gar, Warangal, Hyderabad, Rangareddy, Medak, Mahbub- well as focussed surveys on health care. The health survey nagar, Nalgonda, Anantapur, Kurnool, Kadapa, Chittoor, questionnaire and the consumer expenditure question- Nellore, Prakasam, Guntur, Krishna, Khammam, West naire used for the 60th round (2004-05) of NSSO were Godavari, East Godavari, Visakhapatnam, Vizianagaram integrated by suitably abridging the consumer expendi- and Srikakulam of Andhra Pradesh state, India were cov- ture details and used for this survey.
    [Show full text]
  • The BPL Dilemma
    Reprinted with permission from CQ VHF Magazine, Spring 2004 issue. Copyright CQ Communications 2004 The BPL Dilemma Hams claim Broadband over Power Lines will interfere with their on-the-air operations. The utility companies claim not. Read how they are both right . sort of. By Gary Pearce,* KN4AQ still academic. They haven’t encountered Because of the importance of the it yet. I will provide a quick tutorial. Broadband over Power Lines (BPL) The basics of BPL are simple. It is a issue, “FM” columnist Gary Pearce, method of delivering high-speed internet KN4AQ, devotes his space this time to the to homes and small businesses using the investigation of a BPL test site and the local power lines that crisscross neigh- surrounding area. He will be back in the borhoods either overhead or under- next issue of CQ VHF with his regular ground. This is a brilliantly obvious idea column material. —N6CL (“the wires are already there!”) that was delayed because the AC power grid is a really noisy, crappy signal-delivery ince last fall, I’ve been up to my medium for anything above 60 Hz. The eyeballs in BPL—Broadband over march of technology, however, is mak- Power Lines—and its effect on ing it feasible. It is the third method of Samateur radio. If you’re up on current TV doing that, following DSL (Digital culture, you can call it “HF Eye for the FM Subscriber Line) on the phone lines and Guy.” Our area has been “lucky” enough cable TV (nobody’s come up with a cute to host one of the few BPL trials, courtesy name or acronym for broadband over of my local power company, Progress cable TV; they just call it “cable”).
    [Show full text]
  • ABBREVIATIONS EBU Technical Review
    ABBREVIATIONS EBU Technical Review AbbreviationsLast updated: January 2012 720i 720 lines, interlaced scan ACATS Advisory Committee on Advanced Television 720p/50 High-definition progressively-scanned TV format Systems (USA) of 1280 x 720 pixels at 50 frames per second ACELP (MPEG-4) A Code-Excited Linear Prediction 1080i/25 High-definition interlaced TV format of ACK ACKnowledgement 1920 x 1080 pixels at 25 frames per second, i.e. ACLR Adjacent Channel Leakage Ratio 50 fields (half frames) every second ACM Adaptive Coding and Modulation 1080p/25 High-definition progressively-scanned TV format ACS Adjacent Channel Selectivity of 1920 x 1080 pixels at 25 frames per second ACT Association of Commercial Television in 1080p/50 High-definition progressively-scanned TV format Europe of 1920 x 1080 pixels at 50 frames per second http://www.acte.be 1080p/60 High-definition progressively-scanned TV format ACTS Advanced Communications Technologies and of 1920 x 1080 pixels at 60 frames per second Services AD Analogue-to-Digital AD Anno Domini (after the birth of Jesus of Nazareth) 21CN BT’s 21st Century Network AD Approved Document 2k COFDM transmission mode with around 2000 AD Audio Description carriers ADC Analogue-to-Digital Converter 3DTV 3-Dimension Television ADIP ADress In Pre-groove 3G 3rd Generation mobile communications ADM (ATM) Add/Drop Multiplexer 4G 4th Generation mobile communications ADPCM Adaptive Differential Pulse Code Modulation 3GPP 3rd Generation Partnership Project ADR Automatic Dialogue Replacement 3GPP2 3rd Generation Partnership
    [Show full text]
  • Section 9 Summary of Results 9.1 Introduction 9.2
    SECTION 9 SUMMARY OF RESULTS 9.1 INTRODUCTION Section 9.2 summarizes the results of NTIA’s preliminary investigations (Sections 2 – 5). These investigations helped refine the scope and approach of NTIA’s analyses and established certain technical assumptions. Section 9.3 summarizes the results of NTIA’s Phase 1 analyses of interference risks (Section 6), measurement procedures (Section 7) and techniques for prevention and mitigation of interference (Section 8). Section 9.4 summarizes matters requiring further study. 9.2 PRELIMINARY INVESTIGATIONS 9.2.1 Descriptions of BPL Systems NTIA identified three architectures for access BPL networks (Section 2): (1) BPL systems using different frequencies on medium- and low-voltage power lines for networking within a neighborhood and extensions to users’ premises, respectively; (2) BPL use of only medium voltage lines for networking within a neighborhood, with other technologies being used for network extensions to users’ premises; and (3) BPL use of the same frequencies on medium- and low-voltage power lines for networking in a neighborhood and extensions to users’ premises. Responses of BPL manufacturers and operators to the FCC’s BPL NOI generally indicate that BPL systems will operate at or near the Part 15 field strength limits in order to achieve maximum throughput and distance separation between BPL devices. NTIA addressed simple BPL deployment models in the Phase 1 interference risk analyses (Section 6). Specifically, a single BPL device and associated power lines were considered for cases of potential interference to ground-based radio receivers and several co-frequency BPL devices were assumed to be deployed throughout the area covered by an aircraft receiver antenna.
    [Show full text]
  • G3/0'4 18909 I
    TECHNICAL MEMORANDUM (NASA) 91 A MICRO-COMPUTER BASED SYSTEM TO COMPUTE MAGNETIC VARIATION A microcomputer-based implementation of a magnetic variation model for the continental United States is presented. The implementation computes magnetic variation as a function of latitude and longitude for general aviation receivers such as Loran-C. by Rajan Kaul Avionics Engineering Center Department of Electrical and Computer Engineering Ohio University Athens, Ohio 45701 March 1984 Prepared for National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 Grant No. NOR 36-009-017 (NASA-CR-1713376) A MICRO-COMPUTER BASED B84-20506 SYSTEM TO COMPUTE MAGNETIC VARIATION (Ohio Univ,) 26 p HC A03/IF A01 CSCL 17G Unclas G3/0'4 18909 I. INTRODUCTION A Mathematical model of magnetic variation in the continental United States (COT48) has been implemented in the Ohio University Loran-C receiv­ er. The model is based on a least squares fit of a polynomial function. The implementation on the micro-processor based Loran-C receiver is pos­ sible with the help of a math chip, Am9511 manufactured by Advanced Micro Devices, which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter (M6520) is used to communicate between the 6502 based micro-computer and the 9511 math chip. The implementation pro­ vides magnetic variation data to the pilot as a function of latitude and longitude. This report briefly describes the model and the real time implementation in the receiver. II. THE MATHEMATICAL MODEL The model was developed at the United States Geological Survey (USGS) by Fabiano et al. [11, by performing least squares analysis on more than 34,000 data measurements taken between 1900 and 1974.
    [Show full text]
  • Report ITU-R SM.2451-0 (06/2019)
    Report ITU-R SM.2451-0 (06/2019) Assessment of impact of wireless power transmission for electric vehicle charging on radiocommunication services SM Series Spectrum management ii Rep. ITU-R SM.2451-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU- R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Broadband Over Power Lines a Foundation for the Utility of the Future
    Broadband over Power Lines a Foundation for the Utility of the Future Jay M. Bradbury Duke Energy Regulatory Manager – Powerline Communications October 26, 2006 LSU Center for Energy Studies – Energy Summit 2006 Topics • BPL Explored a Primer • The Duke Experience • BPL as an Enabler of the Utility of the Future 1 BPL Explored A Primer 2 BPL Defined • Access Broadband Over Power Line (Access BPL). A carrier current system installed and operated on an electric utility service as an unintentional radiator that sends radio frequency energy on frequencies between 1.705 MHz and 80 MHz over medium voltage lines or low voltage lines to provide broadband communications and is located on the supply side of the utility service’s points of interconnection with customer premises. Access BPL does not include power line carrier systems as defined in Section 15.3(t) of this part or In-House BPL systems as defined in Section 15.3(gg) of this part. (FCC) – Electric utility companies can use Access BPL systems to monitor, and thereby more effectively manage, their electric power distribution operations. – Access BPL systems can also deliver high speed Internet and other broadband services to homes and businesses. • In-House Broadband Over Power line (In-House BPL). A carrier current system, operating as an unintentional radiator, that sends radio frequency energy to provide broadband communications on frequencies between 1.705 MHz and 80 MHz over low- voltage electric power lines that are not owned, operated or controlled by an electric service provider. The electric power lines may be aerial (overhead), underground, or inside walls, floors or ceilings of user premises.
    [Show full text]
  • COUNTY PURCHASING AGENT Fort Bend County, Texas
    COUNTY PURCHASING AGENT Fort Bend County, Texas Gilbert D. Jalomo, Jr., CPPB (281) 341-8640 County Purchasing Agent Fax (281) 341-8645 December 14, 2015 TO: All Prospective Bidders RE: Addendum No. 1 – Fort Bend County Bid 16-041 - Construction of Traffic Signalization to Serve the Intersection of South Mason Road at Delta Lake Drive Addendum 1: See attached is addendum 1. Vendors are to use the Addendum 1 document while preparing their bid response. ****************************************************************************** Immediately upon your receipt of this addendum, please fill out the following information and fax this page to the Fort Bend County Purchasing Department at (281) 341-8645. _______________________________________________________________________ Company Name _______________________________________________________________________ Signature of person receiving addendum Date If you have any questions please contact this office. Sincerely, Debbie Kaminski, CPPB Assistant Purchasing Agent 301 Jackson, Suite 201 ∙ Richmond, TX 77469 December 11, 2015 Ms. Debbie Kaminski, CPBB Assistant County Purchasing Agent Fort Bend County – Purchasing Department 301 Jackson Street, Suite 201 – Travis Annex Richmond, TX 77469 RE: Plans for Construction of Traffic Signalization to Serve the Intersection of S. Mason Road @ Delta Lake Drive – Addendum #1 Dear Ms. Kaminski, Enclosed please find documents pertaining to Addendum No. 1 for the construction of Traffic Signalization to Serve the Intersection of S. Mason Road @ Delta Lake Drive. BID DOCUMENTS: 1. Remove Specification 16730 – ITS Controller Cabinet Assembly and replace with Specification TS2-1, P44 Cabinet with 16 Position Back panel, attached. 2. Remove Specification 16731 – Model 2070 Controller Unit and replace with Specification TS2-1, P44 Cabinet with 16 Position Back panel, attached. 3. Add Special Specification 8775 – 5.8 Ghz Wireless Ethernet Radio, attached.
    [Show full text]
  • BPL) SYSTEMS to FEDERAL GOVERNMENT RADIOCOMMUNICATIONS at 1.7 - 80 Mhz
    NTIA Report 04-413 POTENTIAL INTERFERENCE FROM BROADBAND OVER POWER LINE (BPL) SYSTEMS TO FEDERAL GOVERNMENT RADIOCOMMUNICATIONS AT 1.7 - 80 MHz Phase 1 Study VOLUME I technical report U.S. DEPARTMENT OF COMMERCE National Telecommunications and Information Administration NTIA Report 04-413 POTENTIAL INTERFERENCE FROM BROADBAND OVER POWER LINE (BPL) SYSTEMS TO FEDERAL GOVERNMENT RADIOCOMMUNICATIONS AT 1.7 - 80 MHz Phase 1 Study VOLUME I U.S. Department of Commerce Donald Evans, Secretary Michael D Gallagher, Acting Assistant Secretary For Communications and Information APRIL 2004 ACKNOWLEDGEMENTS The measurements and studies underlying this report were performed by NTIA’s Spectrum Engineering and Analysis Division (SEAD) and Institute for Telecommunications Science (ITS). The following NTIA personnel contributed substantially to this report and the underlying studies: Brent Bedford (ITS lead) ITS Gary Patrick SEAD Ernesto Cerezo SEAD Alakananda Paul (tech. lead) SEAD Nick DeMinco ITS James Richards (admin. lead) SEAD Ed Drocella SEAD Robert Sole SEAD Phil Gawthrop SEAD Thomas Sullivan SEAD Randall Hoffman ITS Clement Townsend SEAD Gerald Hurt SEAD Cecilia Tucker SEAD Bernard Joiner SEAD Cou-Way Wang SEAD Yeh Lo ITS Jonathan Williams SEAD Norman Maisel SEAD Robert Wilson SEAD NTIA is grateful for the cooperation provided by the BPL parties whose systems were subject to measurement. NTIA also greatly appreciates the equipment, special radio network access and radio operator support provided by the Department of Homeland Security for NTIA’s testing of BPL interference. Finally, NTIA would like to thank the Interdepartment Radio Advisory Committee (IRAC) for its review of this report and the inputs it provided. iii PREFACE This Report contains two Volumes.
    [Show full text]
  • Boeung Prek Lapouv Management Plan January 2014 – December 2018 Part 1: Description and Evaluation
    Boeung Prek Lapouv management plan January 2014 – December 2018 Part 1: Description and Evaluation Contents Acronyms and abbreviations used ................................................................................................................ 4 1. Summary ................................................................................................................................................... 5 2. Legislation and Policy ................................................................................................................................ 8 2.1. Prime Ministerial Decree (Sub Decree) .............................................................................................. 8 2.2. Fish Sanctuary .................................................................................................................................... 8 2.3. Inundated Forest Protection Zone ..................................................................................................... 8 2.4. Zones & Boundaries ........................................................................................................................... 8 2.5. Other relevant legislation and policies ............................................................................................ 10 3. Description of Boeung Prek Lapouv ........................................................................................................ 11 3.1. Brief historical timeline ...................................................................................................................
    [Show full text]
  • Toward a Broadband Public Interest Standard Anthony E
    American University Washington College of Law Digital Commons @ American University Washington College of Law Articles in Law Reviews & Other Academic Journals Scholarship & Research 2009 Toward a Broadband Public Interest Standard Anthony E. Varona American University Washington College of Law, [email protected] Follow this and additional works at: http://digitalcommons.wcl.american.edu/facsch_lawrev Part of the Communications Law Commons Recommended Citation Varona, Anthony E. “Toward a Broadband Public Interest Standard.” Administrative Law Review 61, no. 1 (2009): 1-136. This Article is brought to you for free and open access by the Scholarship & Research at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in Articles in Law Reviews & Other Academic Journals by an authorized administrator of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. ARTICLES TOWAm A BROADBAND PUBLIC INTEMST STANDAm Introduction ...................................................................................................3 I. The Broadcast Public Interest Standard ..........................................11 A. Statutorgr and Regulatav Founttations ......................................1 1 B. Defining ""Public Interest" in Broadcasting ............................... 12 1. 1930s Through 1960s-Proactive Regulation "to Promote and Realize the Vast Potentialities'kof Broadcasting .................,...............................................
    [Show full text]
  • 24-Hour Ambulatory BP Monitoring System
    Add 3 button CT 24-Hour Ambulatory BP Monitoring System Page 1 of 68 80-0096-00-RevA 30-Apr-20 1. User Manual Changes This manual is identified as Part number: 80-0096-00. An updated version may be available for download from the BPL Medical website. Should you notice errors or omissions in this manual, please notify us at: BPL Medical 11th KM, Bannerghatta Road, Arakere, Bengaluru, INDIA 560076. Tel: (+) 91 80 26484388 1800-425-2355 Fax: (+) 91 80 26480426 Email: [email protected] Web: https://www.bplmedicaltechnologies.com/ This manual is for the WALK T1, Ambulatory Blood Pressure Monitor (ABPM) System. CAUTION: US Federal law restricts this device to sale by or on the order of a licensed practitioner Copyright Information All content in this manual is the proprietary information of BPL Medical and is provided solely for purposes of operation, maintenance or service of the WALK T1 ABPM System. This manual and the WALK T1 ABPM System described in it are protected under copyright law under which they may not be copied, in whole or in part, without written consent of BPL Medical. BPL Medical and WALK T1 are registered trademarks of BPL Medical, Inc. All other trademark names are the trademarks of their respective holders. The information in this manual is furnished for guidance only, is subject to change without notice, and should not be construed as a commitment by BPL Medical. BPL Medical assumes no liability for errors or inaccuracies that may appear in this manual. © 2019 BPL Medical. All rights reserved. Manufacturer Information SunTech Medical, Inc.
    [Show full text]