Report ITU-R SM.2451-0 (06/2019)

Total Page:16

File Type:pdf, Size:1020Kb

Report ITU-R SM.2451-0 (06/2019) Report ITU-R SM.2451-0 (06/2019) Assessment of impact of wireless power transmission for electric vehicle charging on radiocommunication services SM Series Spectrum management ii Rep. ITU-R SM.2451-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU- R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 2019 © ITU 2019 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU. Rep. ITU-R SM.2451-0 1 REPORT ITU-R SM.2451-0 Assessment of impact of wireless power transmission for electric vehicle charging on radiocommunication services (2019) TABLE OF CONTENTS Page 1 Introduction .................................................................................................................... 5 2 Technical characteristics and protection requirements of radio services ....................... 5 3 System characteristics of WPT-EV applications ............................................................ 7 3.1 Radio characteristics of WPT-EV ...................................................................... 7 3.2 19-21 kHz/55-65 kHz WPT-EV usage scenario ................................................. 8 3.3 79-90 kHz WPT-EV usage scenario ................................................................... 10 3.4 Estimated activity factor per charging pad ......................................................... 12 4 Summary of the studies on the impact of WPT-EV on radiocommunication services .. 12 4.1 Impact studies for WPT-EV operating in the 19-21 kHz frequency range ........ 13 4.2 Impact studies for WPT-EV operating in the 55-65 kHz frequency range ........ 14 4.3 Impact studies for WPT-EV operating in the 79-90 kHz frequency range ........ 15 4.4 Limits of WPT-EV radiated emission for the protection of AM broadcasting .. 17 4.5 Impact of spurious and harmonic radiated emissions on the amateur service and relevant protection requirements .................................................................. 21 5 Harmonization and mitigation measures to minimize the impact of WPT-EV on the radiocommunication services ......................................................................................... 22 5.1 Global harmonization ......................................................................................... 22 5.2 Mitigation measures ............................................................................................ 22 6 Conclusions .................................................................................................................... 23 Annex 1 – Technical characteristics and protection requirements of radiocommunication services for use in WPT-EV impact studies ................................................................... 25 A1.1 Maritime services ................................................................................................ 25 A1.3 Amateur Service ................................................................................................. 27 A1.4 Standard Frequency and Time Signal Service .................................................... 27 A1.5 Sound broadcasting service ................................................................................ 32 A1.6 Meteorological service ........................................................................................ 33 Annex 2 – Example emission levels of WPT-EV .................................................................... 34 A2.1 19-21 kHz/55-65 kHz WPT-EV ......................................................................... 34 A2.2 79-90 kHz WPT-EV ........................................................................................... 35 2 Rep. ITU-R SM.2451-0 Page Annex 3 – Proposed emission limits for WPT-EV from Standards Development Organisations .................................................................................................................. 38 A3.1 Proposed draft CISPR limits ............................................................................... 38 Annex 4 – Impact studies on the Standard Frequency and Time Signal Service .................... 39 A4.1 Impact study on the 60 kHz Standard Frequency and Time Signal Service ...... 39 A4.2 Impact study on the 77.5 kHz Standard Frequency and Time Signal Service ... 51 Annex 5 – WPT-EV impact study from China ........................................................................ 59 A5.1 The impact study of WPT-EV on the MF broadcast .......................................... 59 A5.2 The impact study of WPT-EV on China Loran system ...................................... 78 A5.3 References ........................................................................................................... 86 Annex 6 – Impact Studies in Korea for 19-21 kHz/55-65 kHz WPT-EV ............................... 87 A6.1 Studies on the impact to SFTS services from 19-21 kHz/55-65 kHz WPT-EV ............................................................................................................................ 87 A6.2 Studies on the impact to AM sound broadcasting services from 19-21 kHz/55- 65 kHz WPT-EV ................................................................................................. 88 Annex 7 – Impact Studies in Japan for WPT-EV using 79-90 kHz ........................................ 91 A7.1 Introduction ......................................................................................................... 91 A7.2 Emission limits on WPT for EVs ....................................................................... 91 A7.3 WPT-EV Standardization ................................................................................... 92 A7.4 Impact Studies on the WPT using 79-90 kHz .................................................... 92 Annex 8 – Analysis of the impact of WPT systems to broadcasting services ......................... 102 A8.1 Background ......................................................................................................... 102 A8.2 Factors affecting the impact of interference ....................................................... 102 A8.3 Commentary and application to WPT systems and broadcast receivers. ........... 103 A8.4 Tolerable field strength limits ............................................................................. 103 Attachment 1 to Annex 8 – Information on LF and MF broadcast transmitters subject to impact from WPT-EV .................................................................................................... 111 A8-A1.1 Introduction.................................................................................................. 111 A8-A1.2 Available sources of information................................................................. 111 Supplement 1 to Attachment 1 to Annex 8 .............................................................................. 112 Supplement 2 to Attachment 1 to Annex 1 – Information from Technical parameters for broadcast radio transmitters (Ofcom UK) ...................................................................... 115 Rep. ITU-R SM.2451-0 3 Page Attachment 2 to Annex 8 – Report of MF Broadcasting across Portions of Region 2 ............ 116 A8-A2.1 Executive Overview..................................................................................... 116 A8-A2.2 Introduction.................................................................................................. 116 A8-A2.3 Market Study ............................................................................................... 117 Attachment 3 to Annex 8 – Factors affecting the harmful impact of interference .................. 119 Attachment 4 to Annex 8 – Derivation of maximum tolerable level of interference at the AM receiver .................................................................................................................... 120 Attachment 5 to Annex 8
Recommended publications
  • Standard Frequencies and Time Signals from NBS Stations WWV and WWVH
    UNITED STATES DEPARTMENT OF COMMERCE Frederick H. Mueller, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astin, Director Standard Frequencies and Time Signals From NBS Stations WWV and WWVH National Bureau of Standards Miscellaneous Publication 236 Reprinted July 1, 1961 with corrections (First issued December 1, 1960) Detailed descriptions are given of six technical services broadcast by National Bureau of Standards radio stations WWV and WWVH. The services include 1, standard radio frequencies; 2, standard audio frequencies; 3, standard time intervals; 4, standard musical pitch; 5, time signals; and 6, radio propagation forecasts. Other domestic and foreign standard frequency and time signal broadcasts are tabulated. 1. Technical Services and Related Information The National Bureau of Standards’ radio sta- at 1900 UT (Universal Time, UT, is the same as tions WWV (in operation since 1923) and WWVH GMT and GCT). (since 1948) broadcast six widely used technical (b) Accuracy services: 1, Standard radio fiequencies; 2, stand- Since December 1, 1957, the standard radio ard audio frequencies ; 3, standard time intervals ; transmissions from stations WWV and WWVII 4, standard musical pitch; 5, time signals; 6, radio have been held as nearly constant as possible with propagation forecasts. respect to the atomic frequency standards which The radio stations are located as follows: WWV, constitute the United States Frequency Standard Beltsville, Maryland (Box 182, Route 2, Lanham, (USFS), maintained and operated by the Radio Marvland) : WWVH. Maui. Hawaii (Box 901. Standards Laboratory of the National Bureau of PunGene, Maui). Coordinatk of the stitions are.:‘ Standards. Carefully made atomic standards WWV (lat. 38’59’33’’ N, long.
    [Show full text]
  • AN 307: Altera Design Flow for Xilinx Users Supersedes Information Published in Previous Versions
    Altera Design Flow for Xilinx Users June 2005, ver. 5.0 Application Note 307 Introduction Designing for Altera® Programmable Logic Devices (PLDs) is very similar, both in concept and in practice, to designing for Xilinx PLDs. In most cases, you can simply import your register transfer level (RTL) into Altera’s Quartus® II software and begin compiling your design to the target device. This document will demonstrate the similar flows between the Altera Quartus II software and the Xilinx ISE software. For designs, which the designer has included Xilinx CORE generator modules or instantiated primitives, the bulk of this document guides the designer in design conversion considerations. Who Should Read This Document The first and third sections of this application note are designed for engineers who are familiar with the Xilinx ISE software and are using Altera’s Quartus II software. This first section describes the possible design flows available with the Altera Quartus II software and demonstrates how similar they are to the Xilinx ISE flows. The third section shows you how to convert your ISE constraints into Quartus II constraints. f For more information on setting up your design in the Quartus II software, refer to the Altera Quick Start Guide For Quartus II Software. The second section of this application note is designed for engineers whose design code contains Xilinx CORE generator modules or instantiated primitives. The second section provides comprehensive information on how to migrate a design targeted at a Xilinx device to one that is compatible with an Altera device. If your design contains pure behavioral coding, you can skip the second section entirely.
    [Show full text]
  • Table of Contents
    2012 Sediment Quality Cascade Pole Site Olympia, Washington January 13, 2014 Prepared for Port of Olympia 915 Washington Street NE 130 2nd Avenue South Edmonds, WA 98020 (425) 778-0907 TABLE OF CONTENTS Page 1.0 INTRODUCTION 1-1 1.1 BACKGROUND 1-1 1.1.1 Cleanup Action 1-1 1.1.2 Previous Performance Monitoring 1-2 1.1.2.1 Post-Construction Sediment Monitoring 1-2 1.1.2.2 Prior Performance Monitoring Event 1-2 1.2 REPORT ORGANIZATION 1-3 2.0 SEDIMENT MONITORING APPROACH 2-1 2.1 SAMPLE COLLECTION 2-2 2.1.1 Subsurface Sediment Sampling Procedures 2-2 2.1.2 Surface Sediment Sampling Procedures 2-3 2.2 SAMPLE ANALYSIS 2-3 3.0 MONITORING RESULTS 3-1 3.1 SEDIMENT PHYSICAL CHARACTERISTICS 3-1 3.2 ANALYTICAL RESULTS 3-1 3.2.1 Interior Backfill and Subsurface Sediment Results 3-1 3.2.2 Surface Sediment Results 3-2 4.0 EVALUATION OF CLEANUP EFFECTIVENESS 4-1 5.0 USE OF THIS REPORT 5-1 6.0 REFERENCES 6-1 1/10/14 P:\021\039\FileRm\R\2012 Sed Monitoring Rpt\2012 Sed Quality Rpt.docx LANDAU ASSOCIATES ii FIGURES Figure Title 1 Vicinity Map 2 2012 Sediment Quality - Phase I Sample Locations 3 2012 Sediment Quality - Phase II Surface Sample Locations 4 2012 Sediment Quality - Phase III Surface Sample Locations TABLES Table Title 1 Sample Locations Coordinates 2 Interior Backfill and Subsurface Sediment Results 3 Surface Sediment Results APPENDICES Appendix Title A Sediment Exploration Logs B Analytical Laboratory Reports C Historical Sediment Analytical Results 1/10/14 P:\021\039\FileRm\R\2012 Sed Monitoring Rpt\2012 Sed Quality Rpt.docx LANDAU ASSOCIATES iii LIST OF ABBREVIATIONS AND ACRONYMS ARI Analytical Resources, Incorporated BGS Below Ground Surface CAP Cleanup Action Plan cPAH Carcinogenic Polycyclic Aromatic Hydrocarbons CSL Cleanup Screening Level COPC Chemical of Potential Concern Ecology Washington State Department of Ecology GPS Global Positioning System LPAH Low Molecular Weight PAHs MBL Multiple Benefits Line MSS Marine Sampling Systems, Inc.
    [Show full text]
  • Social Determinants of Unmet Hospitalisation
    Nagulapalli, S 2013 Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross-sectional study.” Journal of Open Public Health Data 1(1):e6, DOI: http://dx.doi.org/10.5334/jophd.af DATA PAPER Data from “Social determinants of unmet hospitalisation need amongst the poor in Andhra Pradesh, India: A cross- sectional study.” Srikant Nagulapalli1 2 1 Government of Andhra Pradesh, India 2 Collector and District Magistrate of Nellore, Andhra Pradesh, India The dataset is of a health survey amongst the 21.5 million poor families of the Indian state of Andhra Pradesh conducted during April and May 2013. The dataset captures individual characteristics and household characteristics of the past 365 days. Data was collected by 2022 trained field staff of Aarogyasri Health Care Trust (AHCT) of Government of Andhra Pradesh using a questionnaire mod- elled after that used for the health surveys by National Sample Survey Organisation of India. Keywords: health survey of Andhra Pradesh; Rajiv Aarogyasri; unmet hospitalisation need Funding statement The data is not the result of any funded project. (1) Overview (2) Methods Context Steps a) Design of questionnaire: National Sample Survey Spatial coverage Organisation (NSSO), Ministry of Statistics, Government Description: 23 districts Adilabad, Nizamabad, Karimna- of India conducts yearly consumer expenditure surveys as gar, Warangal, Hyderabad, Rangareddy, Medak, Mahbub- well as focussed surveys on health care. The health survey nagar, Nalgonda, Anantapur, Kurnool, Kadapa, Chittoor, questionnaire and the consumer expenditure question- Nellore, Prakasam, Guntur, Krishna, Khammam, West naire used for the 60th round (2004-05) of NSSO were Godavari, East Godavari, Visakhapatnam, Vizianagaram integrated by suitably abridging the consumer expendi- and Srikakulam of Andhra Pradesh state, India were cov- ture details and used for this survey.
    [Show full text]
  • The BPL Dilemma
    Reprinted with permission from CQ VHF Magazine, Spring 2004 issue. Copyright CQ Communications 2004 The BPL Dilemma Hams claim Broadband over Power Lines will interfere with their on-the-air operations. The utility companies claim not. Read how they are both right . sort of. By Gary Pearce,* KN4AQ still academic. They haven’t encountered Because of the importance of the it yet. I will provide a quick tutorial. Broadband over Power Lines (BPL) The basics of BPL are simple. It is a issue, “FM” columnist Gary Pearce, method of delivering high-speed internet KN4AQ, devotes his space this time to the to homes and small businesses using the investigation of a BPL test site and the local power lines that crisscross neigh- surrounding area. He will be back in the borhoods either overhead or under- next issue of CQ VHF with his regular ground. This is a brilliantly obvious idea column material. —N6CL (“the wires are already there!”) that was delayed because the AC power grid is a really noisy, crappy signal-delivery ince last fall, I’ve been up to my medium for anything above 60 Hz. The eyeballs in BPL—Broadband over march of technology, however, is mak- Power Lines—and its effect on ing it feasible. It is the third method of Samateur radio. If you’re up on current TV doing that, following DSL (Digital culture, you can call it “HF Eye for the FM Subscriber Line) on the phone lines and Guy.” Our area has been “lucky” enough cable TV (nobody’s come up with a cute to host one of the few BPL trials, courtesy name or acronym for broadband over of my local power company, Progress cable TV; they just call it “cable”).
    [Show full text]
  • ABBREVIATIONS EBU Technical Review
    ABBREVIATIONS EBU Technical Review AbbreviationsLast updated: January 2012 720i 720 lines, interlaced scan ACATS Advisory Committee on Advanced Television 720p/50 High-definition progressively-scanned TV format Systems (USA) of 1280 x 720 pixels at 50 frames per second ACELP (MPEG-4) A Code-Excited Linear Prediction 1080i/25 High-definition interlaced TV format of ACK ACKnowledgement 1920 x 1080 pixels at 25 frames per second, i.e. ACLR Adjacent Channel Leakage Ratio 50 fields (half frames) every second ACM Adaptive Coding and Modulation 1080p/25 High-definition progressively-scanned TV format ACS Adjacent Channel Selectivity of 1920 x 1080 pixels at 25 frames per second ACT Association of Commercial Television in 1080p/50 High-definition progressively-scanned TV format Europe of 1920 x 1080 pixels at 50 frames per second http://www.acte.be 1080p/60 High-definition progressively-scanned TV format ACTS Advanced Communications Technologies and of 1920 x 1080 pixels at 60 frames per second Services AD Analogue-to-Digital AD Anno Domini (after the birth of Jesus of Nazareth) 21CN BT’s 21st Century Network AD Approved Document 2k COFDM transmission mode with around 2000 AD Audio Description carriers ADC Analogue-to-Digital Converter 3DTV 3-Dimension Television ADIP ADress In Pre-groove 3G 3rd Generation mobile communications ADM (ATM) Add/Drop Multiplexer 4G 4th Generation mobile communications ADPCM Adaptive Differential Pulse Code Modulation 3GPP 3rd Generation Partnership Project ADR Automatic Dialogue Replacement 3GPP2 3rd Generation Partnership
    [Show full text]
  • UA509: DCF77 Radio Clock DCF77 Radio Clock UA509 with 2 Serial Interfaces, Pulses Per Minute and Per Second, and a 2.5Mm LED Display
    Meinberg Radio Clocks Auf der Landwehr 22 31812 Bad Pyrmont, Germany Phone: +49 (5281) 9309-0 Fax: +49 (5281) 9309-30 http://www.meinberg.de [email protected] UA509: DCF77 Radio Clock DCF77 Radio Clock UA509 with 2 serial interfaces, pulses per minute and per second, and a 2.5mm LED Display. Key Features - Direct conversion Quadrature Receiver - Pulses per second and per minute - 20mA input/output circuits - 2,5mm LED-display - 2 RS232 interfaces - Receiver status LEDs - Buffered hardware clock - Flash-EPROM with bootstrap loader rev 2006.0615.1425 Page 1/3 ua509 Description The hardware of UA509 is a 100mm x 160mm microprocessor board. The 20mm wide front panel contains an 8-digit LED display (2.5mm), three LED indicators and a time/date switch. The receiver is connected to the external ferrite antenna AI01 that is included in the sope of supply by the 5 meter 50 ohm coaxial cable (other lengths available). The radio controlled clock UA509 has been designed for applications where two independent serial interfaces are needed. The UA509 contains a flash EPROM with bootstrap loader that allows to upload a new firmware via the serial interface without removal of the clock. Characteristics Type of receiver Narrowband DCF77 quadrature receiver with automatic gain control, bandwidth: approx. 20Hz Display 8 digit 7-segment LED display (2.5mm) for time or date (switch-selectable) optional: 20HP (100mm) wide front panel with 10mm height 7-segment LED display Status info Modulation and field strength visualized by LEDs Free running state visualized by LED after switching to free running quartz clock mode Synchronization time 2-3 minutes after correct DCF77 signal reception Accuracy free run Accuracy of the quartz base after min.
    [Show full text]
  • Technical Activities 1983 Center for Basic Standards
    Technical Activities 1983 Center for Basic Standards U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1983 Final Issued January 1984 Prepared for: U S. DEPARTMENT OF COMMERCE National Bureau of Standards Qc /ashington, DC 20234 1 00 -USk p p p I p p V i I » i » i i » i [i fi n NBSIR 83-2793 TECHNICAL ACTIVITIES 1983 CENTER FOR BASIC STANDARDS Karl G. Kessler, Director U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1 983 Final Issued January 1984 Prepared for: U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Part II Page Technical Activities: Introduction 1 Quantum Metrology Group 2 Electricity Division 21 Temperature and Pressure Division 81 Length and Mass Division 123 Time and Frequency Division 135 Quantum Physics Division 187 i i I 1 I II II i li 1 1 INTRODUCTION This book is Part II of the 1983 Annual Report of the Center for Basic Standards and contains a summary of the technical activities of the Center for the period October 1, 1982 to September 30, 1983. The Center is one of the five resources and operating units in the National Measurement Laboratory. The summary of activities is organized in six sections, one for the technical activities of the Quantum Metrology Group, and one each for the five divisions of the Center.
    [Show full text]
  • 2201 24-Hour Room Temperature Controller REV13
    s 2201 24-hour room temperature controller REV13.. Heating applications • Mains-independent, battery-operated room temperature controller featuring user-friendly operation, easy-to-read display and large numbers • Self-learning two-position controller with PID response (patented) • Operating mode selection: - Automatic mode with two heating phases - Automatic mode with one heating phase - Continuous comfort mode - Continuous energy saving mode - Frost protection • Automatic modes with time switch program • Heating zone control Use Room temperature control in: • Single-family and vacation homes. • Apartments and offices. • Individual rooms and professional office facilities. • Commercially used spaces. Control for the following equipment: • Magnetic valves of an instantaneous water heater. • Magnetic valves of an atmospheric gas burner. • Forced draught gas and oil burners. • Electrothermal actuators. • Circulating pumps in heating systems. • Electric direct heating. • Fans of electric storage heaters. • Zone valves (normally open and normally closed). CE1N2201en 24.04.2008 Building Technologies Function • PID control with self-learning or selectable switching cycle time • 2-point control • 24-hour time switch • Remote control • Preselected 24-hour operating modes • Override function • Party mode • Frost protection mode • Information level to check settings • Reset function • Sensor calibration • Minimum limitation of setpoint • Synchronization to radio time signal from Frankfurt, Germany (REV13DC) Type summary 24-hour room temperature controller REV13 24-hour room temperature controller with receiver for time signal from Frankfurt, Germany (DCF77) REV13DC Ordering Please indicate the type number as per the "Type summary" when ordering. Delivery The controller is supplied with batteries. Mechanical design Plastic casing with an easy-to-read display and large numbers, easily accessible operating elements, and removable base.
    [Show full text]
  • 8 Alert Input Monitor
    Chapter 1: Introduction OMEGAPHONE® OMA-P1108 Voice Synthesized Monitoring & Alarm System User’s Manual IMPORTANT SAFETY INSTRUCTIONS Your OMA-P1108 has been carefully designed to give you years of safe, reliable performance. As with all electrical equipment, however, there are a few basic precautions you should take to avoid hurting yourself or damaging the unit: • Read the installation and operating instructions in this manual carefully. Be sure to save it for future reference. • Read and follow all warning and instruction labels on the product itself. •To protect the OMA-P1108 from overheating, make sure all openings on the unit are not blocked. Do not place on or near a heat source, such as a radiator or heat register. • Do not use your OMA-P1108 near water, or spill liquid of any kind into it. • Be certain that your power source matches the rating listed on the AC power transformer. If you’re not sure of the type of power supply to your facility, consult your dealer or local power company. • Do not allow anything to rest on the power cord. Do not locate this product where the cord will be abused by persons walking on it. • Do not overload wall outlets and extension cords, as this can result in the risk of fire or electric shock. •Never push objects of any kind into this product through ventilation holes as they may touch dangerous voltage points or short out parts that could result in a risk of fire or electric shock. •To reduce the risk of electric shock, do not disassemble this product, but return it to Omega Customer Service, or other approved repair facility, when any service or repair work is required.
    [Show full text]
  • Clock Synchronization Clock Synchronization Part 2, Chapter 5
    Clock Synchronization Clock Synchronization Part 2, Chapter 5 Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch 5/1 5/2 Overview TexPoint fonts used in EMF. Motivation Read the TexPoint manual before you delete this box.: AAAA A • Logical Time (“happened-before”) • Motivation • Determine the order of events in a distributed system • Real World Clock Sources, Hardware and Applications • Synchronize resources • Clock Synchronization in Distributed Systems • Theory of Clock Synchronization • Physical Time • Protocol: PulseSync • Timestamp events (email, sensor data, file access times etc.) • Synchronize audio and video streams • Measure signal propagation delays (Localization) • Wireless (TDMA, duty cycling) • Digital control systems (ESP, airplane autopilot etc.) 5/3 5/4 Properties of Clock Synchronization Algorithms World Time (UTC) • External vs. internal synchronization • Atomic Clock – External sync: Nodes synchronize with an external clock source (UTC) – UTC: Coordinated Universal Time – Internal sync: Nodes synchronize to a common time – SI definition 1s := 9192631770 oscillation cycles of the caesium-133 atom – to a leader, to an averaged time, ... – Clocks excite these atoms to oscillate and count the cycles – Almost no drift (about 1s in 10 Million years) • One-shot vs. continuous synchronization – Getting smaller and more energy efficient! – Periodic synchronization required to compensate clock drift • Online vs. offline time information – Offline: Can reconstruct time of an event when needed • Global vs.
    [Show full text]
  • 448 Part 2—Frequency Alloca- Tions and Radio Treaty
    Pt. 2 47 CFR Ch. I (10–1–10 Edition) comments and following consultation with llllllllllllllllllllllll the SHPO/THPO, potentially affected Indian Chairman tribes and NHOs, or Council, where appro- Date lllllllllllllllllllll priate, take appropriate actions. The Com- Advisory Council on Historic Preservation mission shall notify the objector of the out- come of its actions. llllllllllllllllllllllll Chairman XII. AMENDMENTS Date lllllllllllllllllllll The signatories may propose modifications National Conference of State Historic Pres- or other amendments to this Nationwide ervation Officers Agreement. Any amendment to this Agree- llllllllllllllllllllllll ment shall be subject to appropriate public Date lllllllllllllllllllll notice and comment and shall be signed by the Commission, the Council, and the Con- [70 FR 580, Jan. 4, 2005] ference. XIII. TERMINATION PART 2—FREQUENCY ALLOCA- TIONS AND RADIO TREATY MAT- A. Any signatory to this Nationwide Agreement may request termination by writ- TERS; GENERAL RULES AND REG- ten notice to the other parties. Within sixty ULATIONS (60) days following receipt of a written re- quest for termination from a signatory, all Subpart A—Terminology other signatories shall discuss the basis for the termination request and seek agreement Sec. on amendments or other actions that would 2.1 Terms and definitions. avoid termination. B. In the event that this Agreement is ter- Subpart B—Allocation, Assignment, and minated, the Commission and all Applicants Use of Radio Frequencies shall comply with the requirements of 36 CFR Part 800. 2.100 International regulations in force. 2.101 Frequency and wavelength bands. XIV. ANNUAL REVIEW 2.102 Assignment of frequencies. 2.103 Federal use of non-Federal fre- The signatories to this Nationwide Agree- quencies.
    [Show full text]