Assessing Environmentally Significant Effects: a Better Strength-Of-Evidence Than a Single P Value?

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Environmentally Significant Effects: a Better Strength-Of-Evidence Than a Single P Value? 14_TPPT_2015_Sep Agenda item 6.8 Environ Monit Assess (2014) 186:2729–2740 DOI 10.1007/s10661-013-3574-8 Assessing environmentally significant effects: a better strength-of-evidence than a single P value? Graham McBride & Russell G. Cole & Ian Westbrooke & Ian Jowett Received: 28 May 2013 /Accepted: 28 November 2013 /Published online: 20 December 2013 # Springer Science+Business Media Dordrecht 2013 Abstract Interpreting a P value from a traditional nil with two types of equivalence tests (one testing that the hypothesis test as a strength-of-evidence for the exis- difference that does exist is contained within an interval tence of an environmentally important difference be- of indifference, the other testing that it is beyond that tween two populations of continuous variables (e.g. a interval—also known as bioequivalence testing). This chemical concentration) has become commonplace. Yet, gives rise to a strength-of-evidence procedure that lends there is substantial literature, in many disciplines, that itself to a simple confidence interval interpretation. It is faults this practice. In particular, the hypothesis tested is accompanied by a strength-of-evidence matrix that has virtually guaranteed to be false, with the result that P many desirable features: not only a strong/moderate/ depends far too heavily on the number of samples dubious/weak categorisation of the results, but also rec- collected (the ‘sample size’). The end result is a swing- ommendations about the desirability of collecting fur- ing burden-of-proof (permissive at low sample size but ther data to strengthen findings. precautionary at large sample size). We propose that these tests be reinterpreted as direction detectors (as Keywords Environmental significance . P value . has been proposed by others, starting from 1960) and Strength-of-evidence . Confidence interval that the test’s procedure be performed simultaneously Electronic supplementary material The online version of this Introduction article (doi:10.1007/s10661-013-3574-8) contains supplementary material, which is available to authorized users. Environmental impact assessment frequently relies on G. McBride (*) advice based on statistical hypothesis testing. Like many NIWA (National Institute of Water & Atmospheric Research), others (http://warnercnr.colostate.edu/~anderson/ PO Box 11115, Hamilton 3216, New Zealand thompson1.html), we are of the view that the results e-mail: [email protected] while appearing to be instructive can in fact be R. G. Cole misleading. This is because standard tests (e.g. t tests, NIWA, analysis of variance) are most usually tests of a PO Box 893, Nelson 7010, New Zealand particular form of null hypotheses, i.e. ‘nil hypotheses’ I. Westbrooke (Cohen 1994). Typically denoted as H0, they postulate Department of Conservation, that differences between populations’ parameters (means, Private Bag 4715, Christchurch, New Zealand medians, …)differbyanexact amount, most usually zero. We should have little interest in such an implausible I. Jowett Jowett Consulting Ltd., hypothesis because we already know that such a state 123 Butcher Road, Pukekohe, New Zealand between populations’ parameters is extremely unlikely: 14_TPPT_2015_Sep Agenda item 6.8 2730 Environ Monit Assess (2014) 186:2729–2740 ‘All we know about the world teaches us that the effects have to regard more extreme samples also of A and B are always different’ (Tukey 1991). Yet, the as evidence against H0.Therefore,P is the test’s calculation procedure is derived from key results probability of declaring there to be evi- in the mathematical theory of statistics that are built on dence against H0 when it is in fact true the assumption that the hypothesis to be tested is true. and the data under analysis are regarded That hypothesis is only rejected if the test’s ‘P value’ is as just decisive’ (Cox 1987). Other statisti- less than a chosen significance level (often taken as cians maintain that this line of reasoning α=5 %) in which case the result is called ‘statistically does not resolve the problem of appealing significant’—or sometimes just ‘significant’—and the to data that were not obtained (e.g. Berger ‘alternative hypothesis’ is accepted (i.e. the first and Delampady 1987). And note that, as is population’s mean or median differs from the second). common in much statistical writing, the Conversely, if the P value is greater than α, the best we above quotes assume that H0 may be true, can say is that the hypothesis is ‘not rejected’ which, on whereas we (and others, such as Tukey logical grounds, cannot and should not be taken to mean 1991) say the chances of that being so (for that such a hypothesis can be accepted—although this continuous variables at least) are vanish- incorrect inference is often made. As stated by Zar ingly small. We will propose a possible (1984,p.45):“… failing to reject a null hypothesis is resolution of this disagreement. not ‘proof’ that the hypothesis is true. It denotes only Problem 2 P depends on the number of data collected. that there is not sufficient evidence to conclude that it is Consider a simple t test, addressing the false” (a point first made in print by Berkson 1942). In hypothesis that the difference between the other words, how can it be legitimate to accept as true means of two normal populations is zero in something that we already understand to be false? two populations where the means can be Especially when, as implied by Zar, were more and taken as normally distributed (typically more data to be collected the hypothesis would based on the central limit theorem), with eventually be rejected. common variance. That is, H0 posits that If this significant/not significant dichotomy is aban- μ1−μ2=0, where μ1 and μ2 denote the doned, the practice can arise of using the P value as an unknown population means. The alterna- apparent strength-of-evidence concerning the changes tive hypothesis is HA: μ1−μ2≠0. If we or trends being analysed. This too is generally erroneous draw n samples from each population, we (Germano 1999), on two grounds. To see why, we need can then calculate the test statistic T, which to consider the P value in a little more detail. In partic- follows the t distribution when H0 is true. It pffiffi ular, note that it is defined as the probability of obtaining X 1−X 2 n is defined as T ¼ 2 where X 1 data at least as extreme as has been obtained if the tested Sp hypothesis is true. Two problems arise. and X 2 are the means of each set of sam- ples, Sp is the pooled standard deviation Problem 1 Using P as a strength-of-evidence provided obtained from the variances of the data by the data that we collect is to include in and the vertical bars denote absolute mag- that metric data that we did not collect (i.e. nitude. Observe that the term in vertical all data more extreme than was obtained). bars measures the relative ‘effect size’ in This problem has been criticised and the data (as defined by Cohen 1988,also defended in the statistical literature. A fa- called the ‘normal deviate’) and is com- mous criticism is: ‘What the use of P im- prised of unbiased and consistent estima- plies, therefore, is that a hypothesis that tors of means and variances (sensu the may be true may be rejected because it mathematical theory of statistics, e.g. has not predicted observable results that Freund 1992). As a consequence, were we have not occurred’ (Jeffreys 1961). In its to have taken less than sample size n (i.e. n defence another statistician stated ‘… if we samples) from each population, on aver- were to regard the data under analysis as age, the value of the effect size would just decisive against H0 then we would remain roughly constant. So in essence, 14_TPPT_2015_Sep Agenda item 6.8 Environ Monit Assess (2014) 186:2729–2740 2731 pffiffiffiffiffiffiffiffi 0.4 the presence of the n=2 term means that the test statistic T will be substantially af- fected by the number of data we have. In 0.3 particular, the more data we have from a given population, the larger T will tend to 0.2 be. And because larger values of T auto- Larger tail area matically cause smaller P values, the more when t = 1.6 data we have the smaller P will be (larger Probability density 0.1 Smaller tail area values of T cutoff smaller areas in the tail of when t = 2.3 the t distribution, as shown on Fig. 1). 0 So with many samples, nil hypothesis tests on differ- -4 -3 -2 -1 0 1 2 3 4 ences in population means will routinely return a statisti- t 12 degrees of freedom cally significant result when in fact the differences that are present would be considered by environmental scien- Fig. 1 The larger the test statistic, the smaller the tail area of the t distribution tists to be trivial—reflecting a precautionary approach. Conversely, with only a few samples, environmentally seldom pointed out that P values may have some merits important differences may often be declared to be ‘not when testing hypotheses that can be true, and so, critics significant’—reflecting a permissive approach.1 (See may ignore some possible benefits of including tests of Appendix 1 for a numerical example of how this works.) nil hypotheses in a strength-of-evidence approach (e.g. Now, if the true difference is environmentally important, Fleiss 1986;Frick1995;Chow1996; Hagen 1997, this behaviour is desirable—collecting yet more data Harris 1997a). from a given population can lead to rejection of a false Herein, we present the essentials of an approach to hypothesis that was previously not found to be wanting hypothesis testing that retains useful features of nil (as is implied by the quote from Zar above, a feature well- hypothesis test procedures, marrying them with tests of known among statisticians).
Recommended publications
  • An Overview of Environmental Statistics
    An Overview of Environmental Statistics Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C., U.S.A. Theme Day in Environmental Statistics 55th Session of ISI Sydney, April 6, 2005 http://www.stat.unc.edu/postscript/rs/isitutorial.pdf 1 Environmental Statistics is by now an extremely broad field, in- volving application of just about every technique of statistics. Examples: • Pollution in atmosphere and water systems • Effects of pollution on human health and ecosystems • Uncertainties in forecasting climate and weather • Dynamics of ecological time series • Environmental effects on the genome and many more. 2 Some common themes: • Most problems involve time series of observations, but also spatial sampling, often involving irregular grids • Design of a spatial sampling scheme or a monitor network is important • Often the greatest interest is in extremes, for example – Air pollution standards often defined by number of cross- ings of a high threshold – Concern over impacts of climate change often focussed on climate extremes. Hence, must be able to character- ize likely frequencies of extreme events in future climate scenarios • Use of numerical models — not viewed in competition, but how we can use statistics to improve the information derived from models 3 I have chosen here to focus on three topics that have applications across several of these areas: I. Spatial and spatio-temporal statistics • Interpolation of an air pollution or meteorological field • Comparing data measured on different spatial scales • Assessing time trends in data collected on a spatial net- work II. Network design • Choosing where to place the monitors to satisfy some optimality criterion related to prediction or estimation III.
    [Show full text]
  • Data Analysis Considerations in Producing 'Comparable' Information
    Data Analysis Considerations in Producing ‘Comparable’ Information for Water Quality Management Purposes Lindsay Martin Griffith, Assistant Engineer, Brown and Caldwell Robert C. Ward, Professor, Colorado State University Graham B. McBride, Principal Scientist, NIWA (National Institute of Water and Atmospheric Research), Hamilton, New Zealand Jim C. Loftis, Professor, Colorado State University A report based on thesis material prepared by the lead author as part of the requirement for the degree of Master of Science from Colorado State University February 2001 ABSTRACT Water quality monitoring is being used in local, regional, and national scales to measure how water quality variables behave in the natural environment. A common problem, which arises from monitoring, is how to relate information contained in data to the information needed by water resource management for decision-making. This is generally attempted through statistical analysis of the monitoring data. However, how the selection of methods with which to routinely analyze the data affects the quality and comparability of information produced is not as well understood as may first appear. To help understand the connectivity between the selection of methods for routine data analysis and the information produced to support management, the following three tasks were performed. S An examination of the methods that are currently being used to analyze water quality monitoring data, including published criticisms of them. S An exploration of how the selection of methods to analyze water quality data can impact the comparability of information used for water quality management purposes. S Development of options by which data analysis methods employed in water quality management can be made more transparent and auditable.
    [Show full text]
  • The Complete List of Courses, Including Course Descriptions, Prerequisites
    Course ID Course Title Equivalent to Home Dept. Description Units Requisites Offered PhD Informatics MS Cert. Minor ACBS 513 Statistical Genetics for Quantitative ANS/GENE 513 Animal & Biomedical This course provide the student with the statistical tools to describe variation in 3 A basic genetic principles Fall X X X X Measures Sciences quantitative traits, particularly the decomposition of variation into genetic, environmental, course as ANS 213, GENE and gene by environment interaction components. Convariance (resemblance) between 433, GENE 533, or GENE relatives and heritability will be discussed, along with the topics of epistasis, oligogenic 545. A current course on and polygenic traits, complex segregation analysis, methods of mapping quantitative trait basic statistical principles as GENE 509C or MATH loci (QTL), and estimation procedures. Microarrays have multiple uses, each of which will 509C. A course in linear be discussed and the corresponding statistical analyses described. models as MATH 561 and in statistical inference mathematics. AREC 559 Advanced Applied Econometrics Agricultural & Resource Emphasis in the course is on econometric model specification, estimation, inference, 4 AREC 517, ECON 518, Fall X X X X Economics forecasting, and simulation. Applications with actual data and modeling techniques are ECON 549 emphasized. BIOS 576B Biostatistics for Research CPH/EPID 576B Epidemiology & Descriptive statistics and statistical inference relevant to biomedical research, including 3SpringXXX X Biostatistics data analysis, regression and correlation analysis, analysis of variance, survival analysis, available biological assay, statistical methods for epidemiology and statistical evaluation of clinical online literature. BIOS 576C Applied Biostatistics Analysis CPH/EPID 576C Epidemiology & Integrate methods in biostatistics (EPID 576A, B) and Epidemiology (EPID 573A, B) to 3 BIOS/EPID 576A, Fall X X X X Biostatistics develop analytical skills in an epidemiological project setting.
    [Show full text]
  • Advanced Statistics for Environmental Professionals
    Advanced Statistics for Environmental Professionals Bernard J. Morzuch Department of Resource Economics University of Massachusetts Amherst, Massachusetts [email protected] Table of Contents TOPIC PAGE How Does A Statistic Like A Sample Mean Behave? ................................................................................ 1 The Central Limit Theorem ........................................................................................................................ 3 The Standard Nonnal Distribution .............................................................................................................. 5 Statistical Estimation ................................................................................................................................... 5 The t-distribution ....................................................................................................................................... 13 Appearance Of The t-distribution ............................................................................................................. 14 Situation Where We Use t In Place Of z: Confidence Intervals ............................................................... 16 t-table ....................................................................................................................................................... 17 An Upper One-Sided (1-a) Confidence Interval For µ .......................................................................... 18 Another Confidence Interval Example................................................................
    [Show full text]
  • Environmental Statistics
    Environmental statistics Вонр . проф . д-р Александар Маркоски Технички факултет – Битола 2008 год . Enviromatics 2008 - Environmental statistics 1 Introduction • Statistical analysis of environmental data is an important task to extract information on former and actual states of ecosystems. The estimates are known as sample statistics and form a base for prognoses on environmental system developments. • Topics of statistical analysis of environmental data are 1. Data analysis for the requirements of environmental administrations and associations (descriptive statistics, frequency distributions, averages, variances, error corrections, significance tests), 2. Data analysis for the requirements of different users as companies, farmers, tourists (explanatory statistics, multivariate statistics, time series analysis), 3. Basic research (regression and correlation analysis, multivariate statistics, advanced statistical techniques). Enviromatics 2008 - Environmental statistics 2 Environmental data • Environmental data are obtained by field samples and/or laboratory analysis . • They are directly observed (direct observations) or indirectly observed (due to calibration of analytical instruments and sensors). • Summary data are derived from statistics or by restricted observable indicators. • Simulated data are obtained by simulation models. • Measurement errors and outliers have to be removed from data sets. They will not take into account by data processing features. Enviromatics 2008 - Environmental statistics 3 Probability distributions of environmental data • Environmental data series represent the time and space varying behaviour of environmental processes. Some indicators show a long- wave cycling overlaid by short variations. Other indicators lay out stochastic fluctuations. Some indicators represent an unique behaviour with some peak events. Enviromatics 2008 - Environmental statistics 4 Statistical measures • Statistical measures of environmental data are represented by – averages , – variances and – measures of correlation .
    [Show full text]
  • Douglas William Nychka
    Douglas William Nychka Education 1978 B.A. Mathematics and Physics, Duke University 1983 Ph.D. Statistics, University of Wisconsin - Madison Honors and Awards 1978 Summa cum laude, Duke University 1978 Julia Dale Mathematics Award Duke University 2003 Fellow, American Statistical Association 2004 Jerry Sacks Award for Multidisciplinary Research 2013 Distinguished Achievement Award ENVR Section American Statistical Association 2013 Achievement Award, International Statistics and Climatology Meeting 2015 Fellow, Institute of Mathematical Statistics Professional Appointments 8/18 - present Professor, Department of Applied Mathematics and Statistics, Col- orado School of Mines, Golden, CO 8/97 - 8/18 National Center for Atmospheric Research, Boulder, CO. Visiting Scientist (8/97-7/99), Senior Scientist (8/99 - present), Project leader (8/99 - 9/04) Geophysical Statistics Project, Director (10/04 - 2017), Institute for Mathematics Applied to Geo- sciences (IMAGe) Senior Scientist Emeritus (8/18 - present) 7/83 - 6/99 Department of Statistics, North Carolina State University, Raleigh, NC Assistant (7/83 - 6/89), Associate (7/89 - 6/94) and Full Profes- sor (7/94 - 7/99), 1/94 - 7/03 National Institute of Statistical Sciences, Research Triangle Park, NC, Senior Fellow (1/94 -7/99) and Trustee (2000 - 2003) 6/93 and 6/08 Isaac Newton Institute for the Mathematical Sciences, Cambridge, England, Visiting Scholar 5/88 - 6/88, 6/92 Statistics Group, University of Bath, Bath, England, Visiting Faculty 7/89, 8/90 - 12/90 Operations Research and Industrial
    [Show full text]
  • Statistical Concepts in Environmental Science
    2 http://www.met.rdg.ac.uk/cag/courses/Stats/ Course Aim: To introduce the basic statistical concepts rel- evant to environmental science and to provide experience in the Statistical concepts correct use and interpretation of the various statistical methods currently used in the analysis of weather/climate observed and in environmental science model simulated data. Practical Exercises Each topic covered in the lectures will be Dr. David B. Stephenson followed by exercises analyzing real data in practical computing [email protected] classes using MINITAB statistical software. Department of Meteorology University of Reading Prerequisites Minimal statistical knowledge but some basic math- ematics and computer skills will be assumed. 10th January 2003 Course outline 1. Introduction \Some people hate the very name of stat- 2. Descriptive statistics istics but I ¯nd them full of beauty and in- 3. Basic probability concepts terest. Whenever they are not brutalized, 4. Probability distributions but delicately handled by the higher meth- 5. Parameter estimation ods, and are warily interpreted, their power 6. Statistical hypothesis testing of dealing with complicated phenomena is 7. Basic linear regression extraordinary." 8. Multiple and nonlinear regression - Sir Francis Galton 1 9. Introduction to time series 1 the person who invented the concept of correlation and the word anticyclone! 3 4 Acknowledgements The development of this course has bene¯ted from many stimulating dis- cussions with colleagues and students over the past few years. In particular, I wish to thank Nils Gunnar Kvamsto, Rasmus Benestad, and students at the University of Bergen for their helpful comments on the ¯rst version of this course.
    [Show full text]
  • Environmental Data and Statistics - S
    ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler ENVIRONMENTAL DATA AND STATISTICS S. Heiler Department of Mathematics and Statistics, University of Konstanz, Germany Keywords: environmental data, multivariate data, time series analysis, geostatistics, Space-time models. Contents 1. Introduction 2. Environmental Data 2.1 Data structures 2.1 Statistical graphics 3. Multivariate Data 3.1. Correlation analysis 3.1.1. The Bravais-Pearson correlation coefficient 3.1.2. Rank correlation 3.1.3. Correlation matrix 3.1.4. Multiple and partial correlation coefficient 3.1.5. Application to heavy metals in water 3.2. Regression 3.2.1. Simple Linear Regression 3.2.2. Non-parametric Regression 3.2.3. Multiple Linear Regression 3.2.4. Non-parametric Multiple Regression 3.3 Principal Components and Factor Analysis 3.3.1. Principal components analysis 3.3.2. Factor Analysis 3.4. Cluster analysis 3.5. Analysis of variance 4. Time Series Analysis 4.1. Introduction 4.2. Trend Estimation 4.3. Smoothing and Seasonal Estimation 4.4 Exponential smoothing 4.5. StationaryUNESCO Stochastic Processes – EOLSS 4.6. Univariate Linear Time Series Models 4.7. MultivariateSAMPLE Linear Time Series Models CHAPTERS 5. Geostatistics 5.1. Introduction 5.2. Homogeneous and Isotropic Random Fields 5.3. Inhomogeneities and Anisotopes 5.4. Space-time Models Acknowledgement Glossary Bibliography Biographical Sketch ©Encyclopedia of Life Support Systems (EOLSS) ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler Summary This review is a contribution on applications of statistical procedures to environmental data. Since this has become a very vast field, a comprehensive presentation seems to be impossible.
    [Show full text]
  • Leveraging Probability Concepts for Genotype by Environment Recommendation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440774; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Leveraging probability concepts for genotype by environment recommendation Kaio O.G. Dias†1; Jhonathan P.R. dos Santos†1; Matheus D. Krause2; Hans-Peter Piepho3; Lauro J.M. Guimarães4; Maria M. Pastina4; Antonio A.F. Garcia 1* 1 Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, SP, Brazil 2 Department of Agronomy, Iowa State University, Ames, IA, USA 3 Biostatistics Unit, University of Hohenheim, Stuttgart, Germany 4 Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil †These authors contributed equally to this work: Kaio Dias and Jhonathan dos Santos *Corresponding author: Antonio Garcia - [email protected] We would like to dedicate this article to the memory of Dr. Márcio Balestre. He was a young and brilliant scientist who made an outstanding contribution to statistical genetics. Abstract Statistical models that capture the phenotypic plasticity of a genotype across environments are crucial in plant breeding programs to potentially identify parents, generate offspring, and obtain highly productive genotypes for distinct environments. In this study, our aim is to leverage concepts of Bayesian models and probability methods of stability analysis to untangle genotype-by-environment interaction (GEI). The proposed method employs the posterior distribution obtained with the No-U-Turn sampler algorithm to get Monte Carlo estimates of adaptation and stability probabilities.
    [Show full text]
  • MATH2740: Environmental Statistics
    MATH2740: Environmental Statistics Lecturer: Andrew J. Baczkowski – room 11-13 – email: [email protected] Regularly updated information about the module is available on the internet at: http://www.maths.leeds.ac.uk/∼sta6ajb/math2715/math2740.html Module objective: To introduce statistical concepts and models for analysing data of an envi- ronmental nature: (a) analyse data of a spatial nature, (b) analyse models when applied to the analysis of categorical data arising from observational studies. Provisional detailed syllabus: 1. Types of data. 2. Spatial point patterns: contagious distributions. 3. Quadrant analysis: testing for non-randomness. 4. Distance methods: nearest neighbour analysis. 5. Spatial autocorrelation: join count statistics; testing hypotheses of spatial correlation. 6. Categorical data analysis: log-linear models; goodness of fit; three-dimensional tables; model selection. Booklist: No one book will be useful. References will be given for each lecture. Some useful textbooks include: Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: Wiley. Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press. Ripley, B.D. (1981) Spatial Statistics. New York: Wiley. Upton, G.J.G. and Fingleton, B. (1985) Spatial Data Analysis by Example. Volume I: Point Pattern and Quantitative Data. Wiley, Chichester. Agresti, A. (2002) Categorical Data Analysis. New Jersey: Wiley. Attendance: Attendance sheets will be circulated in each lecture for you to sign. Assessment: 80% of marks for two hour examination at end of semester and 20% of marks for continuous assessment comprising the exercise sheets and practicals. Examination paper: The examination paper will be in two parts. Part A will consist of twenty questions.
    [Show full text]
  • Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture
    Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture by Kessinee Chitakasempornkul B.BA., Mahidol University International Colleges, 2008 M.S., California State University Long Beach, 2012 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Statistics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2019 Abstract Feeding a world population of 9 billion people by 2050 is a fundamental challenge of our generation. Animal agriculture is positioned to play a major role on this challenge by ensuring a safe and secure supply of animal protein for food. Thus motivated, an understanding of the mechanistic interconnections between multiple outcomes in agricultural production systems is critical. Structural equation models (SEM) are being increasingly used for investigating directionality in the associations between outcomes in the system. Agricultural data pose peculiar challenges to the implementation of SEM, among them its structured architecture and its multidimensional heterogeneity. For example, observations on a given outcome collected at the animal level are often not mutually independent but rather likely to have correlation patterns due to clustering within pens or cohorts, which in turn may be subjected to common management or business practices defined at the level of a commercial operation. Also, agricultural outcomes of interest are often correlated and at multiple levels. Furthermore, a key assumption underlying SEM is that of a causal homogeneity, whereby the structural coefficients defining functional links in a network are assumed homogeneous and impervious to environmental conditions or management factors. This assumption seems particularly questionable in the context of animal agriculture, where production systems are regularly subjected to explicit interventions intended to optimize the necessary trade-offs between efficacy and efficiency of production.
    [Show full text]
  • Statistics.Pdf
    Analysis of Environmental Data Conceptual Foundations: Th e Ro le o f Statistic s in Enviro nm e ntal Re se arc h 1. The real world context of environmental research. 2 2. The role of statistics. 9 2.1 Description . 9 2.2 Inference. 12 3. The modeling process.. 17 4. The role of statistics, revisited. 20 Role of Statistics 2 1. The real world context of environmental research As scientists or managers we are faced with the challenges of defending our decisions every day. This is because we live in a world where challenges to the status quo are given little credence without solid evidence for the alternative (analogy: innocent until proven guilty). In other words, if we want to suggest a change to the current way of thinking, the burden of proof is on us. This idea lies at the core of the western scientific method. The classical approach to statistical inference, for example, involves testing hypotheses in which the null hypothesis (i.e., the status quo) is accepted unless there is overwhelming evidence in support of the alternative hypothesis – the one you are proposing. Indeed, we take great measures to ensure that we don’t falsely reject the null hypothesis in favor of the alternative (i.e., a Type I error); this is why by conventional standard we set the p- value for rejecting the null hypothesis to be a very small number, usually 0.05, which means that we will continue to support the null hypothesis unless the data suggest that there is less than a 5% chance that we would have observed our data if in fact the null hypothesis were true.
    [Show full text]