Tolerance Intervals in a Heteroscedastic Linear Regression Context with Applications to Aerospace Equipment Surveillance

Total Page:16

File Type:pdf, Size:1020Kb

Tolerance Intervals in a Heteroscedastic Linear Regression Context with Applications to Aerospace Equipment Surveillance Hindawi Publishing Corporation International Journal of Quality, Statistics, and Reliability Volume 2009, Article ID 126283, 8 pages doi:10.1155/2009/126283 Research Article Tolerance Intervals in a Heteroscedastic Linear Regression Context with Applications to Aerospace Equipment Surveillance Janet Myhre,1 Daniel R. Jeske,2 Michael Rennie,3 and Yingtao Bi2 1 Reed Institute for Applied Statistics, Claremont McKenna College, Claremont, CA 91711, USA 2 Department of Statistics, University of California, Riverside, CA 92521, USA 3 Mathematical Research and Analysis Corporation, Claremont, CA 91711, USA Correspondence should be addressed to Daniel R. Jeske, [email protected] Received 1 June 2009; Revised 12 October 2009; Accepted 18 December 2009 Recommended by Satish Bukkapatnam A heteroscedastic linear regression model is developed from plausible assumptions that describe the time evolution of performance metrics for equipment. The inherited motivation for the related weighted least squares analysis of the model is an essential and attractive selling point to engineers with interest in equipment surveillance methodologies. A simple test for the significance of the heteroscedasticity suggested by a data set is derived and a simulation study is used to evaluate the power of the test and compare it with several other applicable tests that were designed under different contexts. Tolerance intervals within the context of the model are derived, thus generalizing well-known tolerance intervals for ordinary least squares regression. Use of the model and its associated analyses is illustrated with an aerospace application where hundreds of electronic components are continuously monitored by an automated system that flags components that are suspected of unusual degradation patterns. Copyright © 2009 Janet Myhre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction similarly used for monitoring environmental applications [1]. 1.1. Background. The model and analyses developed in this Compared to having engineers individually examine the paper address a problem encountered when analyzing data data from all the combinations of metrics and part types, from service life tests of aerospace hardware packages. Data the automated monitoring and flagging process is quite cost- forasmanyas700performancemetricsperparttype effective. However, when the variance of the metric increases are automatically stored during surveillance testing and with time, the tolerance intervals that result from the ordi- subsequently input into a software program where, up to nary least squares analyses fail in the sense that the intervals this point, an ordinary least squares line based on normal- become too narrow as time increases. Figure 1 illustrates theory has been routinely fit to the data using time-in- this point, where the 111 observations are the performance service as the explanatory variable. The software program metric for one type of part. It is evident from the figure that also outputs tolerance intervals based on the ordinary least the random errors associated with the regression model are squares analysis. Engineers monitoring this process are heteroscedastic. Heteroscedasticity is, of course, not unique alerted only to those cases where observations in the scatter to our application. It arises routinely in other applications plot fall outside the tolerance intervals or the tolerance such as economics, behavioral sciences, social sciences, interval crosses a given limit within some specified future environmental science, and computer vision. The works in time interval (e.g., 60 months). In cases where the alert [2–6] provide examples within these disciplines, respectively. suggests an increasing accelerated degradation, a proactive Figure 1 also shows two sets of pointwise 95%-content corrective action (e.g., part replacement) may be initiated. In tolerance intervals constructed at the 90% confidence level. cases where the alert suggests less than expected degradation, The dashed lines represent the tolerance intervals derived a cursory investigation to determine if the part is being from an ordinary least squares analysis, while the solid utilized properly is initiated. Tolerance intervals are often lines represent the tolerance intervals derived from an 2 International Journal of Quality, Statistics, and Reliability 175 2 σs , is responsible for the heteroscedasticity is somewhat 150 unique to our model since the large literature pertaining 125 to heteroscedasticity models usually assumes variances of 2 · the form h(σe + λti), where h( ) is an arbitrary function 100 (e.g., a polynomial or the exponential function); see [2, 7] 75 and references therein. While these types of models have Metric 50 seen many successful applications, the lucid interpretation 2 2 25 of the heteroscedastic variance function σe + σs t was crucial when eliciting buy-in from our aerospace engineering project 0 stakeholders. −25 0 3 6 9 12 15 18 Time in service (years) 1.3. Tolerance Interval for Heteroscedastic Regression. Defin- = 2 2 2 ing ρ σs /σe , the log-likelihood function for (β0, β1, σe , ρ) Figure 1: (Data Set 1) Pointwise 95%-content tolerance intervals based on the observations is with 90% confidence. Dashed lines correspond to an ordinary n least squares analysis and solid lines correspond to the estimated 2 =−n 2 − 1 weighted least squares analysis. l β0, β1, σe , ρ log σe log 1+ρti 2 2 i=1 (1) n − − 2 − 1 yi β0 β1ti 2 . estimated weighted least squares analysis that is described 2σe i=1 1+ρti in Section 1.2. The bold line in the figure is the estimated weighted least squares regression line. It is evident in For a fixed ρ the conditional MLEs, say β0(ρ)andβ1(ρ), of β0 Figure 1 that the ordinary least squares tolerance intervals are and β1 satisfy the linear system of equations: inadequate in the sense that they are too wide for small time values and too narrow for large time values. On the other n n n 1 ti = yi hand, the more pronounced curvature associated with the β0 ρ + β1 ρ , 1+ρti 1+ρti 1+ρti tolerance intervals derived from the estimated weighted least i=1 i=1 i=1 (2) squares analysis more adequately captures the range of the n n 2 n ti ti yiti observations at both ends of the time spectrum. β0 ρ + β1 ρ = , i=1 1+ρti i=1 1+ρti i=1 1+ρti 1.2. Model for Heteroscedasticity. Examination of aerospace 2 2 = n − − data for many part types and many performance metrics led and the conditional MLE of σe is σe (ρ) [ i=1(yi β0(ρ) 2 us to propose the following model for heteroscedasticity. Let β1(ρ)ti) /(1+ρti)]/n. The conditional MLEs, β0(ρ)andβ1(ρ), X(t) denote the metric level at time t for a particular part, are the weighted least squares estimator of the slope and and for motivational purposes, assume that the underlying intercept and have an estimated variance-covariance matrix = = 2 −1 −1 × process is a discrete-time valued process (t 0, 1, ...). equal to Σ(ρ) σe (ρ)[X Ω (ρ)X] ,whereX is the n 2 Assume that the initial value of the process is X(0) = β0 + matrix whose first column is all ones and whose second { }n = e,whereβ0 is an unknown constant and e is a normally column is the set of values ti i=1 and Ω(ρ) Diag(1 + distributed random variable with zero mean and unknown ρt1, ...,1+ρtn). 2 variance σe > 0. If the degradation process has both a The profile log-likelihood function (e.g., see reference =− 2 − n − constant deterministic trend, say β1, and also a random [8]) of ρ is lp(ρ) n log σe (ρ)/2 i=1 log(1+ρti)/2 n/2, stochastic perturbation, it would follow that X(t) = X(t − which can be maximized to find the MLE of ρ,sayρ.The 1)+β1 +st,wherest is a normally distributed random variable MLEs of , and 2 are then are = (), = (), 2 ≥ β0 β1 σe β0 β0 ρ β1 β1 ρ with zero mean and unknown variance σs 0. It follows 2 2 t and σ = σ (ρ). Unbiasedness of β0 and β1 follows from from successive substitutions that X(t) = β +β t+e+ = s , e e 0 1 i 1 i general results in [9]. or equivalently, X(t) = β0 +β1t+e+δt,whereδt is a normally distributed random variable with zero mean and unknown A pointwise 100γ%-content tolerance interval with con- 2 fidence level 100(1 − α)% for a regression line in the context variance σs t.ThemodelforX(t) is (drifting) Brownian motion, except for the fact that the variance function is of homoscedastic normal errors was derived in [10]. The 2 following theorem, which is proved in the Appendix A, displaced from the origin by σe . In our application, the process X(t) is measured one time on each unit; so the data extends that result to our context. are a collection of independent observations Y = X (t ), i i i Theorem 1. If ρ is known, a pointwise 100γ%-content toler- where X (t) is the process associated with the ith unit. Thus, i ance interval with confidence level 100(1 − α)% for a normal we have the model Y = β + β t + e + δ (i = 1, ..., n)for i 0 1 i i i distribution that has mean β + β t and variance σ2(1 + ρt) is the observations. 0 1 e Equivalently, the model implies that observations are 2 σ ρ 1+ρt n independent and normally distributed with means β0 + β1ti + ± e ,(3) 2 2 β0 ρ β1 ρ t r ρ 2 and variances σe + σs ti. The fact that a variance component, χn−2, 1−α International Journal of Quality, Statistics, and Reliability 3 2 − 2 where χn−2, 1−α is the upper 1 α percentile of a chi-square of s, and having a MVNn(0, σe In) distribution.
Recommended publications
  • An Overview of Environmental Statistics
    An Overview of Environmental Statistics Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C., U.S.A. Theme Day in Environmental Statistics 55th Session of ISI Sydney, April 6, 2005 http://www.stat.unc.edu/postscript/rs/isitutorial.pdf 1 Environmental Statistics is by now an extremely broad field, in- volving application of just about every technique of statistics. Examples: • Pollution in atmosphere and water systems • Effects of pollution on human health and ecosystems • Uncertainties in forecasting climate and weather • Dynamics of ecological time series • Environmental effects on the genome and many more. 2 Some common themes: • Most problems involve time series of observations, but also spatial sampling, often involving irregular grids • Design of a spatial sampling scheme or a monitor network is important • Often the greatest interest is in extremes, for example – Air pollution standards often defined by number of cross- ings of a high threshold – Concern over impacts of climate change often focussed on climate extremes. Hence, must be able to character- ize likely frequencies of extreme events in future climate scenarios • Use of numerical models — not viewed in competition, but how we can use statistics to improve the information derived from models 3 I have chosen here to focus on three topics that have applications across several of these areas: I. Spatial and spatio-temporal statistics • Interpolation of an air pollution or meteorological field • Comparing data measured on different spatial scales • Assessing time trends in data collected on a spatial net- work II. Network design • Choosing where to place the monitors to satisfy some optimality criterion related to prediction or estimation III.
    [Show full text]
  • Data Analysis Considerations in Producing 'Comparable' Information
    Data Analysis Considerations in Producing ‘Comparable’ Information for Water Quality Management Purposes Lindsay Martin Griffith, Assistant Engineer, Brown and Caldwell Robert C. Ward, Professor, Colorado State University Graham B. McBride, Principal Scientist, NIWA (National Institute of Water and Atmospheric Research), Hamilton, New Zealand Jim C. Loftis, Professor, Colorado State University A report based on thesis material prepared by the lead author as part of the requirement for the degree of Master of Science from Colorado State University February 2001 ABSTRACT Water quality monitoring is being used in local, regional, and national scales to measure how water quality variables behave in the natural environment. A common problem, which arises from monitoring, is how to relate information contained in data to the information needed by water resource management for decision-making. This is generally attempted through statistical analysis of the monitoring data. However, how the selection of methods with which to routinely analyze the data affects the quality and comparability of information produced is not as well understood as may first appear. To help understand the connectivity between the selection of methods for routine data analysis and the information produced to support management, the following three tasks were performed. S An examination of the methods that are currently being used to analyze water quality monitoring data, including published criticisms of them. S An exploration of how the selection of methods to analyze water quality data can impact the comparability of information used for water quality management purposes. S Development of options by which data analysis methods employed in water quality management can be made more transparent and auditable.
    [Show full text]
  • The Complete List of Courses, Including Course Descriptions, Prerequisites
    Course ID Course Title Equivalent to Home Dept. Description Units Requisites Offered PhD Informatics MS Cert. Minor ACBS 513 Statistical Genetics for Quantitative ANS/GENE 513 Animal & Biomedical This course provide the student with the statistical tools to describe variation in 3 A basic genetic principles Fall X X X X Measures Sciences quantitative traits, particularly the decomposition of variation into genetic, environmental, course as ANS 213, GENE and gene by environment interaction components. Convariance (resemblance) between 433, GENE 533, or GENE relatives and heritability will be discussed, along with the topics of epistasis, oligogenic 545. A current course on and polygenic traits, complex segregation analysis, methods of mapping quantitative trait basic statistical principles as GENE 509C or MATH loci (QTL), and estimation procedures. Microarrays have multiple uses, each of which will 509C. A course in linear be discussed and the corresponding statistical analyses described. models as MATH 561 and in statistical inference mathematics. AREC 559 Advanced Applied Econometrics Agricultural & Resource Emphasis in the course is on econometric model specification, estimation, inference, 4 AREC 517, ECON 518, Fall X X X X Economics forecasting, and simulation. Applications with actual data and modeling techniques are ECON 549 emphasized. BIOS 576B Biostatistics for Research CPH/EPID 576B Epidemiology & Descriptive statistics and statistical inference relevant to biomedical research, including 3SpringXXX X Biostatistics data analysis, regression and correlation analysis, analysis of variance, survival analysis, available biological assay, statistical methods for epidemiology and statistical evaluation of clinical online literature. BIOS 576C Applied Biostatistics Analysis CPH/EPID 576C Epidemiology & Integrate methods in biostatistics (EPID 576A, B) and Epidemiology (EPID 573A, B) to 3 BIOS/EPID 576A, Fall X X X X Biostatistics develop analytical skills in an epidemiological project setting.
    [Show full text]
  • Advanced Statistics for Environmental Professionals
    Advanced Statistics for Environmental Professionals Bernard J. Morzuch Department of Resource Economics University of Massachusetts Amherst, Massachusetts [email protected] Table of Contents TOPIC PAGE How Does A Statistic Like A Sample Mean Behave? ................................................................................ 1 The Central Limit Theorem ........................................................................................................................ 3 The Standard Nonnal Distribution .............................................................................................................. 5 Statistical Estimation ................................................................................................................................... 5 The t-distribution ....................................................................................................................................... 13 Appearance Of The t-distribution ............................................................................................................. 14 Situation Where We Use t In Place Of z: Confidence Intervals ............................................................... 16 t-table ....................................................................................................................................................... 17 An Upper One-Sided (1-a) Confidence Interval For µ .......................................................................... 18 Another Confidence Interval Example................................................................
    [Show full text]
  • Environmental Statistics
    Environmental statistics Вонр . проф . д-р Александар Маркоски Технички факултет – Битола 2008 год . Enviromatics 2008 - Environmental statistics 1 Introduction • Statistical analysis of environmental data is an important task to extract information on former and actual states of ecosystems. The estimates are known as sample statistics and form a base for prognoses on environmental system developments. • Topics of statistical analysis of environmental data are 1. Data analysis for the requirements of environmental administrations and associations (descriptive statistics, frequency distributions, averages, variances, error corrections, significance tests), 2. Data analysis for the requirements of different users as companies, farmers, tourists (explanatory statistics, multivariate statistics, time series analysis), 3. Basic research (regression and correlation analysis, multivariate statistics, advanced statistical techniques). Enviromatics 2008 - Environmental statistics 2 Environmental data • Environmental data are obtained by field samples and/or laboratory analysis . • They are directly observed (direct observations) or indirectly observed (due to calibration of analytical instruments and sensors). • Summary data are derived from statistics or by restricted observable indicators. • Simulated data are obtained by simulation models. • Measurement errors and outliers have to be removed from data sets. They will not take into account by data processing features. Enviromatics 2008 - Environmental statistics 3 Probability distributions of environmental data • Environmental data series represent the time and space varying behaviour of environmental processes. Some indicators show a long- wave cycling overlaid by short variations. Other indicators lay out stochastic fluctuations. Some indicators represent an unique behaviour with some peak events. Enviromatics 2008 - Environmental statistics 4 Statistical measures • Statistical measures of environmental data are represented by – averages , – variances and – measures of correlation .
    [Show full text]
  • Douglas William Nychka
    Douglas William Nychka Education 1978 B.A. Mathematics and Physics, Duke University 1983 Ph.D. Statistics, University of Wisconsin - Madison Honors and Awards 1978 Summa cum laude, Duke University 1978 Julia Dale Mathematics Award Duke University 2003 Fellow, American Statistical Association 2004 Jerry Sacks Award for Multidisciplinary Research 2013 Distinguished Achievement Award ENVR Section American Statistical Association 2013 Achievement Award, International Statistics and Climatology Meeting 2015 Fellow, Institute of Mathematical Statistics Professional Appointments 8/18 - present Professor, Department of Applied Mathematics and Statistics, Col- orado School of Mines, Golden, CO 8/97 - 8/18 National Center for Atmospheric Research, Boulder, CO. Visiting Scientist (8/97-7/99), Senior Scientist (8/99 - present), Project leader (8/99 - 9/04) Geophysical Statistics Project, Director (10/04 - 2017), Institute for Mathematics Applied to Geo- sciences (IMAGe) Senior Scientist Emeritus (8/18 - present) 7/83 - 6/99 Department of Statistics, North Carolina State University, Raleigh, NC Assistant (7/83 - 6/89), Associate (7/89 - 6/94) and Full Profes- sor (7/94 - 7/99), 1/94 - 7/03 National Institute of Statistical Sciences, Research Triangle Park, NC, Senior Fellow (1/94 -7/99) and Trustee (2000 - 2003) 6/93 and 6/08 Isaac Newton Institute for the Mathematical Sciences, Cambridge, England, Visiting Scholar 5/88 - 6/88, 6/92 Statistics Group, University of Bath, Bath, England, Visiting Faculty 7/89, 8/90 - 12/90 Operations Research and Industrial
    [Show full text]
  • Statistical Concepts in Environmental Science
    2 http://www.met.rdg.ac.uk/cag/courses/Stats/ Course Aim: To introduce the basic statistical concepts rel- evant to environmental science and to provide experience in the Statistical concepts correct use and interpretation of the various statistical methods currently used in the analysis of weather/climate observed and in environmental science model simulated data. Practical Exercises Each topic covered in the lectures will be Dr. David B. Stephenson followed by exercises analyzing real data in practical computing [email protected] classes using MINITAB statistical software. Department of Meteorology University of Reading Prerequisites Minimal statistical knowledge but some basic math- ematics and computer skills will be assumed. 10th January 2003 Course outline 1. Introduction \Some people hate the very name of stat- 2. Descriptive statistics istics but I ¯nd them full of beauty and in- 3. Basic probability concepts terest. Whenever they are not brutalized, 4. Probability distributions but delicately handled by the higher meth- 5. Parameter estimation ods, and are warily interpreted, their power 6. Statistical hypothesis testing of dealing with complicated phenomena is 7. Basic linear regression extraordinary." 8. Multiple and nonlinear regression - Sir Francis Galton 1 9. Introduction to time series 1 the person who invented the concept of correlation and the word anticyclone! 3 4 Acknowledgements The development of this course has bene¯ted from many stimulating dis- cussions with colleagues and students over the past few years. In particular, I wish to thank Nils Gunnar Kvamsto, Rasmus Benestad, and students at the University of Bergen for their helpful comments on the ¯rst version of this course.
    [Show full text]
  • Environmental Data and Statistics - S
    ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler ENVIRONMENTAL DATA AND STATISTICS S. Heiler Department of Mathematics and Statistics, University of Konstanz, Germany Keywords: environmental data, multivariate data, time series analysis, geostatistics, Space-time models. Contents 1. Introduction 2. Environmental Data 2.1 Data structures 2.1 Statistical graphics 3. Multivariate Data 3.1. Correlation analysis 3.1.1. The Bravais-Pearson correlation coefficient 3.1.2. Rank correlation 3.1.3. Correlation matrix 3.1.4. Multiple and partial correlation coefficient 3.1.5. Application to heavy metals in water 3.2. Regression 3.2.1. Simple Linear Regression 3.2.2. Non-parametric Regression 3.2.3. Multiple Linear Regression 3.2.4. Non-parametric Multiple Regression 3.3 Principal Components and Factor Analysis 3.3.1. Principal components analysis 3.3.2. Factor Analysis 3.4. Cluster analysis 3.5. Analysis of variance 4. Time Series Analysis 4.1. Introduction 4.2. Trend Estimation 4.3. Smoothing and Seasonal Estimation 4.4 Exponential smoothing 4.5. StationaryUNESCO Stochastic Processes – EOLSS 4.6. Univariate Linear Time Series Models 4.7. MultivariateSAMPLE Linear Time Series Models CHAPTERS 5. Geostatistics 5.1. Introduction 5.2. Homogeneous and Isotropic Random Fields 5.3. Inhomogeneities and Anisotopes 5.4. Space-time Models Acknowledgement Glossary Bibliography Biographical Sketch ©Encyclopedia of Life Support Systems (EOLSS) ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler Summary This review is a contribution on applications of statistical procedures to environmental data. Since this has become a very vast field, a comprehensive presentation seems to be impossible.
    [Show full text]
  • Leveraging Probability Concepts for Genotype by Environment Recommendation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440774; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Leveraging probability concepts for genotype by environment recommendation Kaio O.G. Dias†1; Jhonathan P.R. dos Santos†1; Matheus D. Krause2; Hans-Peter Piepho3; Lauro J.M. Guimarães4; Maria M. Pastina4; Antonio A.F. Garcia 1* 1 Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, SP, Brazil 2 Department of Agronomy, Iowa State University, Ames, IA, USA 3 Biostatistics Unit, University of Hohenheim, Stuttgart, Germany 4 Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil †These authors contributed equally to this work: Kaio Dias and Jhonathan dos Santos *Corresponding author: Antonio Garcia - [email protected] We would like to dedicate this article to the memory of Dr. Márcio Balestre. He was a young and brilliant scientist who made an outstanding contribution to statistical genetics. Abstract Statistical models that capture the phenotypic plasticity of a genotype across environments are crucial in plant breeding programs to potentially identify parents, generate offspring, and obtain highly productive genotypes for distinct environments. In this study, our aim is to leverage concepts of Bayesian models and probability methods of stability analysis to untangle genotype-by-environment interaction (GEI). The proposed method employs the posterior distribution obtained with the No-U-Turn sampler algorithm to get Monte Carlo estimates of adaptation and stability probabilities.
    [Show full text]
  • MATH2740: Environmental Statistics
    MATH2740: Environmental Statistics Lecturer: Andrew J. Baczkowski – room 11-13 – email: [email protected] Regularly updated information about the module is available on the internet at: http://www.maths.leeds.ac.uk/∼sta6ajb/math2715/math2740.html Module objective: To introduce statistical concepts and models for analysing data of an envi- ronmental nature: (a) analyse data of a spatial nature, (b) analyse models when applied to the analysis of categorical data arising from observational studies. Provisional detailed syllabus: 1. Types of data. 2. Spatial point patterns: contagious distributions. 3. Quadrant analysis: testing for non-randomness. 4. Distance methods: nearest neighbour analysis. 5. Spatial autocorrelation: join count statistics; testing hypotheses of spatial correlation. 6. Categorical data analysis: log-linear models; goodness of fit; three-dimensional tables; model selection. Booklist: No one book will be useful. References will be given for each lecture. Some useful textbooks include: Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: Wiley. Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press. Ripley, B.D. (1981) Spatial Statistics. New York: Wiley. Upton, G.J.G. and Fingleton, B. (1985) Spatial Data Analysis by Example. Volume I: Point Pattern and Quantitative Data. Wiley, Chichester. Agresti, A. (2002) Categorical Data Analysis. New Jersey: Wiley. Attendance: Attendance sheets will be circulated in each lecture for you to sign. Assessment: 80% of marks for two hour examination at end of semester and 20% of marks for continuous assessment comprising the exercise sheets and practicals. Examination paper: The examination paper will be in two parts. Part A will consist of twenty questions.
    [Show full text]
  • Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture
    Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture by Kessinee Chitakasempornkul B.BA., Mahidol University International Colleges, 2008 M.S., California State University Long Beach, 2012 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Statistics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2019 Abstract Feeding a world population of 9 billion people by 2050 is a fundamental challenge of our generation. Animal agriculture is positioned to play a major role on this challenge by ensuring a safe and secure supply of animal protein for food. Thus motivated, an understanding of the mechanistic interconnections between multiple outcomes in agricultural production systems is critical. Structural equation models (SEM) are being increasingly used for investigating directionality in the associations between outcomes in the system. Agricultural data pose peculiar challenges to the implementation of SEM, among them its structured architecture and its multidimensional heterogeneity. For example, observations on a given outcome collected at the animal level are often not mutually independent but rather likely to have correlation patterns due to clustering within pens or cohorts, which in turn may be subjected to common management or business practices defined at the level of a commercial operation. Also, agricultural outcomes of interest are often correlated and at multiple levels. Furthermore, a key assumption underlying SEM is that of a causal homogeneity, whereby the structural coefficients defining functional links in a network are assumed homogeneous and impervious to environmental conditions or management factors. This assumption seems particularly questionable in the context of animal agriculture, where production systems are regularly subjected to explicit interventions intended to optimize the necessary trade-offs between efficacy and efficiency of production.
    [Show full text]
  • Statistics.Pdf
    Analysis of Environmental Data Conceptual Foundations: Th e Ro le o f Statistic s in Enviro nm e ntal Re se arc h 1. The real world context of environmental research. 2 2. The role of statistics. 9 2.1 Description . 9 2.2 Inference. 12 3. The modeling process.. 17 4. The role of statistics, revisited. 20 Role of Statistics 2 1. The real world context of environmental research As scientists or managers we are faced with the challenges of defending our decisions every day. This is because we live in a world where challenges to the status quo are given little credence without solid evidence for the alternative (analogy: innocent until proven guilty). In other words, if we want to suggest a change to the current way of thinking, the burden of proof is on us. This idea lies at the core of the western scientific method. The classical approach to statistical inference, for example, involves testing hypotheses in which the null hypothesis (i.e., the status quo) is accepted unless there is overwhelming evidence in support of the alternative hypothesis – the one you are proposing. Indeed, we take great measures to ensure that we don’t falsely reject the null hypothesis in favor of the alternative (i.e., a Type I error); this is why by conventional standard we set the p- value for rejecting the null hypothesis to be a very small number, usually 0.05, which means that we will continue to support the null hypothesis unless the data suggest that there is less than a 5% chance that we would have observed our data if in fact the null hypothesis were true.
    [Show full text]