Statistics Workshop Notes

Total Page:16

File Type:pdf, Size:1020Kb

Statistics Workshop Notes Statistics Workshop Notes SCIENCE & RESEARCH INTERNAL REPORT 187 Statistics Workshop Notes SCIENCE & RESEARCH INTERNAL REPORT 187 Jennifer Brown and Bryan F.J. Manly Published by Department of Conservation PO Box 10-420 Wellington, New Zealand Science & Research Internal reports are written by DOC staff or contracr scientists on matters which are on-going within the Department. They include reports on conferences, workshops and study tours, and also work in progress. Internal reports are not normally subject to peer review. Publication was approved by the Manager, Southern Regional Office, Department of Conservation, Christchurch. © March 2001, Department of Conservation ISSN 0114-2798 ISBN 0-478-22052-9 Contents STATISTICS WORKSHOP NOTES Module 1: Background to Data Analysis Module 2: Sample Survey Designs Module 3: Design for Monitoring Schemes Module 4: Models for Analysis Module 5: Detection of Trends and Change Points Module 6: BACI Designs Appendix 1: Worksheets for Practice on SPSS by Workshop Participants Appendix 2: Examples of Analyses in SPSS Appendix 3: Department of Conservation Data Sets Appendix 4: Where the Answers to the Questions in the Modules can be Found Glossary Statistics Workshop Notes: Contents This page intentionaly left blank Statistics Workshop Notes Contents MODULE 1: BACKGROUND TO DATA ANALYSIS Summary 2 1.1 The Starting Point 3 1.2 Drawing Conclusions from Data 3 1.3 Observational and Experimental Studies 4 1.4 True Experiments and Quasi-Experiments 6 1.5 Design-Based and Model-Based Inference 8 1.6 Tests of Significance and Confidence Intervals 10 1.7 Randomization Tests 11 Example: The Effect of 1080 Poison Pellets on Invertebrates 12 1.8 Bootstrapping 15 Example: Finding a 95% Confidence Interval for the Mean Chlorophyll-a in Lakes 15 1.9 Pseudoreplication 18 1.10 Multiple Testing 19 Example: Multiple Tests on Correlations Between Characters for Brazilian Fish 20 1.11 Meta-Analysis: Methods for Combining Results from Several Studies 21 1.12 Bayesian Inference 23 1.13 Data Quality Objectives (DQO) Process 25 1.14 Key Points in This Module 27 1.15 Questions About This Module 29 References 30 Module 1: Background to Data Analysis 1 Module 1: Background to Data Analysis SUMMARY This module begins by stating the background knowledge of statistics that is needed for fully understanding the material in this and the other modules in this document. Briefly, what is required is a knowledge of what discrete and continuous statistical distributions are, the concept of a sampling distribution, an understanding of the structure of a test of significance, and an understanding of what a confidence interval means. The module then covers a number of general issues related to the design and analysis of studies: • The difference between observational studies (with passive observation only) and experimental studies (with the manipulation of conditions). • The difference between true experiments (with randomization, replication and controls), and quasi-experiments (with one or more of these components missing), and how this affects the strength of the conclusions that can be drawn. • The difference between design-based inference (which draws its validity from random sampling), and model-based inference (which relies on the assumed model being more or less correct). • The current controversy about the value of tests of significance, and whether using confidence limits instead overcomes the perceived problems. • The computer-intensive methods of randomization and bootstrapping that are receiving increasing use in all areas of science. • What pseudoreplication is, and how it can be avoided. • If and when adjustments for multiple testing should be made when analysing data. • Meta-analysis methods for combining the results of several studies on the same variable. • The difference between classical statistical methods and the Bayesian methods that are becoming popular with some data analysts. • Data quality objective (DQO) procedures for ensuring that when studies are finished they will meet the original objectives. 2 Module 1: Background to Data Analysis 1.1 The Starting Point This module and the ones that follow assume that readers are starting with a background knowledge of statistics at the level that is usually expected to be reached or exceeded after taking a typical first year university course. Table 1.1 gives a list of what this should include. What is important is not so much to be familiar with all the details of the items that are listed, but is more the understanding of the concepts involved. For example, with tests of significance it is not necessary to be able to carry out the calculations for a range of tests without looking up the equations in a text book. However, it is important to understand the logic behind these tests, i.e. the idea of setting up a null hypothesis and testing this by comparing the observed value of a test statistic with the distribution of the statistic that will apply if the null hypothesis is correct. There are many statistics texts available that cover the material in Table 1.1. If you are feeling a little statistically “rusty” then some revision using one of these texts may be useful. 1.2 Drawing Conclusions from Data Statistics is all about drawing conclusions from data, and in this module we at the basis of some of the methods that are used for drawing conclusions. Quite a variety of topics are considered, including some which are rather important and yet often receive relatively little attention in statistics texts. These include the difference between observational and experimental studies, the difference between inference based on the random sampling design used to collect data and inference based on the assumption of a particular model for the data, criticisms that have been raised about the excessive use of significance tests, the use of the computer-intensive methods of randomization and bootstrapping instead of more conventional methods, the avoidance of pseudoreplication, the use of sampling methods where sample units have different probabilities of selection, the problem of multiple testing, meta-analysis (methods for combining the results from different studies), and the use of Bayesian inference, which is currently receiving a great deal of attention. Module 1: Background to Data Analysis 3 TABLE 1.1 STATISTICAL BACKGROUND THAT IS ASSUMED IN THIS AND THE FOLLOWING MODULES CONCEPT WHAT SHOULD BE KNOWN Random variation How observations taken under apparently similar conditions display in data variation, which can be described by statistical distributions such as the normal distribution for continuous data, and the binomial distribution for discrete (count) data. Summary statistics How the mean, standard deviation, etc. are used to summarise a sample or a theoretical distribution. Distributions for The standard error of the mean, SE( x ) = σ/√n. The use of the sample statistics t-distribution for inferences about sample means. The uses of the chi-squared distribution with count data. Tests of significance The logic behind tests of significance, including the difference between one and two sided tests, the meaning of the significance level, and the role of the null and alternative hypotheses. The use of one and two sample t-tests, chi-squared goodness of fit tests. Confidence limits The interpretation of a confidence interval as one within which a population parameter will lie with a stated probability. Analysis of variance The partitioning of the total sum of squares about the mean for a set of data into components associated with different factors and their interactions, the summary of this in an analysis of variance table, and F-tests for significant effects, for factorial experiments only (i.e. one factor analysis of variance, two factor analysis of variance, etc.) Regression The idea of accounting for the variation in a dependent variable Y in terms of the variation in one or more X variables. The uses of the t- distribution and F-distribution to determine which of the X variables are important. People often use statistical methods without giving much thought to why these methods lead to valid conclusions - if indeed they do! This module is intended to make you think more critically about these matters. 1.3 Observational and Experimental Studies When considering the nature of empirical studies there is an important distinction between observational and experimental studies. With observational studies data are collected by observing populations in a passive manner that as far as possible will not change the processes going on. For example samples of animals might be collected in order to estimate the proportions in different age classes or the sex ratio. On the other hand, experimental studies are usually thought of as involving the collection of data with some manipulation of variables that is assumed to affect population parameters, keeping other variables constant as far as possible. An example of this type would be a study where possums are removed from an area to see whether this leads to improved survival of an endangered plant. 4 Module 1: Background to Data Analysis In many cases the same statistical analysis can be used with either observational or experimental data. However the validity of any inferences that result from the analysis depends very much on the type of study. In particular, an effect that is seen consistently in replications of a well designed experiment can only reasonably be explained as being caused by the manipulation of the experimental variables. But with an observational study the same consistency of results might be obtained because all the data are affected in the same way by some unknown and unmeasured variable. Therefore the ‘obvious’ explanation for an effect that is seen in the results of an observational study may be quite wrong. To put it another way, the conclusions from observational studies are not necessarily wrong. The problem is that there is little assurance that they are right (Hairston, 1989, p.
Recommended publications
  • An Overview of Environmental Statistics
    An Overview of Environmental Statistics Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.C., U.S.A. Theme Day in Environmental Statistics 55th Session of ISI Sydney, April 6, 2005 http://www.stat.unc.edu/postscript/rs/isitutorial.pdf 1 Environmental Statistics is by now an extremely broad field, in- volving application of just about every technique of statistics. Examples: • Pollution in atmosphere and water systems • Effects of pollution on human health and ecosystems • Uncertainties in forecasting climate and weather • Dynamics of ecological time series • Environmental effects on the genome and many more. 2 Some common themes: • Most problems involve time series of observations, but also spatial sampling, often involving irregular grids • Design of a spatial sampling scheme or a monitor network is important • Often the greatest interest is in extremes, for example – Air pollution standards often defined by number of cross- ings of a high threshold – Concern over impacts of climate change often focussed on climate extremes. Hence, must be able to character- ize likely frequencies of extreme events in future climate scenarios • Use of numerical models — not viewed in competition, but how we can use statistics to improve the information derived from models 3 I have chosen here to focus on three topics that have applications across several of these areas: I. Spatial and spatio-temporal statistics • Interpolation of an air pollution or meteorological field • Comparing data measured on different spatial scales • Assessing time trends in data collected on a spatial net- work II. Network design • Choosing where to place the monitors to satisfy some optimality criterion related to prediction or estimation III.
    [Show full text]
  • Data Analysis Considerations in Producing 'Comparable' Information
    Data Analysis Considerations in Producing ‘Comparable’ Information for Water Quality Management Purposes Lindsay Martin Griffith, Assistant Engineer, Brown and Caldwell Robert C. Ward, Professor, Colorado State University Graham B. McBride, Principal Scientist, NIWA (National Institute of Water and Atmospheric Research), Hamilton, New Zealand Jim C. Loftis, Professor, Colorado State University A report based on thesis material prepared by the lead author as part of the requirement for the degree of Master of Science from Colorado State University February 2001 ABSTRACT Water quality monitoring is being used in local, regional, and national scales to measure how water quality variables behave in the natural environment. A common problem, which arises from monitoring, is how to relate information contained in data to the information needed by water resource management for decision-making. This is generally attempted through statistical analysis of the monitoring data. However, how the selection of methods with which to routinely analyze the data affects the quality and comparability of information produced is not as well understood as may first appear. To help understand the connectivity between the selection of methods for routine data analysis and the information produced to support management, the following three tasks were performed. S An examination of the methods that are currently being used to analyze water quality monitoring data, including published criticisms of them. S An exploration of how the selection of methods to analyze water quality data can impact the comparability of information used for water quality management purposes. S Development of options by which data analysis methods employed in water quality management can be made more transparent and auditable.
    [Show full text]
  • The Complete List of Courses, Including Course Descriptions, Prerequisites
    Course ID Course Title Equivalent to Home Dept. Description Units Requisites Offered PhD Informatics MS Cert. Minor ACBS 513 Statistical Genetics for Quantitative ANS/GENE 513 Animal & Biomedical This course provide the student with the statistical tools to describe variation in 3 A basic genetic principles Fall X X X X Measures Sciences quantitative traits, particularly the decomposition of variation into genetic, environmental, course as ANS 213, GENE and gene by environment interaction components. Convariance (resemblance) between 433, GENE 533, or GENE relatives and heritability will be discussed, along with the topics of epistasis, oligogenic 545. A current course on and polygenic traits, complex segregation analysis, methods of mapping quantitative trait basic statistical principles as GENE 509C or MATH loci (QTL), and estimation procedures. Microarrays have multiple uses, each of which will 509C. A course in linear be discussed and the corresponding statistical analyses described. models as MATH 561 and in statistical inference mathematics. AREC 559 Advanced Applied Econometrics Agricultural & Resource Emphasis in the course is on econometric model specification, estimation, inference, 4 AREC 517, ECON 518, Fall X X X X Economics forecasting, and simulation. Applications with actual data and modeling techniques are ECON 549 emphasized. BIOS 576B Biostatistics for Research CPH/EPID 576B Epidemiology & Descriptive statistics and statistical inference relevant to biomedical research, including 3SpringXXX X Biostatistics data analysis, regression and correlation analysis, analysis of variance, survival analysis, available biological assay, statistical methods for epidemiology and statistical evaluation of clinical online literature. BIOS 576C Applied Biostatistics Analysis CPH/EPID 576C Epidemiology & Integrate methods in biostatistics (EPID 576A, B) and Epidemiology (EPID 573A, B) to 3 BIOS/EPID 576A, Fall X X X X Biostatistics develop analytical skills in an epidemiological project setting.
    [Show full text]
  • Advanced Statistics for Environmental Professionals
    Advanced Statistics for Environmental Professionals Bernard J. Morzuch Department of Resource Economics University of Massachusetts Amherst, Massachusetts [email protected] Table of Contents TOPIC PAGE How Does A Statistic Like A Sample Mean Behave? ................................................................................ 1 The Central Limit Theorem ........................................................................................................................ 3 The Standard Nonnal Distribution .............................................................................................................. 5 Statistical Estimation ................................................................................................................................... 5 The t-distribution ....................................................................................................................................... 13 Appearance Of The t-distribution ............................................................................................................. 14 Situation Where We Use t In Place Of z: Confidence Intervals ............................................................... 16 t-table ....................................................................................................................................................... 17 An Upper One-Sided (1-a) Confidence Interval For µ .......................................................................... 18 Another Confidence Interval Example................................................................
    [Show full text]
  • Environmental Statistics
    Environmental statistics Вонр . проф . д-р Александар Маркоски Технички факултет – Битола 2008 год . Enviromatics 2008 - Environmental statistics 1 Introduction • Statistical analysis of environmental data is an important task to extract information on former and actual states of ecosystems. The estimates are known as sample statistics and form a base for prognoses on environmental system developments. • Topics of statistical analysis of environmental data are 1. Data analysis for the requirements of environmental administrations and associations (descriptive statistics, frequency distributions, averages, variances, error corrections, significance tests), 2. Data analysis for the requirements of different users as companies, farmers, tourists (explanatory statistics, multivariate statistics, time series analysis), 3. Basic research (regression and correlation analysis, multivariate statistics, advanced statistical techniques). Enviromatics 2008 - Environmental statistics 2 Environmental data • Environmental data are obtained by field samples and/or laboratory analysis . • They are directly observed (direct observations) or indirectly observed (due to calibration of analytical instruments and sensors). • Summary data are derived from statistics or by restricted observable indicators. • Simulated data are obtained by simulation models. • Measurement errors and outliers have to be removed from data sets. They will not take into account by data processing features. Enviromatics 2008 - Environmental statistics 3 Probability distributions of environmental data • Environmental data series represent the time and space varying behaviour of environmental processes. Some indicators show a long- wave cycling overlaid by short variations. Other indicators lay out stochastic fluctuations. Some indicators represent an unique behaviour with some peak events. Enviromatics 2008 - Environmental statistics 4 Statistical measures • Statistical measures of environmental data are represented by – averages , – variances and – measures of correlation .
    [Show full text]
  • Douglas William Nychka
    Douglas William Nychka Education 1978 B.A. Mathematics and Physics, Duke University 1983 Ph.D. Statistics, University of Wisconsin - Madison Honors and Awards 1978 Summa cum laude, Duke University 1978 Julia Dale Mathematics Award Duke University 2003 Fellow, American Statistical Association 2004 Jerry Sacks Award for Multidisciplinary Research 2013 Distinguished Achievement Award ENVR Section American Statistical Association 2013 Achievement Award, International Statistics and Climatology Meeting 2015 Fellow, Institute of Mathematical Statistics Professional Appointments 8/18 - present Professor, Department of Applied Mathematics and Statistics, Col- orado School of Mines, Golden, CO 8/97 - 8/18 National Center for Atmospheric Research, Boulder, CO. Visiting Scientist (8/97-7/99), Senior Scientist (8/99 - present), Project leader (8/99 - 9/04) Geophysical Statistics Project, Director (10/04 - 2017), Institute for Mathematics Applied to Geo- sciences (IMAGe) Senior Scientist Emeritus (8/18 - present) 7/83 - 6/99 Department of Statistics, North Carolina State University, Raleigh, NC Assistant (7/83 - 6/89), Associate (7/89 - 6/94) and Full Profes- sor (7/94 - 7/99), 1/94 - 7/03 National Institute of Statistical Sciences, Research Triangle Park, NC, Senior Fellow (1/94 -7/99) and Trustee (2000 - 2003) 6/93 and 6/08 Isaac Newton Institute for the Mathematical Sciences, Cambridge, England, Visiting Scholar 5/88 - 6/88, 6/92 Statistics Group, University of Bath, Bath, England, Visiting Faculty 7/89, 8/90 - 12/90 Operations Research and Industrial
    [Show full text]
  • Statistical Concepts in Environmental Science
    2 http://www.met.rdg.ac.uk/cag/courses/Stats/ Course Aim: To introduce the basic statistical concepts rel- evant to environmental science and to provide experience in the Statistical concepts correct use and interpretation of the various statistical methods currently used in the analysis of weather/climate observed and in environmental science model simulated data. Practical Exercises Each topic covered in the lectures will be Dr. David B. Stephenson followed by exercises analyzing real data in practical computing [email protected] classes using MINITAB statistical software. Department of Meteorology University of Reading Prerequisites Minimal statistical knowledge but some basic math- ematics and computer skills will be assumed. 10th January 2003 Course outline 1. Introduction \Some people hate the very name of stat- 2. Descriptive statistics istics but I ¯nd them full of beauty and in- 3. Basic probability concepts terest. Whenever they are not brutalized, 4. Probability distributions but delicately handled by the higher meth- 5. Parameter estimation ods, and are warily interpreted, their power 6. Statistical hypothesis testing of dealing with complicated phenomena is 7. Basic linear regression extraordinary." 8. Multiple and nonlinear regression - Sir Francis Galton 1 9. Introduction to time series 1 the person who invented the concept of correlation and the word anticyclone! 3 4 Acknowledgements The development of this course has bene¯ted from many stimulating dis- cussions with colleagues and students over the past few years. In particular, I wish to thank Nils Gunnar Kvamsto, Rasmus Benestad, and students at the University of Bergen for their helpful comments on the ¯rst version of this course.
    [Show full text]
  • Environmental Data and Statistics - S
    ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler ENVIRONMENTAL DATA AND STATISTICS S. Heiler Department of Mathematics and Statistics, University of Konstanz, Germany Keywords: environmental data, multivariate data, time series analysis, geostatistics, Space-time models. Contents 1. Introduction 2. Environmental Data 2.1 Data structures 2.1 Statistical graphics 3. Multivariate Data 3.1. Correlation analysis 3.1.1. The Bravais-Pearson correlation coefficient 3.1.2. Rank correlation 3.1.3. Correlation matrix 3.1.4. Multiple and partial correlation coefficient 3.1.5. Application to heavy metals in water 3.2. Regression 3.2.1. Simple Linear Regression 3.2.2. Non-parametric Regression 3.2.3. Multiple Linear Regression 3.2.4. Non-parametric Multiple Regression 3.3 Principal Components and Factor Analysis 3.3.1. Principal components analysis 3.3.2. Factor Analysis 3.4. Cluster analysis 3.5. Analysis of variance 4. Time Series Analysis 4.1. Introduction 4.2. Trend Estimation 4.3. Smoothing and Seasonal Estimation 4.4 Exponential smoothing 4.5. StationaryUNESCO Stochastic Processes – EOLSS 4.6. Univariate Linear Time Series Models 4.7. MultivariateSAMPLE Linear Time Series Models CHAPTERS 5. Geostatistics 5.1. Introduction 5.2. Homogeneous and Isotropic Random Fields 5.3. Inhomogeneities and Anisotopes 5.4. Space-time Models Acknowledgement Glossary Bibliography Biographical Sketch ©Encyclopedia of Life Support Systems (EOLSS) ENVIRONMENTAL SYSTEMS – Vol. II - Environmental Data and Statistics - S. Heiler Summary This review is a contribution on applications of statistical procedures to environmental data. Since this has become a very vast field, a comprehensive presentation seems to be impossible.
    [Show full text]
  • Leveraging Probability Concepts for Genotype by Environment Recommendation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440774; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Leveraging probability concepts for genotype by environment recommendation Kaio O.G. Dias†1; Jhonathan P.R. dos Santos†1; Matheus D. Krause2; Hans-Peter Piepho3; Lauro J.M. Guimarães4; Maria M. Pastina4; Antonio A.F. Garcia 1* 1 Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, SP, Brazil 2 Department of Agronomy, Iowa State University, Ames, IA, USA 3 Biostatistics Unit, University of Hohenheim, Stuttgart, Germany 4 Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil †These authors contributed equally to this work: Kaio Dias and Jhonathan dos Santos *Corresponding author: Antonio Garcia - [email protected] We would like to dedicate this article to the memory of Dr. Márcio Balestre. He was a young and brilliant scientist who made an outstanding contribution to statistical genetics. Abstract Statistical models that capture the phenotypic plasticity of a genotype across environments are crucial in plant breeding programs to potentially identify parents, generate offspring, and obtain highly productive genotypes for distinct environments. In this study, our aim is to leverage concepts of Bayesian models and probability methods of stability analysis to untangle genotype-by-environment interaction (GEI). The proposed method employs the posterior distribution obtained with the No-U-Turn sampler algorithm to get Monte Carlo estimates of adaptation and stability probabilities.
    [Show full text]
  • MATH2740: Environmental Statistics
    MATH2740: Environmental Statistics Lecturer: Andrew J. Baczkowski – room 11-13 – email: [email protected] Regularly updated information about the module is available on the internet at: http://www.maths.leeds.ac.uk/∼sta6ajb/math2715/math2740.html Module objective: To introduce statistical concepts and models for analysing data of an envi- ronmental nature: (a) analyse data of a spatial nature, (b) analyse models when applied to the analysis of categorical data arising from observational studies. Provisional detailed syllabus: 1. Types of data. 2. Spatial point patterns: contagious distributions. 3. Quadrant analysis: testing for non-randomness. 4. Distance methods: nearest neighbour analysis. 5. Spatial autocorrelation: join count statistics; testing hypotheses of spatial correlation. 6. Categorical data analysis: log-linear models; goodness of fit; three-dimensional tables; model selection. Booklist: No one book will be useful. References will be given for each lecture. Some useful textbooks include: Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: Wiley. Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press. Ripley, B.D. (1981) Spatial Statistics. New York: Wiley. Upton, G.J.G. and Fingleton, B. (1985) Spatial Data Analysis by Example. Volume I: Point Pattern and Quantitative Data. Wiley, Chichester. Agresti, A. (2002) Categorical Data Analysis. New Jersey: Wiley. Attendance: Attendance sheets will be circulated in each lecture for you to sign. Assessment: 80% of marks for two hour examination at end of semester and 20% of marks for continuous assessment comprising the exercise sheets and practicals. Examination paper: The examination paper will be in two parts. Part A will consist of twenty questions.
    [Show full text]
  • Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture
    Addressing Challenges of Hierarchical Structural Equation Modeling in Animal Agriculture by Kessinee Chitakasempornkul B.BA., Mahidol University International Colleges, 2008 M.S., California State University Long Beach, 2012 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Statistics College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2019 Abstract Feeding a world population of 9 billion people by 2050 is a fundamental challenge of our generation. Animal agriculture is positioned to play a major role on this challenge by ensuring a safe and secure supply of animal protein for food. Thus motivated, an understanding of the mechanistic interconnections between multiple outcomes in agricultural production systems is critical. Structural equation models (SEM) are being increasingly used for investigating directionality in the associations between outcomes in the system. Agricultural data pose peculiar challenges to the implementation of SEM, among them its structured architecture and its multidimensional heterogeneity. For example, observations on a given outcome collected at the animal level are often not mutually independent but rather likely to have correlation patterns due to clustering within pens or cohorts, which in turn may be subjected to common management or business practices defined at the level of a commercial operation. Also, agricultural outcomes of interest are often correlated and at multiple levels. Furthermore, a key assumption underlying SEM is that of a causal homogeneity, whereby the structural coefficients defining functional links in a network are assumed homogeneous and impervious to environmental conditions or management factors. This assumption seems particularly questionable in the context of animal agriculture, where production systems are regularly subjected to explicit interventions intended to optimize the necessary trade-offs between efficacy and efficiency of production.
    [Show full text]
  • Statistics.Pdf
    Analysis of Environmental Data Conceptual Foundations: Th e Ro le o f Statistic s in Enviro nm e ntal Re se arc h 1. The real world context of environmental research. 2 2. The role of statistics. 9 2.1 Description . 9 2.2 Inference. 12 3. The modeling process.. 17 4. The role of statistics, revisited. 20 Role of Statistics 2 1. The real world context of environmental research As scientists or managers we are faced with the challenges of defending our decisions every day. This is because we live in a world where challenges to the status quo are given little credence without solid evidence for the alternative (analogy: innocent until proven guilty). In other words, if we want to suggest a change to the current way of thinking, the burden of proof is on us. This idea lies at the core of the western scientific method. The classical approach to statistical inference, for example, involves testing hypotheses in which the null hypothesis (i.e., the status quo) is accepted unless there is overwhelming evidence in support of the alternative hypothesis – the one you are proposing. Indeed, we take great measures to ensure that we don’t falsely reject the null hypothesis in favor of the alternative (i.e., a Type I error); this is why by conventional standard we set the p- value for rejecting the null hypothesis to be a very small number, usually 0.05, which means that we will continue to support the null hypothesis unless the data suggest that there is less than a 5% chance that we would have observed our data if in fact the null hypothesis were true.
    [Show full text]