Marine Chemosynthetic Symbioses

Total Page:16

File Type:pdf, Size:1020Kb

Marine Chemosynthetic Symbioses Prokaryotes (2006) 1:475–507 DOI: 10.1007/0-387-30741-9_18 CHAPTER 2.5 Marine Marine Chemosynthetic Symbioses Marine Chemosynthetic Symbioses COLLEEN M. CAVANAUGH, ZOE P. MCKINESS, IRENE L.G. NEWTON AND FRANK J. STEWART Introduction ide or methane for carbon fixation and utiliza- tion. On the basis of these unique biosynthetic Bacteria and marine eukaryotes often coexist in capacities, notably the ability to synthesize C3 symbioses that significantly influence the ecol- compounds from C1 compounds, we refer collec- ogy, physiology and evolution of both partners. tively to these bacterial symbionts as “chemosyn- De Bary (1879) defined symbiosis as “the living thetic.” together of differently named organisms,” imply- Given the sulfide-rich habitats in which ing that the term encompasses both positive (e.g., chemoautotrophic symbioses occur, researchers mutualism) and negative (e.g., parasitism) asso- infer that the bacterial symbionts oxidize ciations. Many researchers now view symbiotic reduced inorganic sulfur compounds to obtain interactions as those that persist over the major- energy and reducing power for autotrophic car- ity of the lifespan of the organisms involved and bon fixation. While some endosymbionts (such as that provide benefits to each partner beyond those in the protobranchs Solemya velum and S. those obtained in the absence of association. This reidi; Cavanaugh, 1983; Anderson et al., 1987) µ chapter describes such symbioses, specifically utilize thiosulfate (S2O3 ), an intermediate in sul- those between marine invertebrate and protist fide oxidation, hydrogen sulfide is inferred to be hosts and chemosynthetic bacterial symbionts. the preferred energy source in a variety of sym- These bacteria, which cluster primarily within bioses (see review in Van Dover, 2000). But for the Gammaproteobacteria (Fig. 1), are chemo- many symbioses the actual energy source has not autotrophs or methanotrophs. In both chemo- been identified definitively; rather, only an autotrophic and methanotrophic symbioses, the autotrophic metabolism has been confirmed. hosts, through an astonishing array of physio- Indeed, chemosynthetic bacteria utilizing other logical and behavioral adaptations, provide the energy sources (e.g., hydrogen or ammonia) symbiont access to the substrates (i.e., electron could also serve similar nutritional roles in donors and acceptors) necessary for the genera- symbiotic associations. In this review, bacterial tion of energy and bacterial biomass. In symbionts that have been shown to use reduced µ µ2 µ o exchange, a portion of the carbon fixed by the sulfur compounds (H2S, HS , S , S2O3 , S ) for symbiont is used, either directly or indirectly, for energy metabolism are referred to as thio- host energy and biosynthesis. These symbioses autotrophs, while the more general term thereby increase the metabolic capabilities, and “chemoautotroph” is used to describe symbionts therefore the number of ecological niches, of for which data supporting autotrophic CO2 fixa- both the host and the bacterial symbiont. tion exist but for which the lithotrophic energy In those symbioses for which the electron source is unknown. donor has been explicitly identified, sulfide and other inorganic reduced sulfur compounds History (e.g., thiosulfate) fuel energy generation by the chemoautotrophic symbionts, serving as elec- The discovery of deep-sea hydrothermal vents tron sources for oxidative phosphorylation. In and the flourishing ecosystems associated with these symbioses, the ATP produced in electron them significantly advanced scientific under- transport fuels autotrophic CO2 fixation via the standing of chemosynthetic symbioses. Oceanog- Calvin cycle. In contrast, bacteria in marine raphers in the research submersible Alvin invertebrate-methanotroph symbioses use meth- discovered hydrothermal vents along the Gal- ane (CH4) as an energy, electron, and carbon apagos Rift in 1977. In stark contrast to percep- source. Unlike their protist or metazoan hosts, tions of the deep benthos as a cold, food-limited chemoautotrophs and methanotrophs share the habitat incapable of supporting substantial bio- ability to use reduced inorganic compounds or mass, hydrothermal vents are oases, charac- methane for energy generation and carbon diox- terized by high concentrations of free-living 476 C.M. Cavanaugh et al. CHAPTER 2.5 Chemoautotrophic symbionts: Mussel symbionts Vesicomyid clam symbionts Solemyid clam symbionts Lucinid clam symbionts Thyasirid clam symbionts Tubeworm symbionts Oligochaete symbionts Escherichia coli Nematode symbionts Coxiella burnetii Solemva reidi symbiont Methanotrophic symbionts GAMMA JTB254 Epsilon symbionts Achromatium oxaliferum 86 54 Inanidrilus leukodermatus symbiont 100 Olavius algarvensis gamma symbiont 65 Laxus sp symbiont Olavius loisae gamma symbiont 82 Solemva relum symbiont Solemva occidentalis symbiont Lucinella nassula symbiont Codakia orbicularis symbiont 97 98 Lucina floridana symbiont Chemoautotrophic 57 Codakia costata symbiont 68 Lucinoma annulata symbiont symbionts Lucinoma aequizonata symbiont 94 100 Ridgeia piscesae symbiont Rifna packyptria symbiont 100 Escorpia spicata symbiont Lamembrachia colmnua symbiont 93 64 Anodontia phillipiana symbiont 70 Solemya terraeregina symbiont 69 Thyasira flexuosa symbiont Solemya pusillu symbiont Lucina pectinata symbiont 80 Pseudomonas fluorescens 100 Pseudomonas putida 88 Pseudomonas lundensis 81 Pseudomonas fragi 100 Marinobacter sp CAB Marinobacter aquaeolei Oceanospirillum kriegii Thiothrix eikelboomii 100 52 98 Thiothrix unzii Thiothrix nivea Thiothrix ramosa Bathymodiolus japonicus symbiont 54 Methanotrophic 100 Bathymodiolus childressi symbiont Bathymodiolus platifrons symbiont symbionts 100 Bathymodiolus puteoserpentis symbiont 2 100 76 Methylobacter sp BB5.1 53 Methylococcus luteus 60 Methylococcus capsulatus BARH 61 Methyllobacter whittenburyi 100 Methylomonas aurantiaca Methylomonas rubra Methylococcus thermophilus GAMMA JTB35 100 Thiomicrospira sp. 82 Thiomicrospira crunogena 82 Thiomicrospira L12 100 Thiomicrospira milos T2 Thiomicrospira milos T1 69 100 Thiomicrospira thyasirae Thiomicrospira pelophila Maorithyas hadalis symbiont 1 Juan de Fuca mussel symbiont 55 Bathymodiolus septemdierum symbiont 52 70 Bathymodiolus thermophilus symbiont Bathymodiolus puteoserpentis symbiont 1 Bathymodiolus aff. brevior symbiont 62 Calyptogena magnifica symbiont Chemoautotrophic 100 Calyptogena fossajaponica symbiont 82 Calyptogena phaseoliformis symbiont symbionts Calyptogena FL sp. symbiont 94 Calyptogena pacifica symbiont 86 100 Vesicomya lepta symbiont 87 Vesicomya chordata symbiont 100 Calyptogena elongata symbiont 100 Calyptogena kilmeri symbiont Vesicomya gigas symbiont Ectenagena extenta symbiont Maorithyas hadalis symbiont 2 100 Halothiobacillus kellyi Halothiobacillus neapolitanus Non-gamma Olavius loisae alpha symbiont oligochaete Olavius loisae spirochete symbiont 100 Olavius algarvensis delta symbiont symbionts Desulfosarcina variabilis 100 84 Alvinella pompejana epibiont APB13B Alvinella pompejana epibiont APG44B Epsilon 87 Alvinella pompejana epibiont APG5B epibionts Rimicaris exoculata symbiont 100 Alvinella pompejana epibiont APG56B 100 Sulfurospirillum sp 18.1 Sulfurospirillum Am-N Fig. 1. Phylogeny showing the strict consensus of 46 trees obtained via parsimony analyses of 16S rRNA gene sequences (1456 bp) from symbiotic and free-living bacteria. Results greater than 50% from a 500 replicate bootstrap analysis are reported above respective branches. Chemosynthetic symbiont taxa are color-coded (see key on Figure). CHAPTER 2.5 Marine Chemosynthetic Symbioses 477 source for R. pachyptila, implying a role for chemoautotrophy in tubeworm metabolism. Following confirmation of a chemosynthetic endosymbiosis within the giant tubeworm, researchers questioned the putative reliance on filter feeding by other vent invertebrates. Ulti- mately, anatomical, enzymological, and isotopic analyses revealed the presence of sulfur- oxidizing bacterial symbionts either within the tissues (endosymbiotic) or attached to the sur- faces (episymbiotic) of most vent taxa, including vesicomyid clams, mytilid mussels, shrimp, and polychaete worms (Cavanaugh, 1994; Nelson and Fisher, 1995a; Van Dover, 2000). Recognizing the ubiquity of chemoau- totrophic symbioses at hydrothermal vents, researchers searched for and discovered similar symbiotic associations in other marine habitats, including coastal and subtidal reducing sedi- ments (e.g., Felbeck et al., 1981b; Southward et al., 1981; Southward, 1982; Cavanaugh, 1983; Giere, 1985; Bauer-Nebelsick et al., 1996), brine and hydrocarbon seeps (Sibuet and Olu, 1998), and whale skeletons (Bennet et al., 1994; Smith and Baco, 2003), thereby extending the host Fig. 2. Symbiont-containing host organisms from hydrother- taxa to include solemyid and lucinid bivalves, mal vents and cold seeps. (A) Calyptogena magnifica shell; pogonophoran tubeworms, echinoids and cili- courtesy of Emilio Jorge Power. (B) Filamentous bacteria on ates. In addition, methanotrophic bacteria were sulfide deposits from the East Pacific Rise. (C) Bathymodio- detected in a marine sponge (Vacelet et al., lus childressi from the Gulf of Mexico; courtesy of the 1995), a pogonophoran tubeworm (Schmaljo- National Oceanic and Atmospheric Administration. (D) Riftia pachyptila at the East Pacific Rise. hann and Flügel, 1987), and in vent and seep mussels, sometimes co-occurring with sulfur- oxidizing chemoautotrophs in a “dual symbiosis” microorganisms and dense aggregations of
Recommended publications
  • Diversity of Bacteria and Archaea in the Deep-Sea Low-Temperature Hydrothermal Sulfide Chimney of the Northeastern Pacific Ocean
    African Journal of Biotechnology Vol. 11(2), pp. 337-345, 5 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2692 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Diversity of bacteria and archaea in the deep-sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean Xia Ding1*, Xiao-Jue Peng1#, Xiao-Tong Peng2 and Huai-Yang Zhou3 1College of Life Sciences and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China. 2Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. 3National Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. Accepted 4 November, 2011 Our knowledge of the diversity and role of hydrothermal vents microorganisms has considerably expanded over the past decade, while little is known about the diversity of microorganisms in low-temperature hydrothermal sulfide chimney. In this study, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing were used to examine the abundance and diversity of microorganisms from the exterior to the interior of the deep sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean. DGGE profiles revealed that both bacteria and archaea could be examined in all three zones of the chimney wall and the compositions of microbial communities within different zones were vastly different. Overall, for archaea, cell abundance was greatest in the outermost zone of the chimney wall. For bacteria, there was no significant difference in cell abundance among three zones. In addition, phylogenetic analysis revealed that Verrucomicrobia and Deltaproteobacteria were the predominant bacterial members in exterior zone, beta Proteobacteria were the dominant members in middle zone, and Bacillus were the abundant microorganisms in interior zone.
    [Show full text]
  • Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
    fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses.
    [Show full text]
  • The A/P Axis in Echinoderm Ontogeny and Evolution: Evidence from Fossils and Molecules
    EVOLUTION & DEVELOPMENT 2:2, 93–101 (2000) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules Kevin J. Peterson,a,b César Arenas-Mena,a,c and Eric H. Davidsona,* aDivision of Biology, California Institute of Technology, Pasadena, CA 91125, USA; bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; cStowers Institute for Medical Research, Kansas City, MO 64110, USA *Author for correspondence (email: [email protected]) SUMMARY Even though echinoderms are members of the such that there is but a single plane of symmetry dividing the Bilateria, the location of their anterior/posterior axis has re- animal into left and right halves. We tentatively hypothesize mained enigmatic. Here we propose a novel solution to the that this plane of symmetry is positioned along the dorsal/ven- problem employing three lines of evidence: the expression of tral axis. These axis identifications lead to the conclusion that a posterior class Hox gene in the coeloms of the nascent the five ambulacra are not primary body axes, but instead are adult body plan within the larva; the anatomy of certain early outgrowths from the central anterior/posterior axis. These fossil echinoderms; and finally the relation between endo- identifications also shed insight into several other evolutionary skeletal plate morphology and the associated coelomic tis- mysteries of various echinoderm clades such as the indepen- sues. All three lines of evidence converge on the same answer, dent evolution of bilateral symmetry in irregular echinoids, but namely that the location of the adult mouth is anterior, and the do not elucidate the underlying mechanisms of the adult co- anterior/posterior axis runs from the mouth through the adult elomic architecture.
    [Show full text]
  • Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods
    - AQUATIC MICROBIAL ECOLOGY Vol. 12: 105-113. 1997 Published April 10 , Aquat Microb Ecol Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Lita M. Proctor Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA ABSTRACT: Purple sulfur bacteria are photosynthetic, anaerobic microorganisms that fix carbon di- oxide using hydrogen sulfide as an electron donor; many are also nitrogen fixers. Because of the~r requirements for sulfide or orgamc carbon as electron donors in anoxygenic photosynthesis, these bac- teria are generally thought to be lim~tedto shallow, organic-nch, anoxic environments such as subtidal marine sediments. We report here the discovery of nitrogen-fixing, purple sulfur bactena associated with pelagic copepods from the Caribbean Sea. Anaerobic incubations of bacteria associated with fuU- gut and voided-gut copepods resulted in enrichments of purple/red-pigmented purple sulfur bacteria while anaerobic incubations of bacteria associated with fecal pellets did not yield any purple sulfur bacteria, suggesting that the photosynthetic anaerobes were specifically associated with copepods. Pigment analysis of the Caribbean Sea copepod-associated bacterial enrichments demonstrated that these bactena possess bacter~ochlorophylla and carotenoids in the okenone series, confirming that these bacteria are purple sulfur bacteria. Increases in acetylene reduction paralleled the growth of pur- ple sulfur bactena in the copepod ennchments, suggesting that the purple sulfur bacteria are active nitrogen fixers. The association of these bacteria with planktonic copepods suggests a previously unrecognized role for photosynthetic anaerobes in the marine S, N and C cycles, even in the aerobic water column of the open ocean. KEY WORDS: Manne purple sulfur bacterla .
    [Show full text]
  • Classification
    Science Classification Pupil Workbook Year 5 Unit 5 Name: 2 3 Existing Knowledge: Why do we put living things into different groups and what are the groups that we can separate them into? You can think about the animals in the picture and all the others that you know. 4 Session 1: How do we classify animals with a backbone? Key Knowledge Key Vocabulary Animals known as vertebrates have a spinal column. Vertebrates Some vertebrates are warm-blooded meaning that they Species maintain a consistent body temperature. Some are cold- Habitat blooded, meaning they need to move around to warm up or cool down. Spinal column Vertebrates are split into five main groups known as Warm-blooded/Cold- mammals, amphibians, reptiles, birds and fish. blooded Task: Look at the picture here and think about the different groups that each animal is part of. How is each different to the others and which other animals share similar characteristics? Write your ideas here: __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ 5 How do we classify animals with a backbone? Vertebrates are the most advanced organisms on Earth. The traits that make all of the animals in this group special are
    [Show full text]
  • The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: an Overview
    marine drugs Review The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview Sarah Geahchan 1,2, Hermann Ehrlich 1,3,4,5 and M. Azizur Rahman 1,3,* 1 Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; [email protected] (S.G.); [email protected] (H.E.) 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada 3 A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada 4 Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany 5 Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland * Correspondence: [email protected] Abstract: The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID- 19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight.
    [Show full text]
  • Annelida: Clitellata: Naididae): a New Non-Indigenous Species for Europe, and Other Non-Native Annelids in the Schelde Estuary
    Aquatic Invasions (2013) Volume 8, Issue 1: 37–44 doi: http://dx.doi.org/10.3391/ai.2013.8.1.04 Open Access © 2013 The Author(s). Journal compilation © 2013 REABIC Research Article Bratislavia dadayi (Michaelsen, 1905) (Annelida: Clitellata: Naididae): a new non-indigenous species for Europe, and other non-native annelids in the Schelde estuary Jan Soors1*, Ton van Haaren2, Tarmo Timm3 and Jeroen Speybroeck1 1 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussel, Belgium 2 Grontmij, Sciencepark 406, 1090 HC Amsterdam, The Netherlands 3 Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartumaa, Estonia E-mail: [email protected] (JS), [email protected] (TvH), [email protected] (JS), [email protected] (TT) *Corresponding author Received: 18 November 2011 / Accepted: 24 January 2013 / Published online: 21 February 2013 Handling editor: Vadim Panov Abstract For the first time, the freshwater oligochaete species Bratislavia dadayi (Michaelsen, 1905) is recorded in Europe. The species was found at three subtidal stations in the Schelde estuary in Belgium, where it was probably introduced from the Americas. We provide an overview of the species’ nomenclature, diagnostics, distribution, and ecology. Bratislavia dadayi is one of 11 non-indigenous annelids currently known to occur in the Schelde estuary. Key words: alien species; Annelida; Clitellata; Oligochaeta; Polychaeta; Belgium Introduction Annelids, and oligochaetes in particular, are a less-studied group, often overlooked when Over the last 150 years, the number of non- considering alien species. Yet the best studied native species turning up in areas far from their Annelid species, Lumbricus terrestris (L., 1758), original range has increased significantly (Bax et is now considered a widespread invasive species al.
    [Show full text]
  • Female Description of the Hydrothermal Vent Cephalopod Vulcanoctopus Hydrothermalis A.F
    Journal of the Marine Biological Association of the United Kingdom, 2008, 88(2), 375–379. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408000647 Printed in the United Kingdom Female description of the hydrothermal vent cephalopod Vulcanoctopus hydrothermalis a.f. gonzÆlez1, a. guerra1, s. pascual1 and m. segonzac2 1ECOBIOMAR, Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain, 2IFREMER, Centre de Brest, Laboratoire Environnement Profond, BP 70, 29280-Plouzane´, France During biological sampling of hydrothermal vents on the East Pacific Rise, the manned submersible ‘Nautile’ caught the first female of the endemic cephalopod Vulcanoctopus hydrothermalis. The specimen caught at the vent site Gromit (21833 660S, 114817 980W at 2832 m depth) is described here in detail and an amended diagnosis of the species proposed. The external morphology, measurements and internal structure resemble that of males of this species. One of the most remarkable char- acters is the lack of spermathecae and the absence of apical filaments in the oocytes to provide a site for sperm storage. It is suggested that some species of the genera Benthoctopus and Bathypolypus would be the most suitable octopod ancestor of V. hydrothermalis. Keywords: hydrothermal vent, cephalopods, Vulcanoctopus hydrothermalis, female description Submitted 20 April 2007; accepted 29 November 2007 INTRODUCTION et al., 2006). It inhabits an isolated extreme environment very close to the base of the chimneys and is also observed The study of chemosynthetic ecosystems in the deep sea rep- on the pillow lava at several metres from the active areas. resents a challenging issue due to the difficulty of sampling, This benthic species has characters that represent adaptations which involves the use of modern technologies such as either to the deep-sea or to a hydrothermal vent habitat manned submersibles.
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • COSSMANNIANA Bulletin Du Groupe D'étude Et De Recherche Macrofaune Cénozoïque
    COSSMANNIANA Bulletin du Groupe d'Étude et de Recherche Macrofaune Cénozoïque Tome 3, numéro 4 Décembre 1995 ISSN 1157-4402 GROUPE D'ÉTUDE ET DE RECHERCHE MACROFAUNE CÉNOZOïQUE "Maisonpour tous" 26, rue Gérard Philippe 94120 FONTENAY-SOUS-SOIS Président . .. ... Jacques PONS Secrétaire .. PierreLOZOUET Trésorier . .. .. Philippe MAESTRATI Dessins de couverture : Jacques LERENARD Maquette et Édition: Jacques LERENARD [eau-Michel PACAUD Couverture: Campanile (Campanilopa) giganteum, d'après la figure 137-45 de l'tconographie (grossissement 3/8); et individu bréphiqu e (hauteur totale : 2 mm), muni de son périostracum et de sa protoconque (coll. LeRenard) . COSSMANNIANA, Paris, 3 (4), Décembre 1995, pp. 133-150, sans fig. ISSN: 1157-4402 . RÉVISION DES MOLLUSQUES PALÉOGÈNES DU BASSIN DE PARIS III - CHRONOLOGIE DES CRÉATEURS DE RÉFÉRENCES PRIMAIRES par Jacques ·LERENARD Laboratoire de Biologiedes Invertébrés Marins et Malacologie, Muséum.National d'Histoire Naturelle, 55,rue de Buffon- 75005 Paris - FRANCE RÉSUMÉ - La liste des 437 publications dans lesquelles ont été introduites des références primaires figurant dans la partie II (LERENARD & PACAUD, 1995, pp. 65-132) est donnée. Il s'agit de la première liste de l'ensemble des publications concernant des nouveaux noms ou des nouvelles espèces paléogènes de Mollusques du bassin de Paris. TITLE - Revision of the Paris Basin Paleogene MoIlusca. III: Chronological Iist of the authors of primary references. ABSTRACT - The 437 publications, in which the primary references cited in part II (LERENARD & PACAUD, 1995, pp. 65-132) have been introduced, are given. This constitutes the first list of aIl the publications that are conceming new species or new names of Paris Basin Paleogene Molluscan species.
    [Show full text]
  • Size Variation and Geographical Distribution of the Luminous Earthworm Pontodrilus Litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan
    A peer-reviewed open-access journal ZooKeys 862: 23–43 (2019) Size variation and distribution of Pontodrilus litoralis 23 doi: 10.3897/zookeys.862.35727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan Teerapong Seesamut1,2,4, Parin Jirapatrasilp2, Ratmanee Chanabun3, Yuichi Oba4, Somsak Panha2 1 Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2 Ani- mal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand 4 Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan Corresponding authors: Somsak Panha ([email protected]), Yuichi Oba ([email protected]) Academic editor: Samuel James | Received 24 April 2019 | Accepted 13 June 2019 | Published 9 July 2019 http://zoobank.org/663444CA-70E2-4533-895A-BF0698461CDF Citation: Seesamut T, Jirapatrasilp P, Chanabun R, Oba Y, Panha S (2019) Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. ZooKeys 862: 23–42. https://doi.org/10.3897/zookeys.862.35727 Abstract The luminous earthworm Pontodrilus litoralis (Grube, 1855) occurs in a very wide range of subtropical and tropical coastal areas. Morphometrics on size variation (number of segments, body length and diameter) and genetic analysis using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequence were conducted on 14 populations of P.
    [Show full text]
  • A Metapopulation Model for Whale-Fall Specialists: the Largest Whales Are Essential to Prevent Species Extinctions
    THE SEA: THE CURRENT AND FUTURE OCEAN Journal of Marine Research, 77, Supplement, 283–302, 2019 A metapopulation model for whale-fall specialists: The largest whales are essential to prevent species extinctions by Craig R. Smith,1,2 Joe Roman,3 and J. B. Nation4 ABSTRACT The sunken carcasses of great whales (i.e., whale falls) provide an important deep-sea habitat for more than 100 species that may be considered whale-fall specialists. Commercial whaling has reduced the abundance and size of whales, and thus whale-fall habitats, as great whales were hunted and removed from the oceans, often to near extinction. In this article, we use a metapopulation modeling approach to explore the consequences of whaling to the abundance and persistence of whale-fall habitats in the deep sea and to the potential for extinction of whale-fall specialists. Our modeling indicates that the persistence of metapopulations of whale-fall specialists is linearly related to the abundance of whales, and extremely sensitive (to the fourth power) to the mean size of whales. Thus, whaling-induced declines in the mean size of whales are likely to have been as important as declines in whale abundance to extinction pressure on whale-fall specialists. Our modeling also indicates that commercial whaling, even under proposed sustainable yield scenarios, has the potential to yield substantial extinction of whale-fall specialists. The loss of whale-fall habitat is likely to have had the greatest impact on the diversity of whale-fall specialists in areas where whales have been hunted for centuries, allowing extinctions to proceed to completion.
    [Show full text]