Annelida: Clitellata: Naididae): a New Non-Indigenous Species for Europe, and Other Non-Native Annelids in the Schelde Estuary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annelida: Oligochaeta: Naididae) Geographical Distribution from Southern Caspian Sea Basin, Mazandaran Province - Iran
Iranian Journal of Fisheries Sciences 20(1) 109-128 2021 DOI: 10.22092/ijfs.2021.351016.0 Research Article New report for Pristinella jenkinae Stephenson, 1931 (Annelida: Oligochaeta: Naididae) geographical distribution from Southern Caspian Sea basin, Mazandaran province - Iran Erfani M.1* Received: May 2020 Accepted: November 2020 Abstract Pristinella jenkinae (Stephenson, 1931) is a freshwater cosmopolitan oligochaete. This species was found during limnological investigation in two rivers alongside Iranian coasts and has not been previously reported from Iran‟s freshwater fauna and Southern Caspian Sea basin. The specimens of P. jenkinae were collected bimonthly from Cheshmehkileh and Sardabrood rivers and estuaries (river mouth) using a Van Veen grab (0.03 m2) and Surber (0.1 m2, 0.2 mm-mesh size) samplers at three stations in each estuary (S1: riverine, S2: estuary and S3: marine ecosystem) with three replicates from November 2014 through September 2015. Results of temporal distribution showed that the highest and lowest density and biomass of this species were in January (102.3±68.3 ind m-2 and 0.075±0.034g m-2) and in September (24.4±12.3 ind m-2 and 0.020±0.005g m-2), respectively which were significantly different (N=57, t=0.99, p<0.05). Spatial distribution of P. jenkinae among sampling stations (S1, S2 and S3) showed significant differences (N=57, t=0.99, p<0.05). Freshwater stations (S1) within the river showed Downloaded from jifro.ir at 17:51 +0330 on Friday September 24th 2021 higher density and biomass (112.1±64.8 ind m-2 and 0.082±0.035g m-2) than semi- brackish stations (S2) within the estuary (18.8±10.3 ind m-2 and 0.013±0.005g m-2). -
Two Aquatic Oligochaete Species, Dero Dorsalis and Allonais Pectinata (Annelida: Clitellata: Naididae), New to Korea
Anim. Syst. Evol. Divers. Vol. 30, No. 2: 119-123, April 2014 http://dx.doi.org/10.5635/ASED.2014.30.2.119 Short communication Two Aquatic Oligochaete Species, Dero dorsalis and Allonais pectinata (Annelida: Clitellata: Naididae), New to Korea Jeounghee Lee1, Jongwoo Jung1,2,* 1Division of EcoCreative, Ewha Womans University, Seoul 120-750, Korea 2Department of Science Education, Ewha Womans University, Seoul 120-750, Korea ABSTRACT The genera Dero and Allonais belong to the family Naididae. Most species in the genus Dero have unique morphological characters including a branchial fossa and/or gills at the posterior end of the body. The genus Allonais has no eyes unlike its close relative the genus Nais. Of these genera, one species of Dero, D. obtusa, was recently reported in Korea. However, the genus Allonais has not been recorded in Korea. Here, we report Dero dorsalis Ferronière, 1899 and Allonais pectinata (Stephenson, 1910) with a diagnosis and illustrations. Keywords: Dero dorsalis, Allonais pectinata, Naididae, Oligochaeta, Clitellata, Korea INTRODUCTION were kept cool and were sorted in the laboratory using a stereo- microscope while the worms were alive. Then, the samples Aquatic oligochaeta is one of the most abundant and ecologi- were preserved in 70% ethanol solution. The specimens were cally important groups in freshwater benthic environments stained with Rose Bengal dye for observations and measure- (Jung, 2011). Most species in this group are ⁄1 mm to a few ments and were temporarily mounted in glycerin. Pictures centimeters in length. This group contains several families. were taken with a BX 41 optical microscope (Olympus, Tokyo, Among them, naidid worms are small benthic and/or epiben- Japan) and an EOS 650D camera (Canon, Tokyo, Japan). -
Size Variation and Geographical Distribution of the Luminous Earthworm Pontodrilus Litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan
A peer-reviewed open-access journal ZooKeys 862: 23–43 (2019) Size variation and distribution of Pontodrilus litoralis 23 doi: 10.3897/zookeys.862.35727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan Teerapong Seesamut1,2,4, Parin Jirapatrasilp2, Ratmanee Chanabun3, Yuichi Oba4, Somsak Panha2 1 Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2 Ani- mal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand 4 Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan Corresponding authors: Somsak Panha ([email protected]), Yuichi Oba ([email protected]) Academic editor: Samuel James | Received 24 April 2019 | Accepted 13 June 2019 | Published 9 July 2019 http://zoobank.org/663444CA-70E2-4533-895A-BF0698461CDF Citation: Seesamut T, Jirapatrasilp P, Chanabun R, Oba Y, Panha S (2019) Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. ZooKeys 862: 23–42. https://doi.org/10.3897/zookeys.862.35727 Abstract The luminous earthworm Pontodrilus litoralis (Grube, 1855) occurs in a very wide range of subtropical and tropical coastal areas. Morphometrics on size variation (number of segments, body length and diameter) and genetic analysis using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequence were conducted on 14 populations of P. -
Annelida, Oligochaeta) from the Island of Elba (Italy)
Org. Divers. Evol. 2, 289–297 (2002) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ode Taxonomy and new bacterial symbioses of gutless marine Tubificidae (Annelida, Oligochaeta) from the Island of Elba (Italy) Olav Giere1,*, Christer Erséus2 1 Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Germany 2 Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm Received 15 April 2002 · Accepted 9 July 2002 Abstract In shallow sublittoral sediments of the north-west coast of the Island of Elba, Italy, a new gutless marine oligochaete, Olavius ilvae n. sp., was found together with a congeneric but not closely related species, O. algarvensis Giere et al., 1998. In diagnostic features of the genital organs, the new species differs from other Olavius species in having bipartite atria and very long, often folded spermathecae, but lacking penial chaetae.The Elba form of O. algarvensis has some structural differences from the original type described from the Algarve coast (Portugal).The two species from Elba share characteristics not previously reported for gutless oligochaetes: the lumen of the body cavity is unusually constrict- ed and often filled with chloragocytes, and the symbiotic bacteria are often enclosed in vacuoles of the epidermal cells. Regarding the bacterial ultrastructure, the species share three similar morphotypes as symbionts; additionally, in O. algarvensis a rare fourth type was found.The diver- gence of the symbioses in O. algarvensis, and the coincidence in structural -
The Relation of Tidal Height and Sediment Type to the Intertidal Distribution of Marine Oligochaetes in Coos Bay, Oregon
AN ABSTRACT OF THE THESIS OF David Randall Strehiow for the degree of Master of Science in the School of Oceanography presentedon 3 May 1982 Title: The Relation of.Tidal Height and Sediment Type to the Inter- tidal Distributi Redacted for privacy Abstract approved: .J. Gonor The taxonomy of intertidal oligochaetès, and the relationships between oligochaete species distributions, tidal height, and sediment type, were studied in detail for a sand and mud flat in lower Coos Bay, Oregon. Eighteen species, representing four families, were identified. Three species of Enchytraeidae (Marionina vaucheriae, Marionina callianassae, and Marionina gpnori) and one species of Tubificidae (Aktedrilus oregpnensis) are new to science. A preliminary description of a new family, Psamotheriidae, based on Psarrrnotheriuni hastatus n.g. n.sp. is given. Other species present were Marionina vancouverensis, M. sjaelandica, N. subterranea, and N. achaeta (Enchytraeidae); Aktedrilus locyi, Li.mnodriloides monothecus, L. victoriensis, L. vérrucosus, Tubificoides coatesae, and T. pseudogaster (Tubificidae); and Paranais litoralis (Naididae). Individuals of Enchytraeus sp. and Lumbricillus spp. (Enchytraeidae) were found but were not fully mature, and therefore could not be identified to species. Nine of the eighteen species are known oniy from the northeast Pacific littoral zone, indicating the existence of a distinct regthnal oligochaete fauna. Earlier studies of the Enchytraeidae (Coates and Ellis 1981) and Tubificidae (Brinkhurst and Baker 1979) support this conclusion. Distinct oligochaete species assemblages were closely associated with physical habitat types defined by tidal exposure and sediment type. The distributions of species were not correlated with each other or with physical habitat types, however. Tide levels at which large changes in maximum continuous tidal exposure or submergence occur (critical tide levels) are strongly associated with. -
1 Biology 205: Partial Classification Of
[Leander – University of British Columbia] BIOLOGY 205: PARTIAL CLASSIFICATION OF INVERTEBRATES You are responsible for knowing the following taxa in bold font (Ranks are arbitrary & listed for pedagogical purposes) --------------------------------------------------------------------------------------------------------------------------------------- Domain Eukaryota 1. Subdomain Excavata (Giardia, trichomonads, trypanosomatids, euglenids etc.) 2. Subdomain Rhizaria (forams, radiolarians, cercomonads, chlorarchniophytes etc.) 3. Subdomain Chromalveolata (brown algae, diatoms, ciliates, dinoflagellates etc.) 4. Subdomain Plantae (red algae, green algae, land plants etc.) 5. Subdomain Opisthokonta (animals, fungi, slime molds etc.) Superkingdom Amoebozoa (dictyostelids, myxomycetes, lobose amoebae etc.) Superkingdom Fungi (chytrids, mushrooms, yeasts etc.) Superkingdom Choanozoa Kingdom Choanoflagellata (choanoflagellates) ‘invertebrates’ ------------------------------------------------------------------------------------------------------------------- ⇓ Kingdom Animalia (= Metazoa) Phylum Porifera (sponges) Class Calcarea (calcareous sponges) Class Hexactinellida (glass sponges) Class Demospongiae (demosponges) Phylum Placozoa (Trichoplax) Eumetazoa ----------------------------------------------------------------------------------------------------------------------- ⇓ Phylum Cnidaria (cnidarians) Class Hydrozoa (hydroids & hydromedusae) Class Anthozoa (anemones, corals & sea pens) Class Scyphozoa (‘true’ sea jellies) Phylum Myxozoa Phylum -
Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland
Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County- Wide Assessment Patuxtent River April, 2005 Final Report UT to Patuxtent River Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County-wide Assessment Prepared for: Howard County, Maryland Department of Public Works Stormwater Management Division 6751 Columbia Gateway Dr., Ste. 514 Columbia, MD 21046-3143 Prepared by: Tetra Tech, Inc. 400 Red Brook Blvd., Ste. 200 Owings Mills, MD 21117 Acknowledgement The principal authors of this report are Kristen L. Pavlik and James B. Stribling, both of Tetra Tech. They were also assisted by Erik W. Leppo. This document reports results from three of the six subwatersheds sampled during the Spring Index Period of the third year of biomonitoring by the Howard County Stormwater Management Division. Fieldwork was conducted by Tetra Tech staff including Kristen Pavlik, Colin Hill, David Bressler, Jennifer Pitt, and Amanda Richardson. All laboratory sample processing was conducted by Carolina Gallardo, Shabaan Fundi, Curt Kleinsorg, Chad Bogues, Joey Rizzo, Elizabeth Yarborough, Jessica Garrish, Chris Hines, and Sara Waddell. Taxonomic identification was completed by Dr. R. Deedee Kathman and Todd Askegaard; Aquatic Resources Center (ARC). Hunt Loftin, Linda Shook, and Brenda Decker (Tetra Tech) assisted with budget tracking and clerical support. This work was completed under the Howard County Purchase Order L 5305 to Tetra Tech, Inc. The enthusiasm and interest of the staff in the Stormwater Management Division, including Howard Saltzman and Angela Morales is acknowledged and appreciated. -
Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….………………………………………………………….. -
Envall Et Al
Molecular Phylogenetics and Evolution 40 (2006) 570–584 www.elsevier.com/locate/ympev Molecular evidence for the non-monophyletic status of Naidinae (Annelida, Clitellata, TubiWcidae) Ida Envall a,b,c,¤, Mari Källersjö c, Christer Erséus d a Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden b Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden c Laboratory of Molecular Systematics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden d Department of Zoology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden Received 24 October 2005; revised 9 February 2006; accepted 15 March 2006 Available online 8 May 2006 Abstract Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylo- genetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubiWcid subfamilies, and Wve outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the diVerent analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubiWcid subfamily, Rhyacodrilinae. These results dem- onstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily. -
Annelida: Clitellata: Naididae) ⇑ Yingkui Liu A, Steven V
Molecular Phylogenetics and Evolution 112 (2017) 244–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae) ⇑ Yingkui Liu a, Steven V. Fend b, Svante Martinsson a, Xu Luo a, Akifumi Ohtaka c, Christer Erséus a, a Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden b 17650 Kilkenny Rd., Los Gatos, CA 95030, USA c Department of Natural Science, Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan article info abstract Article history: Limnodrilus species are annelid worms distributed worldwide in various freshwater sediments. The sys- Received 22 December 2016 tematics of Limnodrilus has chiefly been based on morphology, but the genus has not been subject to any Revised 24 March 2017 closer phylogenetic studies over the past two decades. To reconstruct the evolutionary history of Accepted 20 April 2017 Limnodrilus, and to assess the monophyly of this genus and its systematic position within the subfamily Available online 27 April 2017 Tubificinae (Annelida: Clitellata: Naididae), 45 Limnodrilus specimens, representing 19 species, and 35 other naidid species (representing 24 genera) were sampled. The data consisted of sequences of three Keywords: mitochondrial genes (COI, 12S and 16S rDNA) and four nuclear markers (18S and 28S rDNA, Histone 3, Oligochaetes and ITS). The phylogeny was estimated, using Maximum Likelihood and Bayesian analyses of concate- Clitellates Limnodrilus nated data of seven DNA loci, as well as a multi-locus coalescent-based approach. All analyses strongly Phylogeny suggest that Limnodrilus is monophyletic, but only if the morphospecies L. -
Appendix 11.3
APPENDIX 11.3: Macro-invertebrate diversity in Maine and northeastern U.S., by family. Maine data are from MABP database, from multiple sources. New England data (6 states, excluding New York) are from a compilation of data by Chandler and Loose (2001) that includes information for all states, but appears to focus on Massachusetts. Species totals include taxa that are identified only to genus level (i.e. genera without any species indicated). Appendices 15 Appendix 11.3 New England Taxa MABP records records Phylum Class Order Family # Genera # Spp %"Orphan" Genera *** # Genera # Spp Annelida Polychaeta Sabellida Sabellidae 00 00 Annelida Polychaeta Sabellida Aeolosomatidae 22 100 -- -- Annelida Clitellata Lumbiculida Lubriculidae 44 75 2 3 Annelida Clitellata Enchytraeida Enchytraeidae ? ? Annelida Clitellata Haplotoxida Naididae 14 35 71018 Annelida Clitellata Haplotoxida Tubificidae 612 17 5 10 Annelida Clitellata Lumbricida Glossoscolecidae -- -- Annelida Clitellata Branchiobdellida Bdellodrilidae 11 011 Annelida Clitellata Branchiobdellida Branchiobdellidae 11 011 Annelida Clitellata Branchiobdellida Cambarincolidae 24 024 Annelida Clitellata Rhynchobdellida Glossiphoniidae 77 0616 Annelida Clitellata Rhynchobdellida Piscicolidae 44 044 Annelida Clitellata Arhynchobdellida Hirudinididae 22 024 Annelida Clitellata Arhynchobdellida Erpobdellidae 45 048 Arthropoda Malacostraca Isopoda Asellidae 24 50 2 4 Arthropoda Malacostraca Amphipoda Gammaridae 11 014 Arthropoda Malacostraca Amphipoda Crangonyctidae 22 027 Arthropoda Malacostraca -
Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore