ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo Per L'anno 2005 Codice Esperimento Gruppo BO11 4 Struttura Resp

Total Page:16

File Type:pdf, Size:1020Kb

ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo Per L'anno 2005 Codice Esperimento Gruppo BO11 4 Struttura Resp ISTITUTO NAZIONALE DI FISICA Codice Esperimento Gruppo NUCLEARE BO11 4 Preventivo per l'anno 2005 Rapp. Naz.: Giovanni VENTURI Rappresentante nazionale: Giovanni VENTURI Struttura di appartenenza: BO Posizione nell'I.N.F.N.: INFORMAZIONI GENERALI Dinamica classica e quantistica di oggetti relativistici estesiDualità in teoria dei campi e di stringa Linea di ricerca Laboratorio ove si raccolgono i dati BO11 Sigla dello esperimento assegnata dal laboratorio Acceleratore usato Fascio (sigla e caratteristiche) Processo fisico studiato Apparato strumentale utilizzato BO, TN, CO, TS Sezioni partecipanti all'esperimento CALIFORNIA STATE POLYTECHNIC UNIVERSITY POMONA, CA. USADIPARTIMENTO DI FISICA, Istituzioni esterne UNIVERSITA’ DI OSIJEK − CROAZIA all'Ente partecipanti Durata esperimento Mod EC. 1 (a cura del responsabile nazionale) ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo per l'anno 2005 Codice Esperimento Gruppo BO11 4 Struttura Resp. loc.: Giovanni VENTURI BO PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005 In KEuro VOCI IMPORTI A cura della Comm.ne Totale Compet. DI DESCRIZIONE DELLA SPESA Parziali Scientifica SPESA SJ di cui SJ Nazionale Collaborazione con altri gruppi 4,0 4,0 R. Brandenberger, Brown University, 2 weeks, status of back−reaction of 1,0 cosmological perturbations 1,0 A. Starobinsky, Landau Institute, 2 weeks, stochastic formalism and quantum field 1,5 3,5 theory in curved space−times C. Germani, post−doc DAMTP, 4 weeks, gravitational collapse in brane−world Partecipazione a Conferenze e Collaborazioni con istituzioni estere 16,0 16,0 Consorzio Ore CPU Spazio Disco Cassette Altro di cui SJ Totale 23,5 0,0 Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ? Breve descrizione dell'intervento: Mod EC./EN. 2 (a cura del responsabile locale) ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo per l'anno 2005 Codice Esperimento Gruppo BO11 4 Struttura Resp. loc.: Giovanni VENTURI BO ALLEGATO MODELLO EC2 L'attività di ricerca dell'iniziativa specifica Bologna11 si colloca al crocevia tra la teoria quantistica dei campi, la relatività generale e la teoria delle stringhe. L'oggetto di studio principale è l'interazione tra la materia descritta da teorie quantistiche dei campi ed il campo gravitazionale non quantizzato, con applicazioni all'inflazione,all'entropia di diversi tipi di buchi neri, alla retroazione nel collasso gravitazionale e a modelli quantistici sull'universo di de Sitter che è il più semplice modello con espansione accelerata data dalla pura costante cosmologica. L'iniziativa specifica comprende anche lo studio di modelli classici per descrivere la componente oscura dell'energia che è all'origine dell'espansione accelerata dell'universo, quali il gas di Chaplygin, i tachioni e gli universi detti di "brana" che emergono dal contesto più generale della teoria delle stringhe. In questo ambito le ricerche si estendono ai modelli di Kaluza−Klein con T−dualità ed alle corrispondenze AdS/CFT e dS/CFT. Parole chiave: Fisica dei buchi neri, Cosmologia, Modelli multidimensionali, Teorie quantistiche di campo in spazio−tempi curvi, Teorie quantistiche di campo non−commutative. Keywords: Black hole physics, Cosmology, Multidimensional models, Quantum field theory in curved space−time, Non−commutative quantum field theories. Mod EC./EN. 2a Pagina 1 (a cura del responsabile locale) ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo per l'anno 2005 Codice Esperimento Gruppo BO11 4 Struttura Resp. loc.: Giovanni VENTURI BO ALLEGATO MODELLO EC2 Mod EC./EN. 2a Pagina 2 (a cura del responsabile locale) ISTITUTO NAZIONALE DI FISICA Codice Esperimento Gruppo NUCLEARE BO11 4 Preventivo per l'anno 2005 Rapp. Naz.: Giovanni VENTURI PREVENTIVO GLOBALE DI SPESA PER L'ANNO 2005 In KEuro A CARICO DELL' I.N.F.N. Materiale Trasporti Spese Affitti A carico Struttura Missioni Missioni di e di e Materiale TOTALE di altri interne Inviti estere consumo facchinaggi calcolo manutenzione inventariabile Compet. Enti SJ SJ SJ SJ SJ SJ SJ SJ SJ BO 4,0 3,5 16,0 23,5 0,0 MI 2,0 8,0 6,0 16,0 0,0 TN 6,0 2,0 9,0 17,0 0,0 TS 4,0 4,5 8,0 16,5 0,0 TOTALI 16,0 18,0 39,0 73,0 NB. La colonna A carico di altri enti deve essere compilata obbligatoriamente Mod EC./EN. 4 (a cura del responsabile nazionale) ISTITUTO NAZIONALE DI FISICA Codice Esperimento Gruppo NUCLEARE BO11 4 Preventivo per l'anno 2005 Rapp. Naz.: Giovanni VENTURI A) ATTIVITA' SVOLTA FINO A GIUGNO 2004 B) ATTIVITA' PREVISTA PER L'ANNO 2005 BO11: QUANTUM AND SEMICLASSICAL GRAVITY, BLACK HOLES AND COSMOLOGY INTRODUCTION AND MOTIVATION: It is commonly accepted that in order to describe systems for which both quantum and general relativistic effects are important, one needs a quantum theory of all interactions, thereby including gravity. In particular, the latter is essential for the description of the physics of the primordial Universe and is also considered necessary for the purpose of solving the paradoxes and elucidating the still mysterious aspects of the physics of black holes. While waiting for such a theory to be consistently formulated, and possibly in a form which can be concretely used, an approach which has proved useful is that in which quantum fields describing matter and radiation interact with the nonquantized gravitational field. The general scheme arising from this approach takes the name of quantum field theory on curved spacetimes and some of the most significant constructions and theoretical predictions of the last 30 years have taken place within this context, the examples of largest impact being the prediction of black hole evaporation and the inflationary paradigm. Our activity is based mainly on such an approach and employs methods that are at the interface between quantum field theory, general relativity and string theory, with applications to cosmological inflation, to the entropy of different types of black holes, to back−reaction in gravitational collapse and to quantum models on the de Sitter universe, the latter being the simplest cosmology with an accelerated expansion given by a pure cosmological constant. Also worth studying are classical models for the description of the dark energy component, which is at the origin of the accelerated expansion of the universe. These models include the Chaplygin gas, alternative higher order gravitational theories, tachyons and the so−called "brane" universes, which arise from the more general context of string theory. In this context the research extends also to the Kaluza−Klein models with T−duality and to the AdS/CFT and dS/CFT correspondences. The participants in the BO11 collaboration are associated with the INFN groups of 4 Universities: Bologna (BO), Como (CO), Trento (TN) and Trieste (TS), and their activities can be divided into three main (partially overlapping) topics: Black holes (BH), Theoretical Cosmology (TC) and General Theory (GT). Further, besides individual contacts, a yearly meeting involving most participants is held, also occasionally inviting representatives of other related INFN activities (see e.g. www−th.bo.infn.it/activities/bo11/). SOME RECENT RESULTS: To further illustrate our activity we single out some results that we think are particularly significant obtained in the above topics during the past few years. A) BLACK HOLES [BH1] R. Casadio and B. Harms, "Can black holes and naked singularities be detected in accelerators?", Int. J. Mod. Phys. A17 (2002) 4635 [see also: Phys. Rev. D 64 (2001) 024016; Phys. Lett. B 487 (2000) 209]. The conditions for the detectability of black holes and naked singularities in colliders at TeV−scales if the spacetime is higher dimensional have been studied. With one warped extra dimension, microcanonical corrections can make tiny black holes (meta)stable and, if the total charge is non−zero, naked singularities do not occur provided the electromagnetic field is strictly confined on an infinitely thin brane. With more flat extra dimensions, a phase transition between black strings and black holes was conjectured and the microcanonical decay rates analyzed. [BH2] G.L. Alberghi, R. Casadio and G.Venturi, "Thermodynamics for radiating shells in anti−de Sitter space−time", Phys. Lett. B557 (2003) 7 [see also Phys. Lett. B 571 (2003) 245]. A thermodynamical description for the quasi−static collapse of radiating, self−gravitating spherical shells of matter in anti−de Sitter spacetime is obtained. The specific heat at constant area may diverge before a black hole forms, thus suggesting the possibility of a phase transition occurring during the collapse. Semiclassical radiation emitted as a non−adiabatic quantum effect when the shell matter is bosonic has also also obtained. [BH3] R. Casadio, "On dispersion relations and the statistical mechanics of Hawking radiation", Class. Quantum Grav. 19 (2002) 2453 [see also Ann. Phys. 307 (2003) 195]. It is shown that trans−Planckian frequencies do not affect the spectrum of Hawking radiation since Hawking particles are produced sufficiently far away from the horizon and reach infinity with a relatively small gravitational red−shift. The result is then generalized to models with extra flat spatial dimensions. [BH4] V. Moretti and N. Pinamonti, "Aspects of hidden and manifest SL(2,R) symmetry in 2D near−horizon black−hole backgrounds," Nucl. Phys. B 647 (2002) 131. The invariance under unitary representations of the conformal group SL(2,R) of a quantum particle is rigorously investigated in two−dimensional spacetimes containing Killing horizons and the limit of the near−horizon approximation is considered. The whole Hilbert space turns out to be an irreducible unitary representation of SL(2,R) and the time evolution is embodied in the unitary representation. B) THEORETICAL COSMOLOGY [TC1] A. Y. Kamenshchik, U. Moschella and V. Pasquier, "An alternative to quintessence", Phys. Lett. B511 (2001) 265. Recent observations point towards the existence of a new type of energy, called dark, that dominates the energy content of the universe. In this paper a new model, called the Chaplygin gas cosmological model (after the early 20−th century hydrodynamicist Chaplygin) has been introduced and discussed.
Recommended publications
  • Particles-Versus-Strings.Pdf
    Particles vs. strings http://insti.physics.sunysb.edu/~siegel/vs.html In light of the huge amount of propaganda and confusion regarding string theory, it might be useful to consider the relative merits of the descriptions of the fundamental constituents of matter as particles or strings. (More-skeptical reviews can be found in my physics parodies.A more technical analysis can be found at "Warren Siegel's research".) Predictability The main problem in high energy theoretical physics today is predictions, especially for quantum gravity and confinement. An important part of predictability is calculability. There are various levels of calculations possible: 1. Existence: proofs of theorems, answers to yes/no questions 2. Qualitative: "hand-waving" results, answers to multiple choice questions 3. Order of magnitude: dimensional analysis arguments, 10? (but beware hidden numbers, like powers of 4π) 4. Constants: generally low-energy results, like ground-state energies 5. Functions: complete results, like scattering probabilities in terms of energy and angle Any but the last level eventually leads to rejection of the theory, although previous levels are acceptable at early stages, as long as progress is encouraging. It is easy to write down the most general theory consistent with special (and for gravity, general) relativity, quantum mechanics, and field theory, but it is too general: The spectrum of particles must be specified, and more coupling constants and varieties of interaction become available as energy increases. The solutions to this problem go by various names -- "unification", "renormalizability", "finiteness", "universality", etc. -- but they are all just different ways to realize the same goal of predictability.
    [Show full text]
  • Supergravity and Its Legacy Prelude and the Play
    Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity.
    [Show full text]
  • Curriculum Vitæ
    Curriculum Vitæ Nome : Laura Maria Andrianopoli Nazionalit`a: Italiana Data e luogo di nascita : 8 Gennaio 1969, Torino (Italia) Lingue parlate : Italiano, Inglese, Francese Posizione attuale : dal 01/11/2007 Ricercatrice Universitaria presso il Dipartimento di Fisica del Politecnico di Torino Indirizzo: C.so Duca degli Abruzzi, 24 I-10129 Torino, Italia Indirizzo e-mail : [email protected] Formazione accademica • 1994 - 1997: corso di Dottorato in Fisica presso l'Universit`adi Genova. Rela- tore: Prof. C. Imbimbo; Co-relatore: Prof. R. D'Auria Titolo della Tesi di Dottorato: \U-duality in supergravity theories and extremal black holes", discussa a Roma il giorno 8 Maggio 1998 • Luglio 1994: Laurea in Fisica Teorica presso l'Universit`adi Torino con votazione finale di 110/110 e Lode. Relatore: Prof. Ferdinando Gliozzi; Co-relatore: Prof. Riccardo D'Auria Titolo della Tesi : \Una nuova rappresentazione per l'accoppiamento dei campi scalari alla supergravit`a Attivit`adi Ricerca Borse Post-Dottorato: • 1 Novembre 2004 - 31 Ottobre 2007: Grant da parte del Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, per svolgere ricerche presso la Di- visione Teorica del CERN di Ginevra e il Dipartimento di Fisica del Politecnico di Torino. • 1 Novembre 2002 - 31 Ottobre 2004: Posizione di Fellow presso la Divisione Teorica del CERN, Ginevra • 1 Settembre 2000 - 31 Ottobre 2002: Posizione di Assegnista di Ricerca presso il Dipartimento di Fisica del Politecnico di Torino • 1 Ottobre 1998 - 31 Agosto 2000: Posizione di Post-Dottorato presso la Divi- sione Teorica dell'Universit`aK.U.Leuven, in Belgio, nell'ambito del progetto: TMR ERBFMRXCT96-0045 • 15 Febbraio 1998 - 30 Settembre 1998: Posizione di borsista presso la Divisione Teorica del CERN, Ginevra grazie al contributo della borsa Angelo Della Riccia • Conferimento della prima posizione nella graduatoria di merito del Concorso INFN a n.
    [Show full text]
  • The Birth of String Theory
    THE BIRTH OF STRING THEORY String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical dis- cussions. This unique book explores the history of the theory’s early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called Dual Resonance Model) in the late 1960s, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-1970s as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as for historians and philosophers of science. andrea cappelli is a Director of Research at the Istituto Nazionale di Fisica Nucleare, Florence. His research in theoretical physics deals with exact solutions of quantum field theory in low dimensions and their application to condensed matter and statistical physics. elena castellani is an Associate Professor at the Department of Philosophy, Uni- versity of Florence. Her research work has focussed on such issues as symmetry, physical objects, reductionism and emergence, structuralism and realism. filippo colomo is a Researcher at the Istituto Nazionale di Fisica Nucleare, Florence. His research interests lie in integrable models in statistical mechanics and quantum field theory. paolo di vecchia is a Professor of Theoretical Physics at Nordita, Stockholm, and at the Niels Bohr Institute, Copenhagen.
    [Show full text]
  • The Birth of String Theory
    The Birth of String Theory Edited by Andrea Cappelli INFN, Florence Elena Castellani Department of Philosophy, University of Florence Filippo Colomo INFN, Florence Paolo Di Vecchia The Niels Bohr Institute, Copenhagen and Nordita, Stockholm Contents Contributors page vii Preface xi Contents of Editors' Chapters xiv Abbreviations and acronyms xviii Photographs of contributors xxi Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string Gabriele Veneziano 19 3 Gravity, unification, and the superstring John H. Schwarz 41 4 Early string theory as a challenging case study for philo- sophers Elena Castellani 71 EARLY STRING THEORY 91 Part II The prehistory: the analytic S-matrix 93 5 Introduction to Part II 95 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude Marco Ademollo 115 7 The path to the Veneziano model Hector R. Rubinstein 134 iii iv Contents 8 Two-component duality and strings Peter G.O. Freund 141 9 Note on the prehistory of string theory Murray Gell-Mann 148 Part III The Dual Resonance Model 151 10 Introduction to Part III 153 11 From the S-matrix to string theory Paolo Di Vecchia 178 12 Reminiscence on the birth of string theory Joel A. Shapiro 204 13 Personal recollections Daniele Amati 219 14 Early string theory at Fermilab and Rutgers Louis Clavelli 221 15 Dual amplitudes in higher dimensions: a personal view Claud Lovelace 227 16 Personal recollections on dual models Renato Musto 232 17 Remembering the `supergroup' collaboration Francesco Nicodemi 239 18 The `3-Reggeon vertex' Stefano Sciuto 246 Part IV The string 251 19 Introduction to Part IV 253 20 From dual models to relativistic strings Peter Goddard 270 21 The first string theory: personal recollections Leonard Susskind 301 22 The string picture of the Veneziano model Holger B.
    [Show full text]
  • Table of Contents More Information
    Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information Contents List of contributors page x Photographs of contributors xiv Preface xxi Abbreviations and acronyms xxiv Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string 17 gabriele veneziano 3 Gravity, unification, and the superstring 37 john h. schwarz 4 Early string theory as a challenging case study for philosophers 63 elena castellani EARLY STRING THEORY Part II The prehistory: the analytic S-matrix 81 5 Introduction to Part II 83 5.1 Introduction 83 5.2 Perturbative quantum field theory 84 5.3 The hadron spectrum 88 5.4 S-matrix theory 91 5.5 The Veneziano amplitude 97 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude 100 marco ademollo 7 The path to the Veneziano model 116 hector r. rubinstein v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information vi Contents 8 Two-component duality and strings 122 peter g.o. freund 9 Note on the prehistory of string theory 129 murray gell-mann Part III The Dual Resonance Model 133 10 Introduction to Part III 135 10.1 Introduction 135 10.2 N-point dual scattering amplitudes 137 10.3 Conformal symmetry 145 10.4 Operator formalism 147 10.5 Physical states 150 10.6 The tachyon 153 11 From the S-matrix to string theory 156 paolo di vecchia 12 Reminiscence on the birth of string theory 179 joel a.
    [Show full text]
  • Dean Rickles a BRIEF HISTORY of STRING THEORY
    THE FRONTIERS COLLECTION Dean Rickles A BRIEF HISTORY OF STRING THEORY From Dual Models to M-Theory 123 THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur Unit of Interdisciplinary Studies, Bar-Ilan University, 52900, Gières, France e-mail: [email protected] Laura Mersini-Houghton Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255 USA e-mail: [email protected] Maximilian Schlosshauer Department of Physics, University of Portland 5000 North Willamette Boulevard Portland, OR 97203, USA e-mail: [email protected] Mark P. Silverman Department of Physics, Trinity College, Hartford, CT 06106, USA e-mail: [email protected] Jack A. Tuszynski Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada e-mail: [email protected] Rüdiger Vaas Center for Philosophy and Foundations of Science, University of Giessen, 35394, Giessen, Germany e-mail: [email protected] H. Dieter Zeh Gaiberger Straße 38, 69151, Waldhilsbach, Germany e-mail: [email protected] For further volumes: http://www.springer.com/series/5342 THE FRONTIERS COLLECTION Series editors A. C. Elitzur L. Mersini-Houghton M. Schlosshauer M. P. Silverman J. A. Tuszynski R. Vaas H. D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science.
    [Show full text]
  • Arxiv:1802.03407V5 [Hep-Th] 16 Nov 2019
    ARC-18-02 Supergravity in the group-geometric framework: a primer Leonardo Castellani Dipartimento di Scienze e Innovazione Tecnologica Universit`adel Piemonte Orientale, viale T. Michel 11, 15121 Alessandria, Italy INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy Arnold-Regge Center, via P. Giuria 1, 10125 Torino, Italy Abstract We review the group-geometric approach to supergravity theories, in the perspective of recent developments and applications. Usual diffeomorphisms, gauge symmetries and supersymmetries are unified as superdiffeomorphisms in a supergroup manifold. Integration on supermanifolds is briefly revisited, and used as a tool to provide a bridge between component and superspace actions. As an illustration of the constructive techniques, the cases of d = 3; 4 off-shell supergravities and d = 5 Chern-Simons supergravity are discussed in detail. A cursory account of d = 10 + 2 supergravity is also included. We recall a covariant canonical formalism, well adapted to theories described by Lagrangians d-forms, that allows to define a form hamiltonian and to recast constrained hamiltonian systems in a covariant form language. Finally, group geometry and properties of spinors and gamma matrices in d = s + t dimensions are summarized in Appendices. arXiv:1802.03407v5 [hep-th] 16 Nov 2019 Based on lectures given at : the Graduate School of the Physics Dept , W¨urzburg, 2011; Corfu Workshop 2013; LACES 2013, Lezioni Avanzate di Campi e Stringhe, GGI, Flo- rence; CERN-SEENET PhD Training Program, Belgrade, 2015; GGI 2016 Workshop "Supergravity, what next?", Florence. [email protected] Contents 1 Introduction 2 2 The first example: Poincar´egravity 4 2.1 Soft Poincar´emanifold .
    [Show full text]
  • Greene, Brian. the Elegant Universe: Superstrings, Hidden Dimensions and the Quest for the Ultimate Theory
    Greene, Brian. The Elegant Universe: Superstrings, Hidden Dimensions and the Quest for the Ultimate Theory. New York: Vintage Books, 2000, 448pp. Outline Prepared by Rev. William S. Wick, Norwich University Chaplain (12/18/2013) I. Preface p.ix A. During the last thirty years of his life, Albert Einstein sought [but never realized] a so-called unified field theory capable of describing nature’s forces within a single, all-encompassing, coherent framework. B. ... physicists believe they have found a framework for stitching these insights together into a seamless whole - capable of describing all phenomena: superstring theory. p.x C. Elegant Universe is an attempt to make these insights accessible to a broad spectrum of readers. D. Superstring theory draws on many of the central discoveries in physics (and Greene focuses on the evolving understanding of space and time). E. ... cutting-edge research has integrated [Einstein’s] discoveries into a quantum universe with numerous hidden dimensions coiled into the fabric of the cosmos - dimensions whose geometry may well hold the key to some of the most profound questions ever posed. p.xi F. Greene’s has focuses on the impact superstring theory has on concepts of space and time. II. Part I: The Edge of Knowledge (Chapter One: Tied Up with String) p.1 A. Introduction p.3 1. two foundational pillars upon which modern physics rests: a. Albert Einstein’s General Relativity (a theoretical framework for understanding the universe on the largest of scales (the immense expanse of the universe itself) b. quantum mechanics (a theoretical framework for understanding the universe on the smallest of scales - (atomic/subatomic particles) 2.
    [Show full text]
  • JOHN H Schwarz
    JOHN H. SCHWARZ (1941 – ) INTERVIEWED BY SARA LIPPINCOTT July 21 and 26, 2000 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Physics, string theory Abstract An interview in two sessions, July 2000, with John H. Schwarz, Harold Brown Professor of Theoretical Physics in the Division of Physics, Mathematics, and Astronomy. Dr. Schwarz majored in mathematics at Harvard (BA, 1962) and then went to UC Berkeley for graduate work in theoretical physics. He offers recollections of his advisor, Geoffrey Chew; working on S-matrix theory; sharing an office with another future string theorist, David J. Gross. After receiving his PhD in 1966, he became an instructor at Princeton, where in 1969 he began work on string theory, prompted by 1968 paper by Gabriele Veneziano. He comments on early years of string theory, his collaboration with André Neveu and Joël Scherk, Murray Gell-Mann’s interest in the work, being denied tenure at Princeton and invited to come to Caltech as a research associate. General lack of interest in string theory in 1970s. Scherk and Schwarz continue working on it and note that the graviton shows up in the theory, suggesting a way to reconcile quantum theory and general relativity; they publish in 1974 and 1975, but papers are largely ignored. In August 1979, he begins collaboration with Michael Green at CERN and later at Caltech and the Aspen Center for Physics. By now there are several string theories, but all are plagued with anomalies; he http://resolver.caltech.edu/CaltechOH:OH_Schwarz_J describes their breakthrough elimination of anomalies in 1984 at Aspen and his announcement of it at the Aspen physics cabaret.
    [Show full text]
  • Spaces of Quantum Field Theories with FINITE VARIATIONS L D Ivanov
    Journal of Physics: Conference Series OPEN ACCESS Related content - GEOMETRIC PROPERTIES OF SETS Spaces of Quantum Field Theories WITH FINITE VARIATIONS L D Ivanov To cite this article: M R Douglas 2013 J. Phys.: Conf. Ser. 462 012011 - AN ESTIMATE OF THE MEASURE OF THE SETOF PLANES ALMOST TANGENT TO A COMPACTUMWITH BOUNDED VARIATIONS G J Zacev View the article online for updates and enhancements. - RATIONAL APPROXIMATION OF CONTINUOUS FUNCTIONS OF FINITE VARIATION A P Bulanov Recent citations - Reflection and transmission of conformal perturbation defects Ilka Brunner and Cornelius Schmidt- Colinet - Relative entropy and proximity of quantum field theories Vijay Balasubramanian et al - Boundary and interface CFTs from the conformal bootstrap Ferdinando Gliozzi et al This content was downloaded from IP address 80.82.77.83 on 23/11/2017 at 21:06 6th International Symposium on Quantum Theory and Symmetries (QTS6) IOP Publishing Journal of Physics: Conference Series 462 (2013) 012011 doi:10.1088/1742-6596/462/1/012011 Spaces of Quantum Field Theories M R Douglas Simons Center for Geometry and Physics Stony Brook University, Stony Brook NY 11794 IHES, Le Bois-Marie, Bures-sur-Yvette France 91440 E-mail: [email protected] Abstract. The concept of a “space of quantum field theories” or “theory space” was set out in the 1970’s in work of Wilson, Friedan and others. This structure should play an important role in organizing and classifying QFTs, and in the study of the string landscape, allowing us to say when two theories are connected by finite variations of the couplings or by RG flows, when a sequence of QFTs converges to another QFT, and bounding the amount of information needed to uniquely specify a QFT, enabling us to estimate their number.
    [Show full text]
  • Introduction to String Theory. Bosonic Strings
    UNIVERSIDAD DE LA LAGUNA Introduction to String Theory. Bosonic Strings by Carlos Franchy Curbelo Trabajo de Fin de Grado realizado en Grado de Fsica Facultad de Ciencias June 2018 i UNIVERSIDAD DE LA LAGUNA Abstract Este trabajo de Fin De Grado que se presenta versa sobre una de las teor´ıasque actualmente m´asinter´essuscitan, tanto entre los profesionales de la ciencia como entre aquellos otros que sin dedicarse a la F´ısicason amantes de la misma. Se trata de la Teo´ıade Cuerdas. Esta teor´ıaes realmente atractiva pues predice hechos que en principio resultan contradictorios con los hechos que se observan en el mundo f´ısico,como esel caso de la predicci´onde 26 dimensiones. Este trabajo es cara´cterbibliogr´aficoy tiene como por finalidad realizar una introducci´ona esta famosa teor´ıa.Por tanto nada de lo que se expone ha sido desarrollado por el alumno salvo contadas excepciones como pueden ser algunas demostraciones. El trabajo ha consistido por tanto, entender esta introducci´ona la teor´ıa para posteriormente tratar de explicarla. Para dicha tarea se han utilizado principalmente el libro A First Course in String Theory,escrito por Barton Zwiebach [1], y las las notas de los profesores Kevin Wray [2] y David Tong [3] Este trabajo se centra exclusivamente en la teor´ıade cuerdas bos´onicas,y como se explicar´a posteriormente, esta debe ser ampliada por la teor´ıade super-cuerdas. El proposito de este trabajo es predecir las 26 dimensiones y llegar al espectro de masa de las cuerdas bos´onicas,donde se conjeturan part´ıculastan interesantes como el gravit´on o el taqui´on.
    [Show full text]