If It Made Chemistry News, You'll Find It

Total Page:16

File Type:pdf, Size:1020Kb

If It Made Chemistry News, You'll Find It If It Made Chemistry News, You’ll Find It in… QUESTION: Why was the naming of elements 104, 105, and 106 so controversial? Search Citation DOI Advanced Search elements 104 OR 105 OR 106 Anywhere Search FinDinG THE ANSweR IS QUICK AND EASY Using the Quick Search box at the C&EN Archives homepage (pubs.acs.org/cen-archives), you can perform a Boolean search for elements 104 OR 105 OR 106. This produces a lengthy list of hits; however, the first hit on the list begins to answer your question and quickly guides you to the other articles that you need. Researching element 104, you’ll discover that… “…the element, which has the atomic number 104, was first reported by Georgii Flerov and colleagues at the Joint Institute for Nuclear Research in Dubna, Russia, in 1964. The Russian scientists named the element ‘kurchatovium’ in honor of nuclear physicist Igor Kurchatov…”1 IT'S ELEMENTAL! The article goes on to note… RUTHERFORDIUM AT A GLANCE “Glenn T. Seaborg, Albert Ghiorso, and coworkers at RUTHERFORDIUM Name: Named after New Zealand MICHAEL FREEMANTLE, C&EN LONDON physicist Ernest Rutherford. Atomic mass: (261). Lawrence Berkeley National Laboratory considered the UTHERFORDIUM IS AN ELEMENT is the Latin word code for 104 (un = 1, nil = History: Production first reported by a more famed for its names than 0, and quad = 4). Its symbol was "Unq." team at the Joint Institute for Nuclear its properties or uses. It was al- Seaborg thought these IUPAC names Research in Dubna, Russia, in 1964 Al- so my baptism of fire into the in- were "unnecessarily cumbersome" and bert Ghiorso and his team at the Univer- Dubna discovery in 1964 to be invalid, saying it was based ternational politics and sensi- served "no useful purpose" (C&EN, May 13, sity of California, Berkeley, produced a tivities of naming new elements. 1985, page 2). I quoted the letter in the item different isotope in 1969. IUPAC recom- RIn 1985,1 innocently wrote a piece on I wrote for Chemical International m 1985. mended that the discovery be shared. the element titled "What's in a Name?" for Three weeks after my piece was published, Occurrence: Artificially produced. on the misinterpretation of experimental data. In 1969, Chemistry International, the newsmagazine I attended the 33rd IUPAC general assem- Appearance: Metal of unknown color. of the International Union of Pure & Ap- bly in Lyon, France. One evening, while re- Behavior: Intensely radioactive. plied Chemistry (IUPAC). laxing with some secretari- Uses: No commercial uses. At that time, I had only just at colleagues in the bar of joined the IUPAC secretari- the hotel where we were mended names for elements 101-109. El- the Berkeley group produced two isotopes of the element, at staff in Oxford as informa- staying, several members of ement 104 was named "dubnium" after the tion officer. My duties in- IUPAC's Commission on Dubna group and element 106, "ruther- cluded editing the magazine. Nomenclature of Inorgan- fordium." Seaborg and colleagues at Berke- The piece was short and, ic Chemistry joined us. ley were astonished, calling the names "ab- Rf-258 and Rf-260, and laid claim to its discovery. They in my view, innocuous and After some initial plea- surd," "ridiculous," "outrageous," and factual. It alluded to the fact santries, they tackled me "almost unbelievable" (C&EN, Oct. 10, that the element, which has about the piece, and it soon 1994, page 4). They wanted element 106, the atomic number 104, was became obvious that they which was undisputedly discovered by the named the element ‘rutherfordium’ after…physicist Ernest first reported by Georgii were unhappy with it. They Berkeley group, to be named "seaborgium." Flerov and colleagues at the did not question that it was Controversy and confusion now pre- Joint Institute for Nuclear accurate. What they dis- vailed. An element that had had an occa- 1 Research in Dubna, Russia, liked was that it had been sional, fleeting, and useless existence now Rutherford…” Rutherford in 1964. The Russian scien- published in IUPAC's appeared in various English-language pub- tists named the element "kurchatovium" in house magazine. They suggested that the lications around the word under five differ- honor of nuclear physicist Igor Kurchatov magazine was not a suitable forum for rais- ent names: rutherfordium, kurchatovium, (1903-60), who was a driving force behind ing and debating such highly contentious dubnium, unnilquadium, and element 104. the Soviet Union's race to develop the atom- issues as the discovery and naming of the In June 1995, the American Chemical ic bomb. For the next 10 years or so, the transfermium elements. I drank another Society decided to adopt the names Dubna group published numerous papers beer while they informed me that IUPAC rutherfordium and seaborgium for ele- on the element, including papers in 1969 had formal channels and procedures for ments 104 and 106, respectively, for its A May 1970 article, Element 105 is Long Lived, tells a and 1970 that provided evidence of the pro- dealing with such controversies. journals and magazines. duction of the isotope rutherfordium-259. I soon learned that the pro- At its 38th general assembly, Glenn T. Seaborg, Albert Ghiorso, and cedures were, perhaps necessar- held in 1995 at the University of coworkers at Lawrence Berkeley Nation- ily for democratic reasons, slow Surrey in Guildford, England, similar story… al Laboratory considered the Dubna dis- and cumbersome. In 1985, IUPAC decided to reconsider covery in 1964 to be invalid, saying it was IUPAC and the International its recommended names. Fol- based on the misinterpretation of experi- Union of Pure & Applied Phys- lowing a further two years of mental data. In 1969, the Berkeley group ics decided to set up an ad hoc consultation, the union ratified “Albert Ghiorso reported the discovery of element 105…. produced two isotopes of the element, Rf- working group to consider the a slate of names for elements 258 and Rf-260, and laid claim to its dis- competing claims for priority of CELEBRATING 101-109 at its 39th general as- covery They named the element "ruther- discovery of elements 101-112. C&EN'S sembly in Geneva in 1997. The fordium" after New Zealand-born physicist The group first met in Bayeux, 80TH names met with widespread ap- The Berkeley team proposes that element 105 be named Ernest Rutherford (1871-1937), who won France, in February 1988. It pub- ANNIVERSARY proval. Elements 105 and 106 the Nobel Prize in Chemistry in 1908 "for lished its final report five years were named dubnium (symbol his investigations into the disintegration later in August 1993. Db) and seaborgium (Sg), respectively, and of the elements and the chemistry of ra- For rutherfordium, it concluded: "The element 104, 28 years after its discovery, hahnium…to honor Otto Hahn….it will probably be several dioactive substances." chemical experiments in Dubna [published was finally named rutherfordium (Rf). In view of the wrangle over the discovery in 1969 and 1970] and the Berkeley ex- and names of element 104 and other trans- periments [published in 1969] were es- London-based C&EN Senior Correspondent fermium elements, IUPAC adopted a pro- sentially contemporaneous and each show Michael Freemantle reports primarily on years before these elements are named officially by the visional naming system for these elements that element 104 had been produced. developments in European chemistry and sci- based on their atomic numbers. Ruther- Credit should be shared." ence policy. He was IUPAC information officer fordium was named "unnilquadium," which In 1994, IUPAC revealed its recom- from 1985to 1994. International Union for Pure and Applied Chemistry HTTP://WWW.CEN-ONLINE.ORG C&EN / SEPTEMBER 8, 2003 181 [IUPAC]….This delay is caused by claims by Soviet scientists that they discovered elements 104 and 105 in 1968.”2 In June 1974, C&EN reported the discovery of the then newest element 106… “The creation of element 106 is ‘without any scientific doubt.’ Thus did Albert Ghiorso of Lawrence Berkeley Laboratory formally certify the laboratory’s production of the new element.”3 This announcement was also not without controversy… “The Berkeley announcement may raise new debate between LBL and the Soviet Union’s Joint Institute for Nuclear Research….As with elements 104 and 105 earlier…a group of Dubna scientists…has claimed to have made element 106.”3 Discover It All from the ACS Web Editions Platform! ReaD THE Although elements 104, 105, and 106 were first discovered in the 60s and 70s, the controversy over who deserved credit and how the elements would be ARTICLES! named continued for decades. A 1994 C&EN article reported… “…IUPAC has revealed…its 1. RUTHERFORDIUM recommendations for naming elements 101 to 109….Most Chem. Eng. News, 2003, contentious are the names chosen 81 (36), p 181 for elements 104, 105, and 106. DOI: 10.1021/cen- Groups at Lawrence Berkeley v081n036.p181 Laboratory…and at the Joint Institute for Nuclear Research…have competing claims….An international 2. ELEMENT 105 IS committee…decided in 1992 that LONG-LIVED the groups should share credit. But Chem. Eng. News, 1970, IUPAC chose two Russian-proposed 48 (19), p 9 names—dubnium and joliotium— DOI: 10.1021/cen- for 104 and 105…”4 v048n019.p009 Researchers at Lawrence Berkeley Laboratory were particular upset over IUPAC’s 3. U.S. ScienTISTS naming of element 106… “The U.S. team that discovered element 106 proposed that it be named PRODUCE elemenT 106 ‘seaborgium’ after Nobel Laureate Glenn T. Seaborg….but IUPAC rejected Chem. Eng. News, 1974, ‘seaborgium’ because it’s based on the name of a living person….Seaborg 52 (37), pp 4–5 and colleagues at Berkeley expressed astonishment to C&EN, calling IUPAC’s DOI: 10.1021/cen- recommended names…‘almost unbelievable.’”4 v052n037.p004a The naming of elements 104, 105, and 106 was not resolved until 1997, when IUPAC finalized their names along with several other controversial elements… 4.
Recommended publications
  • Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding.
    [Show full text]
  • George De Hevesy in America
    Journal of Nuclear Medicine, published on July 13, 2019 as doi:10.2967/jnumed.119.233254 George de Hevesy in America George de Hevesy was a Hungarian radiochemist who was awarded the Nobel Prize in Chemistry in 1943 for the discovery of the radiotracer principle (1). As the radiotracer principle is the foundation of all diagnostic and therapeutic nuclear medicine procedures, Hevesy is widely considered the father of nuclear medicine (1). Although it is well-known that he spent time at a number of European institutions, it is not widely known that he also spent six weeks at Cornell University in Ithaca, NY, in the fall of 1930 as that year’s Baker Lecturer in the Department of Chemistry (2-6). “[T]he Baker Lecturer gave two formal presentations per week, to a large and diverse audience and provided an informal seminar weekly for students and faculty members interested in the subject. The lecturer had an office in Baker Laboratory and was available to faculty and students for further discussion.” (7) There is also evidence that, “…Hevesy visited Harvard [University, Cambridge, MA] as a Baker Lecturer at Cornell in 1930…” (8). Neither of the authors of this Note/Letter was aware of Hevesy’s association with Cornell University despite our longstanding ties to Cornell until one of us (WCK) noticed the association in Hevesy’s biographical page on the official Nobel website (6). WCK obtained both his undergraduate degree and medical degree from Cornell in Ithaca and New York City, respectively, and spent his career in nuclear medicine. JRO did his nuclear medicine training at Columbia University and has subsequently been a faculty member of Weill Cornell Medical College for the last eleven years (with a brief tenure at Memorial Sloan Kettering Cancer Center (affiliated with Cornell)), and is now the program director of the Nuclear Medicine residency and Chief of the Molecular Imaging and Therapeutics Section.
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • A Brief History of Nuclear Astrophysics
    A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J.
    [Show full text]
  • Europe's Biggest General Science Conference Concludes Successfully
    SCIENCEScience PagesPAGES Special Report - ESOF 2016 Europe’s biggest generalSpecial Report science conference concludes successfully ESOF 2016, Europe's biggest general science conference concludes successfully in Manchester,in Manchester,UK UK Theme: Science as Revolution Theme: Science as Revolution - Veena Patwardhan rom 23rd to 27th July, 2016, FManchester flaunted its City of Science status as the host city of the seventh edition of EuroScience Open Forum (ESOF 2016). A bi- ennial event held in a different European city every two years, this time it was Manchester's turn to host this globally reputed science conference. Around 4500 delegates – scien- tists, innovators, academics, young researchers, journalists, policy makers, industry representatives and others – converged on the world's first industrial city to dis- cover and have discussions about the latest advancements in scien- rd th Manchester Central, venue of ESOF 2016 tific and technological researchFrom 23 to 27 July, 2016, Manchester flaunted its City of Science status as the host city of the across Europe and beyond. The seventhmain theme edition this of EuroScienceyear Laureates Open Forumand distinguished (ESOF 2016). Ascientists biennial inevent the held packed in a different was 'Science as Revolution', indicatingEuropean that city the every focus two of years,Exchange this time Hall it wasof Manchester Manchester's Central, turn to hostthe venuethis globally of the reputed the conference would be on how sciencescience andconference. technology conference. could transform life on the planet, revolutionise econo- The proceedings began with a string quartet render- mies, and help in overcoming challenges faced by global ing a piece of specially composed music.
    [Show full text]
  • The Nobel Laureate George De Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany
    Open Access SAJ Biotechnology LETTER ISSN: 2375-6713 The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany *Corresponding author: Niese S, Am Silberblick 9, 01723 Wilsdruff, Germany, Tel: +49 35209 22849, E-mail: [email protected] Citation: Niese S, The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine. SAJ Biotechnol 5: 102 Article history: Received: 20 March 2018, Accepted: 29 March 2018, Published: 03 April 2018 Abstract The scientific work of the universal genius the Nobel Laureate George de Hevesy who has discovered and developed news in physics, chemistry, geology, biology and medicine is described. Special attention is given to his work in life science which he had done in the second half of his scientific career and was the base of the development of nuclear medicine. Keywords: George de Hevesy; Radionuclides; Nuclear Medicine Introduction George de Hevesy has founded Radioanalytical Chemistry and Nuclear Medicine, discovered the element hafnium and first separated stable isotopes. He was an inventor in many disciplines and his interest was not only focused on the development and refinement of methods, but also on the structure of matter and its changes: atoms, molecules, cells, organs, plants, animals, men and cosmic objects. He was working under complicated political situation in Europe in the 20th century. During his stay in Germany, Austria, Hungary, Switzerland, Denmark, and Sweden he wrote a lot papers in German. In 1962 he edited a large part of his articles in a collection where German papers are translated in English [1].
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Atomic Properties of the Elements
    P E R I O D I C T A B L E Group 1 18 IA Atomic Properties of the Elements VIIIA 2 1 S FREQUENTLY USED FUNDAMENTAL PHYSICAL CONSTANTS§ S 1 1/2 Physical Measurement Laboratory www.nist.gov/pml 2 0 1 second = 9 192 631 770 periods of radiation corresponding to the H transition between the two hyperfine levels of the ground state of 133Cs Standard Reference Data www.nist.gov/srd He 1 Hydrogen −1 § For the most accurate Helium speed of light in vacuum c 299 792 458 m s (exact) values of these and 1.008* −34 4.002602 2 1s 2 Planck constant h 6.626 070 x 10 J s ( ħ /2 ) other constants, visit 13 14 15 16 17 1s −19 13.5984 IIA elementary charge e 1.602 177 x 10 C physics.nist.gov/constants IIIA IVA VA VIA VIIA 24.5874 −31 2 1 electron mass me 9.109 384 x 10 kg 2 3 4 3 2 1 3 S1/2 4 S0 2 5 P°1/2 6 P0 7 S3/2° 8 P2 9 P3/2° 10 S0 mec 0.510 999 MeV −27 Solids Li Be proton mass mp 1.672 622 x 10 kg B C N O F Ne 2 Lithium Beryllium fine-structure constant 1/137.035 999 Liquids Boron Carbon Nitrogen Oxygen Fluorine Neon 6.94* 9.0121831 −1 10.81* 12.011* 14.007* 15.999* 18.99840316* 20.1797 Rydberg constant R 10 973 731.569 m 2 2 2 Gases 2 2 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 15 1s 2s 2p 1s 2s 1s 2s 1s 2s 1s 2s 1s 2s 1s 2s R c 3.289 841 960 x 10 Hz 2p 2p 1s 2s 2p 2p 2p 5.3917 9.3227 Artificially 8.2980 11.2603 14.5341 13.6181 17.4228 21.5645 R hc 13.605 693 eV 2 1 -19 Prepared 2 3 4 3 2 1 11 S1/2 12 S0 electron volt eV 1.602 176 6 x 10 J 13 P1/2° 14 P0 15 S3/2° 16 P2 17 P3/2° 18 S0 −23 −1 Boltzmann constant k 1.380 65 x 10 J K −1 −1 Na Mg molar gas constant
    [Show full text]
  • Quest for Superheavy Nuclei Began in the 1940S with the Syn­ Time It Takes for Half of the Sample to Decay
    FEATURES Quest for superheavy nuclei 2 P.H. Heenen l and W Nazarewicz -4 IService de Physique Nucleaire Theorique, U.L.B.-C.P.229, B-1050 Brussels, Belgium 2Department ofPhysics, University ofTennessee, Knoxville, Tennessee 37996 3Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 4Institute ofTheoretical Physics, University ofWarsaw, ul. Ho\.za 69, PL-OO-681 Warsaw, Poland he discovery of new superheavy nuclei has brought much The superheavy elements mark the limit of nuclear mass and T excitement to the atomic and nuclear physics communities. charge; they inhabit the upper right corner of the nuclear land­ Hopes of finding regions of long-lived superheavy nuclei, pre­ scape, but the borderlines of their territory are unknown. The dicted in the early 1960s, have reemerged. Why is this search so stability ofthe superheavy elements has been a longstanding fun­ important and what newknowledge can it bring? damental question in nuclear science. How can they survive the Not every combination ofneutrons and protons makes a sta­ huge electrostatic repulsion? What are their properties? How ble nucleus. Our Earth is home to 81 stable elements, including large is the region of superheavy elements? We do not know yet slightly fewer than 300 stable nuclei. Other nuclei found in all the answers to these questions. This short article presents the nature, although bound to the emission ofprotons and neutrons, current status ofresearch in this field. are radioactive. That is, they eventually capture or emit electrons and positrons, alpha particles, or undergo spontaneous fission. Historical Background Each unstable isotope is characterized by its half-life (T1/2) - the The quest for superheavy nuclei began in the 1940s with the syn­ time it takes for half of the sample to decay.
    [Show full text]
  • Chair's Message Making Chemical Testing Relevant to Breast Cancer
    Newsletter February 2011 Santa Clara Valley Section American Chemical Society Volume 33 No. 2 FEBRUARY 2011 NEWSLETTER TOPICS March Dinner Meeting • March Dinner Meeting: Making Making Chemical Testing Chemical Testing Relevant to Breast Cancer Relevant to Breast Cancer • Chair’s Message Dr. Megan R. Schwarzman • February Dinner Meeting: Sex, Love Abstract ductive environmental health, and Oxytocin Although breast cancer is U.S. and European chemicals one of the leading causes of can- policy, and the implications for • Welcome to the Santa Clara Valley cer and death in women, even human health and the environ- Section of ACS the small numbers of chemicals ment of the production, use and • New Members List for December that undergo safety testing are disposal of chemicals and prod- • Volunteer with Kids and Chemistry not routinely evaluated for their ucts. She is a research scientist at impacts on mammary (breast) the Center for Occupational and • Black History Month tissue. Likewise, there is no well- Environmental Health (COEH), • Committee Chair Needed established set of tests for screen- in UC Berkeley’s School of Public • Albert Ghiorso, Nuclear Researcher ing chemicals for their ability to raise the risk Health, and Associate Director of Health and • SPLASH is Coming to Stanford of breast cancer. Environment for the interdisciplinary In 2010, Dr. Schwarzman served as continued on next page Principal Investigator of a project to tackle this Chair's Message issue. The Breast Cancer and Chemicals Policy project, supported by a grant from the March Dinner Meeting As I write this, California Breast Cancer Research Program, Joint Meeting with Palo Alto AWIS we’ve just experi- convened a panel of 20 scientists and policy enced a New Year experts to review the biological mechanisms Date: Wednesday, March 23, 2011 celebration and associated with breast cancer and propose a Time: 7:00 Networking Dinner jumped into the strategy for screening and identifying chemi- 7:30-7:45 Announcements International Year of cals that could increase the risk of the disease.
    [Show full text]
  • Interactive Chemistry Exhibition
    United Nations International Year All-Russian United Nations International Year All-Russian Educational, Scientific and of the Periodic Table Science Educational, Scientific and of the Periodic Table Science Cultural Organization of Chemical Elements Festival Cultural Organization of Chemical Elements Festival Science for All: Interactive Chemistry Exhibition The Management Committee of the International Year of the Periodic Table of Chemical Elements (IYPT2019) in partnership with All - Russian Science Festival invites you to visit an Interactive Exhibition on Chemistry at UNESCO Headquarters from 28 to 30 January 2019. Launched as part of the Opening Ceremony of the International Year of the Periodic Table of Chemical Elements (IYPT2019) on January 29th, this exhibition will travel around the world during the year 2019. Science for All: Interactive Chemistry Exhibition - an exciting journey into the world of «living» Chemistry where you will have the opportunity to feel like a real scientist, to carry out a series of chemical experiments, discover the history, immerse yourself into virtual reality and explore outer space. 1. Historical zone. Take a selfie in Mendeleev’s Cabinet This year, it is a century and a half since the creation of the Periodic Table. In 1869 there were no Internet, computers, smartphones and many other modern devices. We reconstructed the study of a chemist who worked in the nineteenth century. In the exhibition, visitors can see the basic scientific tools of that time, look at the first publication of the Table, and even take a selfie with its creator, Dmitrii Ivanovich Mendeleev. 2. Zone of space. Find out where it all came from How did hydrogen appear? And Iron? And what about Gold? Answers to these seemingly simple questions lie in the depths of the Universe.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]