Requirements for the Internet, from RE'03

Total Page:16

File Type:pdf, Size:1020Kb

Requirements for the Internet, from RE'03 Requirements for the Internet Vinton G. Cerf Senior Vice President, Architecture and Technology MCI Communications Corporation Ashburn, VA 20147 U.S.A. [email protected] The requirements for the Internet emerged in part from g Providing for host-to-host ªpipeliningº so the practical experiences drawn from the development, that multiple packets could be enroute from deployment and use of the ARPANET. Bob Kahn was source to destination at the discretion of the one of the principal design architects of the ARPANET participating hosts, if the intermediate net- packet switch (Interface Message Processor) while he works allowed it. worked at Bolt Beranek and Newman. Bob joined the g Gateway functions to allow it to forward Defense Advanced Research Projects Agency in late 1972 packets appropriately. This included inter- and outlined his requirements for network evolution that preting IP headers for routing, handling inter- year [3] (quoted with minor punctuation correction): faces, breaking packets into smaller pieces if necessary, etc. Four ground rules were critical to Kahn's early g The need for end-end checksums, reassembly thinking: of packets from fragments and detection of g Each distinct network would have to stand on duplicates, if any. its own and no internal changes could be re- g The need for global addressing quired to any such network to connect it to g Techniques for host-to-host ¯ow control. the Internet. g Interfacing with the various operating sys- g Communications would be on a best effort tems basis. If a packet didn't make it to the ®nal g There were also other concerns, such as destination, it would shortly be retransmitted implementation ef®ciency, internetwork per- from the source. formance, but these were secondary con- g Black boxes would be used to connect the siderations at ®rst. networks; these would later be called gate- ways and routers. There would be no infor- In our discussions that started in early 1973 on the mation retained by the gateways about the question of networking, Bob and I considered speci®cally individual ¯ows of packets passing through the problem of interconnecting a mobile packet radio net- them, thereby keeping them simple and work (PRNET), a multi-access packet satellite network avoiding complicated adaptation and recov- (SATNET) and the wireline ARPANET. Bob's Open Ar- ery from various failure modes. chitecture ideas clearly took root in the design of the TCP g There would be no global control at the oper- (later TCP/IP) protocol [1, 2]. ations level. The requirement that the networks comprising the Other key issues that needed to be addressed Internet NOT be modi®ed led directly to the need for were: gateways (now called routers) and to the need for a global address space orthogonal to any intra-network addressing g Algorithms to prevent lost packets from per- structure. The need for end-to-end reliability led to the manently disabling communications and en- retransmission mechanisms of TCP. Flow control was a abling them to be successfully retransmitted known requirement because not all hosts would be equal from the source. in capacity to send or receive data, and the network could 1 potentially be congested. A great deal of attention was The advent of voice over IP has created new require- paid to the problem of long-delayed packets that might ar- ments for interlinking of the public switched telephone rive at a most inconvenient time for the TCP protocol. network and/or private branch networks with the public Implementation experience with the December 1974 TCP Internet and with private IP networks. The mechanisms speci®cation [1] led directly to the addition of a ªthree- proposed to support this requirement are found in the way handshakeº to establish the initial sequence numbers ENUM extensions to the DNS. In effect, ENUM maps for each direction of the bisymmetric TCP ¯ow. international E.164 telephone numbers into Universal It was understood, if dimly, that classes of service Resource Identi®ers through a potentially iterative system would need support, hence the TCP/IP packet header con- of regular expression evaluations embedded in the DNS. tained ¯ags for ªreliability,º ªspeed,º or both. With re- A new DNS record type, the Naming Authority Pointer gard to speed (timeliness of delivery), the motivation for (NAPTR) is the active component of this design. breaking out the IP protocol from TCP was precisely the The creation of the World Wide Web has underscored carriage of real-time speech over the Internet. This appli- the value of streaming audio and video and real-time pro- cation favored rapid transport over absolute reliability. tocols for interactive services including multi-party role Eventually UDP and higher level real-time protocols playing games. emerged that avoided the use of TCP for streaming audio, The notion of virtualizing computing and storage re- video and real-time gaming. sources on the Internet has led to the concept of the global As the number of networks comprising the Internet GRID and the so-called GLOBUS protocols. Among increased. it became clear that the original 256 network these are SOAP, XML, UDDI and others. design was inadequate so the 32-bit IP address structure A major missing requirement from the initial Internet was altered to allow for a much larger number of net- design was security and authenticity. Although much works (about 2 million) through the introduction of Class effort went into making the system robust against random A, B, C and D networks. Eventually even this method failures, it was not proof against deliberate attacks. There proved inadequate and Classless Inter-Domain Routing was a version designed for use by the military that made (CIDR) was introduced to create additional ¯exibility in heavy use of end-to-end packet encryption and that ver- subnetwork sizing. sion was intended to provide considerable security. How- Not long after the roll out of TCP/IP, it became clear ever the details were and are classi®ed and the public sys- that the routing table (the so-called Host.Txt ®le) would tem does not have these features, yet. not scale to the tens to hundreds of thousands of hosts on the Internet so the table was replaced by a distributed References design for host naming called Domain Name System (DNS) and was developed beginning about 1984 by Paul [1] Cerf, V.G. and Kahn, R.E., ªA Protocol for Packet Network Mockapetris and Jon Postel. This hierarchical system has Interconnectionº, IEEE Transactions on Communication scaled to tens of milliions of hosts in the network. The Technology COM-22(5), pp. 627±641 (May 1974). commercialization of the Internet brought new require- [2] Cerf, V.G., Dalal, Y., and Sunshine, C., ªSpeci®cation of ments to the DNS, particularly with regard to competi- Internet Transmission Control Programº, Request for Com- ments, RFC675, Network Working Group, (December tion, intellectual property protection and dispute resolu- 1974), http://www.faqs.org/rfcs/rfc675.html. tion. [3] Leiner, B.M., Cerf, V.G., Clark, D.D., Kahn, R.E., Klein- The growing Internet created its own requirements for rock, L., Lynch, D.C., Postel, J., Roberts, L.G., and , S. scalable routing and that led to the development and evo- Wolff, ªA Brief History of the Internetº, Internet Society lution of the so-called Border Gateway Protocol. This sys- (ISOC), Reston, VA (2000), tem was designed to be used in conjunction with some http://www.isoc.org/internet/history/brief.shtml#Introduction. care in IP address assignment so as to allow consolidation of the global routing tables to keep their absolute size and update requirements under control. Intranet routing proto- cols such as IS-IS and OSPF re¯ected similar needs for scalability and hierarchical structure. The evolution of email brought a new set of require- ments, some of which were re¯ected in extensions to the DNSÐin particular, the creation of the MX record to allow a single MTA to serve multiple apparent email do- mains. 2.
Recommended publications
  • The Internet Development Process Stockholm October 2010
    The Internet development Process Stockholm October 2010 Pål Spilling What I would talk about? • The main Norwegian contributions • Competitions between alternatives • Did Norway benefit from its participation? • Some observations and reflections • Conclusion A historical timeline 1981/82 TCP/IP accepted standard for US 1993 Web browser Mosaic Defence became available 1980 TCP/IP fully 2000 developed 1975 Start of the Internet Project; 1974 Preliminary specificaons of TCP 1977 First 3 – network Demonstration Mid 1973 ARPANET covers US, Hawaii, FFI Kjeller, and UCL London 1950 1955 ‐1960, End 1968 Ideas of resource Start of the ARPANET sharing networks project Norway and UK on ARPANET 1973 London o SATNET o Kjeller Norwegian Contributions • SATNET development – Simulations – Performance measurements • Internet performance measurements • Packet speech experiments over the Internet • Improved PRNET protocol architecture Competitions between alternatives • X.25 (ITU) • ISO standards (committee work) • DECNET (proprietary) • IBM (proprietary) • TCP/IP demonstrated its usefullness i 1977 accepted as a standard for US defence Norwegian benefits • Enabled me to create a small Norwegian internet • Got access to UNIX, with TCP/IP and user services integrated • Gave research scientists early exposure to internet and its services • Early curriculum in computer communications; Oslo University Observations and reflections • Norwegian Arpanet Committee; dissolved itself due to lack of interest • IP address space too small for todays use • TCP split in
    [Show full text]
  • Adding Enhanced Services to the Internet: Lessons from History
    Adding Enhanced Services to the Internet: Lessons from History kc claffy and David D. Clark [email protected] and [email protected] September 7, 2015 Contents 1 Introduction 3 2 Related technical concepts 4 2.1 What does “enhanced services” mean? . 4 2.2 Using enhanced services to mitigate congestion . 5 2.3 Quality of Service (QoS) vs. Quality of Experience (QoE) . 6 2.4 Limiting the use of enhanced services via regulation . 7 3 Early history of enhanced services: technology and operations (1980s) 7 3.1 Early 1980s: Initial specification of Type-of-Service in the Internet Protocol suite . 7 3.2 Mid 1980s: Reactive use of service differentation to mitigate NSFNET congestion . 10 3.3 Late 1980s: TCP protocol algorithmic support for dampening congestion . 10 4 Formalizing support for enhanced services across ISPs (1990s) 11 4.1 Proposed short-term solution: formalize use of IP Precedence field . 11 4.2 Proposed long-term solution: standardizing support for enhanced services . 12 4.3 Standardization of enhanced service in the IETF . 13 4.4 Revealing moments: the greater obstacle is economics not technology . 15 5 Non-technical barriers to enhanced services on the Internet (2000s) 15 5.1Early2000s:afuneralwakeforQoS............................ 15 5.2 Mid 2000s: Working with industry to gain insight . 16 5.3 Late 2000s: QoS becomes a public policy issue . 17 6 Evolving interconnection structure and implications for enhanced services (2010s) 20 6.1 Expansion of network interconnection scale and scope . 20 6.2 Emergence of private IP-based platforms to support enhanced services . 22 6.3 Advancing our empirical understanding of performance impairments .
    [Show full text]
  • Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
    Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network.
    [Show full text]
  • 829 DARPA November 1982 PACKET SATELLITE TECHNOLOGY
    Network Working Group V. Cerf Request for Comments: 829 DARPA November 1982 PACKET SATELLITE TECHNOLOGY REFERENCE SOURCES Vinton G. Cerf Defense Advanced Research Projects Agency ABSTRACT This paper describes briefly the packet satellite technology developed by the Defense Advanced Research Projects Agency and several other participating organizations in the U.K. and Norway and provides a biblography of relevant papers for researchers interested in experimental and operational experience with this dynamic satellite-sharing technique. INTRODUCTION Packet Satellite technology was an outgrowth of early work in packet switching on multiaccess radio channels carried out at the University of Hawaii with the support of the Defense Advanced Research Projects Agency (DARPA). The primary difference between the earlier packet-switched ARPANET [1, 2] and the ALOHA system developed at the University of Hawaii [3] was the concept of multiple transmitters dynamically sharing a common and directly-accessible radio channel. In the ARPANET, sources of traffic inserted packets of data into the network through packet switches called Interface Message Processors (IMPs). The IMPs used high speed point-to-point full-duplex telephone circuits [4] on a store-and-forward basis. All packet traffic for a given telephone circuit was queued, if necessary, in the IMP and transmitted as soon as the packet reached the head of the queue. On such full duplex circuits there is exactly one transmitter and one receiver in each direction. The ALOHA system, on the other hand, assigned a common transmit channel frequency to ALL radio terminals. A computer at the University of Hawaii received packet bursts from the remote terminals which shared the "multi-access" channel.
    [Show full text]
  • The Internet Development Process: Observations and Reflections
    The Internet Development Process: Observations and Reflections Pål Spilling University Graduate Center (UNIK), Kjeller, Norway [email protected] Abstract. Based on the experience of being part of the team that developed the internet, the author will look back and provide a history of the Norwegian participation. The author will attempt to answer a number of questions such as why was The Norwegian Defense Research Establishment (FFI) invited to participate in the development process, what did Norway contribute to in the project, and what did Norway benefit from its participation? Keywords: ARPANET, DARPA, Ethernet, Internet, PRNET. 1 A Short Historical Résumé The development of the internet went through two main phases. The first one laid the foundation for packet switching in a single network called ARPANET. The main idea behind the development of ARPANET was resource sharing [1]. At that time computers, software, and communication lines were very expensive, meaning that these resources had to be shared among as many users as possible. The development started at the end of 1968. The U.S. Defense Advanced Research Project Agency (DARPA) funded and directed it in a national project. It became operational in 1970; in a few years, it spanned the U.S. from west to east with one arm westward to Hawaii and one arm eastward to Kjeller, Norway, and then onwards to London. The next phase, the “internet project,” started in the latter half of 1974 [2]. The purpose of the project was to develop technologies to interconnect networks based on different communication principles, enabling end-to-end communications between computers connected to different networks.
    [Show full text]
  • Securing the Border Gateway Protocol by Stephen T
    September 2003 Volume 6, Number 3 A Quarterly Technical Publication for From The Editor Internet and Intranet Professionals In This Issue The task of adding security to Internet protocols and applications is a large and complex one. From a user’s point of view, the security- enhanced version of any given component should behave just like the From the Editor .......................1 old version, just be “better and more secure.” In some cases this is simple. Many of us now use a Secure Shell Protocol (SSH) client in place of Telnet, and shop online using the secure version of HTTP. But Securing BGP: S-BGP...............2 there is still work to be done to ensure that all of our protocols and associated applications provide security. In this issue we will look at Securing BGP: soBGP ............15 routing, specifically the Border Gateway Protocol (BGP) and efforts that are underway to provide security for this critical component of the Internet infrastructure. As is often the case with emerging Internet Virus Trends ..........................23 technologies, there exists more than one proposed solution for securing BGP. Two solutions, S-BGP and soBGP, are described by Steve Kent and Russ White, respectively. IPv6 Behind the Wall .............34 The Internet gets attacked by various forms of viruses and worms with Call for Papers .......................40 some regularity. Some of these attacks have been quite sophisticated and have caused a great deal of nuisance in recent months. The effects following the Sobig.F virus are still very much being felt as I write this. Fragments ..............................41 Tom Chen gives us an overview of the trends surrounding viruses and worms.
    [Show full text]
  • 1 What Is the Internet (And What Makes It Work)
    What Is The Internet (And What Makes It Work) - December, 1999 By Robert E. Kahn and Vinton G. Cerf In this issue: INTRODUCTION THE EVOLUTION OF THE INTERNET THE INTERNET ARCHITECTURE GOVERNMENT S HISTORICAL ROLE A DEFINITION FOR THE INTERNET WHO RUNS THE INTERNET WHERE DO WE GO FROM HERE? This paper was prepared by the authors at the request of the Internet Policy Institute (IPI), a non-profit organization based in Washington, D.C., for inclusion in their upcoming series of Internet related papers. It is a condensation of a longer paper in preparation by the authors on the same subject. Many topics of potential interest were not included in this condensed version because of size and subject matter constraints. Nevertheless, the reader should get a basic idea of the Internet, how it came to be, and perhaps even how to begin thinking about it from an architectural perspective. This will be especially important to policy makers who need to distinguish the Internet as a global information system apart from its underlying communications infrastructure. INTRODUCTION As we approach a new millennium, the Internet is revolutionizing our society, our economy and our technological systems. No one knows for certain how far, or in what direction, the Internet will evolve. But no one should underestimate its importance. Over the past century and a half, important technological developments have created a global environment that is drawing the people of the world closer and closer together. During the industrial revolution, we learned to put motors to work to magnify human and animal muscle power.
    [Show full text]
  • BBN Report 4526
    Bolt Beranek and Newman Inc. I Report No. 4526 SAD A0931 64 I Combined Quarterly Technical Report No. 19 SATNET Development and Operation Remote Site Maintenance Internet Development I Mobile Access Terminal Network TCP for the HP3000 b # 1 TCP for VAX-UNIX 1 * November 1980 Prepared for: Defense Advanced Research Projects Agency [A so 12 2211 UNCLASSIFIED SECURITY CL.ASSIFICATION OF THIS PACE (NWmeDae 8stsmo' REPORT DOCUMENTATION PAGE REA COMPTIMORM 1. REPORT JM M S.OVT ACCmawON 00: CIVICRAI CATALOG M6W 4. TITLE (and iubeeeej S. TYPE OFR PORT&EROD OEE COMBINED QUARTERLY TECHNICAL REPORT No. 19 8/1/80 to 10/31/80 &- PERFORMuING *MG. REPORT NUMBER AU heNe) 5~g..e~o~U4526- - MDA9O380-C-0 53 & 0214 R. D. Bressler N0039-78-C-0405 9. PERPORMING ORANIZAl ION NAME AND ADDRESS 10. PRoGRAM ELCMEN4T.PROJECT. TASK Bolt Beranek and Newman Inc. AP U ORe UNoI. 32V1 50 Moulton Street ARP arerNds321751 Cambridge, MA 02238an3157 IL. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Defense Advanced Research Projects Agency November 1980 1400 Wilson Blvd. tO. NUMBER OF PAGESI Arlington, VA 22209 130 14. MONITORING AGENCY NAME & ADDRES(a diffe-ftI frw Cau,.ffej Offce) IS. SECURITY CLASS. (at this iep.A) DSSW NAVALEX Rm. 1D, The Pentagon Washington, DC UCASFEUNCLASSIFIED____ Washington, DC 20310 20360 Its Ok-C.IICATION'oOWNmAsW~a IS. DISTRIBUTION STATEL4MN (efthis Report) J APPROVED FOR PUBLIC RELEASE/DISTRIBUTION UNLIMITED J Il~~1.DISTRIBUTION STATEMENT (offf he'*laoei fe, #&Mocek 2S. 0411 affrIfme Mahpsf) I0. SUPPLEMENTARY NOTES to. Key WORDS (Cwheso Vero Rwio& of 80aeend 1~10U~ by mesh 'Mae) Computer networks, packets, packet broadcast, satellite communication gateways, Transmission Control Program, UNIX, Pluribus Satellite IMP, Remote Site Module, Remote Site Maintenance, shipboard communications, - - Terminal Access Controller, VAX.
    [Show full text]
  • Who Invented the Internet? 1958-1961: Connect Computers?
    How did the Internet come to be? ❒ It started as a research project to experiment with connecting computers together with packet switched 2: Internet History networks. It was developed with funding and leadership of the Defense Last Modified: Department’s Advanced Research Projects Agency (ARPA). 1/20/2003 12:46:58 PM -1 -2 Who invented the Internet? 1958-1961: Connect Computers? ❒ Al Gore? No ☺ ❒ 1958 – After USSR launches Sputnik, first artificial earth satellite, US forms the Advanced ❒ Leonard Kleinrock who did early work in Research Projects Agency (ARPA), the following packet switching? year, within the Department of Defense (DoD) to ❒ Vint Cerf and Robert Kahn who defined the establish US lead in science and technology "Internet Protocol" (IP) and participated in applicable to the military the development of TCP? ❒ 1961 – First published work on packet switching ❒ (“Information Flow in Large Communication Nets”, Tim Berners-Lee developed HTTP to Leonard Kleinrock, MIT graduate student) support a global hyper-text system he ❒ 1964 – other independent work in packet switching called the World Wide Web? (Internet vs at RAND Institute and National Physics the World Wide Web?) Laboratory in England -3 -4 1966 –1968: Connect 1969: First Connections Computers? Funded ❒ 1966 – Lawrence Roberts (colleague of ❒ 4/7/1969 – First RFC (“Host Software” by Kleinrock from MIT) publishes overall plan Steve Crocker) basis for the Network for an ARPAnet, a proposed packet switch Control Protocol(NCP) network ❒ 9/2/1969 – Leonard Kleinrock’s computer
    [Show full text]
  • Internet History and Future
    City with Connectivity and Technology Science and Innovation Week Internet History and Future Dr. Lawrence Roberts Founder, Chairman, Anagran SLIDE 1 | © 2010 ANAGRAN, INC. Early Packet Switching History Redundancy Rand Report IEEE paper 0.85716 Paul Routing ARPANET Program Baran Economics0.7143 Rand IFIP paper ACM paper Donald Davies 0.57144 Topology NPL Len Kleinrock 0.42858 Queuing MIT Roberts RLE Report Larry Roberts Davies & & Marill Scantlebury 0.28572 MIT ARPA Protocol Book “Communication Nets” NPL J.C.R. Licklider - Intergalactic Network One Node 0.14286 TX-2-SDC 2 Node Exp IEEE papers Experiment INTERNET FJCC Paper ACM paper 3 nodes 13 20 38 SJCC Paper 0 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 SLIDE 2 | © 2010 ANAGRAN, INC. The Beginning of the Internet and ARPANET became the Internet 1965 – MIT- 2 Computer Experiment Roberts designs packet structure Len Kleinrock – queuing theory 1967 – Roberts moved to ARPA Designs ARPANET 1969 – First 4 nodes installed UCLA, SRI, UCSB, University of Utah 1971 - Email created Main traffic soon 1972 – Bob Kahn joins Roberts at ARPA Roberts at MIT Computer 1973 – Roberts leaves and starts Telenet; first commercial packet carrier in the world 1974 – TCP design paper published by Bob Kahn and Vint Cerf 1983 – TCP/IP installed on ARPANET and required by DOD 1993 – Internet opened to commercial use SLIDE 3 | © 2010 ANAGRAN, INC. Original Internet Design - It Was Designed for Data File Transfer and Email main activities Constrained by high cost of memory Only Packet Destination Examined No Source Checks ARPANET 1971 No QoS No Security Best Effort Only Voice Considered Video thought not feasible Not much change in packet switching since then SLIDE 4 | © 2010 ANAGRAN, INC.
    [Show full text]
  • Design Philosophy of the DARPA Internet Protocols
    THE DESIGN PHILOSOPHY OF THE DARPA INTERNET PROTOCOL~S David D. Clark Massachusetts Institute of Technology Laboratory for Computer Science Cambridge, Ma. 02139 While specific information on the DOD protocols is fairly generally available’, 6. ‘, it is sometimes difficult to Abstract determine the motivation and reasoning which led to the design. The Internet protocol suite, TCP/IP, was first proposed fifteen years ago. It was developed by the Defense In fact, the design philosophy has evolved considerably Advanced Research Projects Agency (DARPA), and has from the first proposal to the current standards. For been used widely in military and commercial systems. example, the idea of the datagram, or connectionless While there have been papers and specifications that service, does not receive particular emphasis in the first describe how the protocols work, it is sometimes difficult paper, but has come to be the defining characteristic of to deduce from these why the protocol is as it is. For the protocol. Another example is the layering of the example, the Internet protocol is based on a architecture into the IP and TCP layers. This seems basic connectionless or datagram mode of service. The to the design, but was also not a part of the original motivation for this has been greatly misunderstood. This proposal. These changes in the Internet design arose paper attempts to capture some of the early reasoning through the repeated pattern of implementation and which shaped the Internet protocols. testing that occurred before the standards were set. The Internet architecture is still evolving. Sometimes a new extension challenges one of the design principles, I.
    [Show full text]
  • Computer Networks--The ALOHA System
    AD-AO9 684 HAWAIIUNIV AT NAHCA HONOLUPLUDEPT.OF ELECTRICAL ENS--CYC F/6 W/2 CoCpTJER NETWORS-THE ALOHASYSTEM. (U) MAY 81 F F KUO NOOO4-7S-C-099S UNCLASSIFIED CCIS-T NI. OMNIfflllfhhEE M11ICOP I2B 'AAR1 11111.2 1.4 MICROCOPY RLSOIIJIION IL SI CHARI LEVEL .~-'COMPUTER NETWORKS--THE ALOHA SYSTEMY. ?JA? by tv . I Proeso' Franklin F.j Kuo Professo-of Electrical Engineering University of Hawaii Honolulu, Hawaii 96822 ;j • The writing effort was supported by the Office of Naval Research under Contract No. N00014-C-78-0498. 81 5 08 016 %ECUt'UTY CLASSIFICATION OF THIS PAGE (Whien Does Entered) REPOT DCUMNTATONAGEREAD INSTRVCTIONS REPOT DCUMNTATONAGEBEFORE COMPLETING FORM I. REPCa 1-'? GOVT ACCESSION No, 3. RECIPIENT'S CATALOG NUMBER CCIS-7 -~_________ 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Computer Networks--The ALOHA System S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBERO'*) Franklin F. Kuo N00014-C-78-0498" S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA It WORK UNIT NUMBERS, Department of Electrical Engineering/ University of Hawaii at Manoa Honolulu, Hawaii 96822 _____________ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research May 1981 Code 437 13. NUMBER OF PAGES Arlingiton, VA 22217 13 14. MONITORING AGENCY NAME I ADORESS(1I different from Controlling Office) IS. SECURITY CLASS. (of thie repori) Unclassified ISM. DECILASSI FI CATION/ DOWNGRADING SCHEDULE IS. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) - - IS.
    [Show full text]