1992-01: Vintage Radio Receiver Design

Total Page:16

File Type:pdf, Size:1020Kb

1992-01: Vintage Radio Receiver Design When I Think Back... by Neville Williams Vintage radio receiver design - 6: Pentagrid converters, diode detectors and AGC 4 Once /5-valve superhets, as described in the November issue, had identified and established the prime suburban receiver market, manufacturers sought to devise ways and means of attracting buyer interest to their respective products. Some such measures were mainly cosmetic in the way of cabinetware and controls; others had to do with on-going circuit design and performance. As indicated in the November article, converter also employed a comparable coil L2 via the usual grid capacitor and the single most troublesome aspect of the concentric electrode structure. But in this grid leak. Note that the latter returned 4 first wave of /5-valve superhets was case there were five grids between directly to cathode, so that the only bias probably that of gain — or volume — cathode and anode — so arranged that would be that resulting from the oscil- control. It came about because the IF they could perform the dual function latory grid current — typically between amplifier stage was the only one avail- more flexibly than the existing autodyne 0.2 and 0.5mA. able for, gain control, and the range of ad- concept. Grid 2 served as the oscillator anode, justment was simply not sufficient to Fig.1, from an early RCA Receiving and connected through the oscillator embrace both maximum gain for weak Tube Manual, depicts the electrode struc- feedback winding L3 to an HT supply signals and minimum gain for powerful ture and the pin connections of the voltage in the range 100-200V. local stations. To make good the short- original 2A7 (applying also for the 6A7). As I recall from my days in the AW fall, it proved necessary also to attenuate Fig.2, from the same manual, shows Valve Co, grid 2, often described as the the antenna input signal for local stations RCA's typical circuit arrangement 'anode-grid', was a grid in name only, and this led to difficulties, as outlined in with the diagram of Fig.1 adding to the the earlier issue. Oscillator and mixer fiction. In practice, it was nothing more Smoother and more effective gain con- Grid 1, adjacent to the cathode, served than two bare side-rods, with no spiral trol could conceivably have been as the oscillator grid and connected to grid, as such. The rods were simply held achieved by using a variable-mu valve as the active end of the tuned oscillator in place by the mica electrode support a mixer, in conjunction with a separate discs, connected together and wired to oscillator valve. It would then have been the relevant base pin. possible, with one bias control poten- However, being relatively close to grid tiometer, to vary the signal conversion — 1 and cathode, and operating at 100V DC or translation — gain of the mixer, along or more, the anode-grid (or side rods) with the normal stage gain of the IF would typically draw around four mil- amplifier. The catch was that it would lamps, completing an inner triode that have transformed the receiver into a 5/6- was well able to oscillate in its own right valve set, with a consequent and unac- in conjunction with the associated tuned ceptable price increase. circuit formed by L3, L2 and C. It was left to the valve manufacturers Enclosing the inner triode — to solve the problem, by the release of cathode/G1/G2 — was a screen grid special frequency-changer or frequency designated as G3. Operating typically at `converter' valves which could perform 100V DC and bypassed to earth with an the functions of oscillator and mixer 0.1uF capacitor, it provided an electros- more or less independently. For the tatic shield around the inner electrodes Australian radio scene, the most notable and also accelerated towards the anode such valve was the American designed proper those sectors of the electron beam 2A7 pentagrid converter — which was that were not being attracted to the succeeded, in due course, by its 6.3V anode-grid side rods. counterpart the 6A7, and its octal- Immediately beyond this screen was based equivalents the 6A8, 6A8-G and the 'signal grid' G4, connected to the sig- 6A8-GT. STC's model 504E mantel radio of 1939 nal input tuned circuit Ll/C. Beyond this As a logical derivative of existing was fairly typical of sets using the again was another screen grid, 05. Con- tetrodes and pentodes, the pentagrid 6A8-4 a later version of the 2A7/6A7. nected internally to G3, this served the 56 ELECTRONICS Australia, January 1992 same purpose as the screen grid in an from the Philips 'octode', the American/- 1930's was commonly run through steel RF tetrode or pentode, by reducing the Australian made 2A7/6A7/-6A8 series conduit, which was subject to erratic ear- direct capacitance between signal grid reigned supreme in Australian thing by reason of rust and expan- and anode. receivers until the emergence of sion/contraction effects with variations in multiband receivers called for an up- ambient temperature. Given that Frequency conversion graded converter with better performance receivers were often plugged into lamp In normal operation, the wanted input at the higher frequencies. But that is sockets via 2-way adaptors, extension signal would be fed to G4, being im- another story. leads and/or bodgie power points, it pressed on the anode current much as it added up to a very unstable environment would in an ordinary tetrode or pentode Erratic sound level for incoming radio signals. mixer/amplifier. In the pentagrid struc- Adequate gain control per medium of ture, however, the electron stream had al- variable bias opened the way to the solu- Automatic gain control ready passed through 01 and thus been tion of another annoying problem in the While the immediate answer might modulated with the oscillator signal, early 1930's, namely a tendency for the have been installation of a new power deliberately tuned above the signal fre- volume level of receivers to vary spon- circuit and/or a better antenna and earth, quency by (typically) 455kHz. taneously and erratically. Having been an attractive proposition for manufac- Intermodulation — or heterodyne ef- set for comfortable listening, the volume turers was the incorporation of so-called fects — took place such that a multi- level, for no apparent mason, would sud- `AVC' (automatic volume control) whieh plicity of signal components appeared in denly become uncomfortably loud or would hopefully counteract changes in the anode current, including the original drop to a whisper — a situation which signal strength with an automatic and signal and oscillator frequencies plus resulted in numerous complaints and/or complementary readjustment of the direct harmonics of each and resultants at service calls. receiver gain. a variety of sum and differeme frequen- In a few cases the problem turned out It may be helpful to note here that, in cies. Most were rejected by the IF to be a faulty valve, a loose clip on the recent years, technical writers have amplifier system, which was pre-tuned to voltage divider, an intermittent cathode preferred the term AGC (automatic gain the intended intermediate or 'difference' control) to AVC. Not only it is more ac- frequency nominally 455kHz. curate, but it is also more appropriate If this sounds very like what was said what the technique is applied to video about the autodyne frequency changer or other equipment where the informa- in previous issues, it is, but with one tion being processed is something other vital difference: in the autodyne, the than sound waves. same control grid was directly involved AVC/AGC was not a new idea, having in both functions — oscillator and mixer. already been featured in up-market If a variable negative bias was placed receivers — as, for example, a 9-valve on the grid to reduce the conversion set manufactured in Sydney by Airzone gain of the mixer, it would ultimately for Palings and marketed, by arrange- interrupt the oscillator, rendering the ment, under the Victor label. receiver inoperative. The technique involved the use of a In the case of the pentagrid converter, diode detector, so wired that it would the inner triode was substantially unaf- deliver a demodulated audio signal plus a fected by what was happening in the negative DC voltage proportional to the outer mixer section, so that the receiver strength of the incoming carrier. By ap- designer was free to manipulate conver- Flg.1: Pin connections for the 2A7 plying the negative voltage to the vari- sion or 'translation' gain by applying a pentagrid converter, as viessvd from able-mu stages in lieu of a manually control bias to the signal grid G4. Valve the underside. The cathode, G1 and G2 controlled bias, the front-end gain of the designers made the best of the facility by provide the basic triode oscillator. receiver would diminish automatically givhig G4 a remote cut-off characteristic, with increasing signal strength — and comparable to that of contemporary vari- bypass, or such like. More commonly, no vice versa. able-mu RF pentodes. With increasing fault would be found and, back on the In short, it could obviate front-end bias, the translation gain of the 2A7 fell service bench, the set would perform per- overload by powerful local signals, ftom 520uS (microsiemens, or 11A/V, fectly. In such a case, attention would counteract the effect of abrupt changes in formerly called `mictomhos') at -3V to a focus on the electrical environment in signal strength and, by way of a bonus, mere 2uS at -45V. which the set was being operated.
Recommended publications
  • Valve Biasing
    VALVE AMP BIASING Biased information How have valve amps survived over 30 years of change? Derek Rocco explains why they are still a vital ingredient in music making, and talks you through the mysteries of biasing N THE LAST DECADE WE HAVE a signal to the grid it causes a water as an electrical current, you alter the negative grid voltage by seen huge advances in current to flow from the cathode to will never be confused again. When replacing the resistor I technology which have the plate. The grid is also known as your tap is turned off you get no to gain the current draw required. profoundly changed the way we the control grid, as by varying the water flowing through. With your Cathode bias amplifiers have work. Despite the rise in voltage on the grid you can control amp if you have too much negative become very sought after. They solid-state and digital modelling how much current is passed from voltage on the grid you will stop have a sweet organic sound that technology, virtually every high- the cathode to the plate. This is the electrical current from flowing. has a rich harmonic sustain and profile guitarist and even recording known as the grid bias of your amp This is known as they produce a powerful studios still rely on good ol’ – the correct bias level is vital to the ’over-biased’ soundstage. Examples of these fashioned valves. operation and tone of the amplifier. and the amp are most of the original 1950’s By varying the negative grid will produce Fender tweed amps such as the What is a valve? bias the technician can correctly an unbearable Deluxe and, of course, the Hopefully, a brief explanation will set up your amp for maximum distortion at all legendary Vox AC30.
    [Show full text]
  • The Development of the Vacuum Tube Creators
    The Knowledge Bank at The Ohio State University Ohio State Engineer Title: The Development of the Vacuum Tube Creators: Jeffrey, Richard B. Issue Date: May-1928 Publisher: Ohio State University, College of Engineering Citation: Ohio State Engineer, vol. 11, no. 7 (May, 1928), 9-10. URI: http://hdl.handle.net/1811/34260 Appears in Collections: Ohio State Engineer: Volume 11, no. 7 (May, 1928) THE OHIO STATE ENGINEER The Development of the Vacuum Tube By RICHARD B. JEFFREY, '31 The history of the vacuum tube began with the discovery of the Edison Effect. This, like a great many other important discoveries, was an acci- dent. Edison, while experimenting with his in- candescent lamps, had placed more than one fila- output ment in the same bulb, and he noticed that if one of the filaments was held positive with respect to the other a current would flow through the bulb. He also found that this positive element, or, as it is now called, plate, did not have to be hot to sustain this current flow. This phenomenon li—- H was known for some time as a curiosity, but noth- 1 +90 to \35 ing more. Then Fleming, an English experiment- +4-5 er, noticed that if an alternating current were The screen-qrid tube (tetrode). applied to this plate the current would flow only plicated system by making use of the rectifying when the plate was positive. In other words, the properties of a crystal, notably galena. When tube acted as a rectifier, allowing the current to signals were received in this way it was the signal flow in only one direction.
    [Show full text]
  • Liste Des Tubes À Vide Il S'agit D'une Liste De Tubes À
    Liste des tubes à vide Il s'agit d'une liste de tubes à vide ou vannes thermo-ioniques et basse pression tubes remplis de gaz ou tubes à décharge . Avant l'avènement des semi-conducteurs périphériques, des centaines de types de tubes ont été utilisés dans l'électronique grand public et industriels; aujourd'hui seuls quelques types sont encore utilisés dans des applications spécialisées. Table des matières 1 chauffage ou notes filament 2 embases de tube 3 systèmes de numérotation 3.1 systèmes nord-américain 3.1.1 système RMA (1942) 3.1.2 système RETMA (tubes recevant, 1953) 3.1.3 Chiffre systèmes uniquement 3.2 systèmes d'Europe occidentale 3.2.1 système Marconi-Osram 3.2.2 système Mullard-Philips 3.2.2.1 tubes standard 3.2.2.2 tubes de qualité spéciaux 3.2.2.3 tubes professionnels 3.2.2.4 tubes Transmission 3.2.2.5 Phototubes et des photomultiplicateurs 3.2.2.6 stabilisateurs 3.2.3 systèmes Mazda / Ediswan 3.2.3.1 ancien système 3.2.3.2 tubes de signaux 3.2.3.3 Puissance redresseurs 3.2.4 STC / Brimar système de réception des tubes 3.2.5 Tesla système de tubes de réception 3.3 système de normalisation industrielle japonaise 3.4 systèmes russes 3.4.1 tubes standard 3.4.2 tubes électriques à très haute 3,5 tubes désignation Très-haute puissance (Eitel McCullough et ses dérivés) 3.6 ETL désignation des tubes de calcul 3.7 systèmes de dénomination militaires 3.7.1 Colombie-système nommage CV 3.7.2 US systèmes de dénomination 3.8 Autres systèmes chiffre uniquement 3.9 Autre lettre suivie de chiffres 4 Liste des tubes américains, avec leurs
    [Show full text]
  • ECE 340 Lecture 22 : Space Charge at a Junction
    ECE 340 Lecture 22 : Space Charge at a Junction Class Outline: •Space Charge Region Things you should know when you leave… Key Questions • What is the space charge region? • What are the important quantities? • How are the important quantities related to one another? • How would bias change my analysis? M.J. Gilbert ECE 340 – Lecture 22 10/12/11 Space Charge Region To gain a qualitative understanding of the solution for the electrostatic variables we need Poisson’s equation: Most times a simple closed form solution will not be possible, so we need an approximation from which we can derive other relations. Consider the following… Doping profile is known •To obtain the electric field and potential we need to integrate. •However, we don’t know the electron and hole concentrations as a function of x. •Electron and hole concentrations are a function of the potential which we do not know until we solve Poisson’s equation. Use the depletion approximation… M.J. Gilbert ECE 340 – Lecture 22 10/12/11 Space Charge Region What does the depletion approximation tell us… 1. The carrier concentrations are assumed to be negligible compared to the net doping concentrations in the junction region. 2. The charge density outside the depletion region is taken to be identically zero. Poisson equation becomes… Must xp = xn? M.J. Gilbert ECE 340 – Lecture 22 10/12/11 Space Charge Region We are already well aware of the formation of the space charge region… The space charge region is characterized by: Na < Nd •Electrons and holes moving across the junction.
    [Show full text]
  • Varian Mw 3 % H
    ORNL/Sub-75/49438/2 BP n ^TfFl varian mw 3 % h NOTICE PORTIONS OF TV'!? HFTL0'' SHE M.I.HGIB'.E. IF lT~~rvnrT;irri*"rr?.--p. tf.3 iwaito'jia 1 co1;;/ -o psrrnii the broadest possible avail- ability. FINAL REPORT MILLIMETER WAVE STUDY PROGRAM u by H.R. JORY, E.L. LIEN and R.S. SYMONS ft, 0 {I Order No. Y-12 11Y-49438V j November 1975 report prepared by Varian Associates Palo Alto Microwave Tube Division 611 Hansen Way o Palo Alto, California 94303 under subcontract number 11Y-49438V ; for ' ' r>4 OAK RIDGE NATIONAL LABORATORY * ° Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the nrsTKIUUTiON 01? 'ijl;.;?!---''--^-'.^-^''' UNLLMIT DEPARTMENTS ENERGY FINAL REPORT MILLIMETER WAVE STUDY PROGRAM by H. R. Jory, E. L Lien and R, S. Symons - NOTICE- Urn report Mas piepated as an account, of worl; sponsored by die Untied Stales Government. Neither Die United State* not the United States Pepastment of l.nergy, tiar any of1 their employees, nnr any of then contractors. subcontractor or their employees, makes any warranty, express or implied, or assumes any legal liability oi responsibility for tlie accuracy, completeness of usefulness of any information, apparatus, product or process disclovd. or represents that its use would not mUmfe pnvately owned npjits. Order No, Y-12UY-49438V November 1975 « 0 " report prepared by Varian Associates Palo Alto Microwave Tube Division 611 Hansen Way Palo Alto, California 94303 K< under subcontract number 11Y-49438V for OAK RIDGE NATIONAL LABORATORY Oak.RitJge-J'ennessee 37830 c.-..operatedjby U N 10N CARBiDE^G0RP0RATI0N, o <J>c l .
    [Show full text]
  • Tutorial: Adding a Control Grid to a High-Current Electron Gun
    Tutorial: adding a control grid to a high-current electron gun Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975 Fax: +1-617-752-9077 E mail: techinfo@fieldp.com Internet: http://www.fieldp.com 1 Recently, I was asked to consider whether a control grid consisting of parallel or crossed wires could be added to an existing space-charge-limited electron gun for beam modulation. I identified two main questions: • Because considerable effort had been invested in the gun design, would it possible to add the grid without significantly changing the macro- scopic beam optics? • What was the contribution to the angular divergence of the beam rel- ative to the focal requirements? With regard to first question, the best approach would be to locate the wire grid at the former position of the cathode surface and to move the cathode a short distance upstream. The grid would be attached to the focus electrode bounding the former cathode surface. Figure 1 is a schematic view of the cathode-grid region. The values of D and Vc should be chosen to generate an electron current density je equal to the space-charge limited design value in the main acceleration gap. In this way, the grid surface would act almost like the original cathode, preserving the gun optics. There are two options to fabricate a grid: 1) parallel wires with spacing W or 2) a crossed grid with square openings with side length W . For a rough estimate, I did not consider the effect of the wire width.
    [Show full text]
  • A THESIS Presented to Georgia School of Technology in Partial
    OPTIMUM OPERATING CONDITIONS OF A MULTI-GRID FREQUENCY CONVERTER A THESIS Presented to the Faculty of the Division of Graduate Studies Georgia School of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering William Thomas Clary, Jr. March 1948 C? . F^ 0 5fJ ii OPTIIVIUM OPERATING CONDITIONS OF A MULTI-GRID FREQUENCY CONVERTER Approved: ^2 ^L it Date Approved by Chairman Sxj- ±j /f^o iii ACKNOY^LEDGLIENTS I wish to express my sincerest thanks to Dr. W, A. Eds on for his invaluable aid and guidance in the problem herein undertaken. I also wish to thank Professor M. A. Honnell for his great assistance in carrying out the experimental study. iv PREPACK: MEANING OF SYMBOLS USED I .....Bessel*s Function of 1st kind, order m, and imaginary argument* G-m Signal electrode to plate transconductance. G_ Conversion transconductance. c E„ ...•Bias of first electrode from cathode. cl E ....Bias of third electrode from cathode. eg.....Total signal electrode voltage. e Total oscillator electrode voltage. W Angular frequency of the oscillator electrode voltage. ..g Angular frequency of signal electrode voltage. a __.•••Angular intermediate frequency. lb i .....Alternating component of plate current. iw ...Alternating component at w__, of plate current. R.•»•*.Amplitude of alternating component of signal voltage. s EQ.....Amplitude of alternating component of oscillator voltage• RT.....Plate load resistance. Li k......Boltzmann,s Constant, Tc Cathode temperature in degrees Kelvin. YQ..«..Input admittance in mho. Af•••.Frequency band width in cycles per second. a n» ^n, C ••••Empirical coefficients of plate family.
    [Show full text]
  • Pentodes Connected As Triodes
    Pentodes connected as Triodes by Tom Schlangen Pentodes connected as Triodes About the author Tom Schlangen Born 1962 in Cologne / Germany Studied mechanical engineering at RWTH Aachen / Germany Employments as „safety engineering“ specialist and CIO / IT-head in middle-sized companies, now owning and running an IT- consultant business aimed at middle-sized companies Hobby: Electron valve technology in audio Private homepage: www.tubes.mynetcologne.de Private email address: [email protected] Tom Schlangen – ETF 06 2 Pentodes connected as Triodes Reasons for connecting and using pentodes as triodes Why using pentodes as triodes at all? many pentodes, especially small signal radio/TV ones, are still available from huge stock cheap as dirt, because nobody cares about them (especially “TV”-valves), some of them, connected as triodes, can rival even the best real triodes for linearity, some of them, connected as triodes, show interesting characteristics regarding µ, gm and anode resistance, that have no expression among readily available “real” triodes, because it is fun to try and find out. Tom Schlangen – ETF 06 3 Pentodes connected as Triodes How to make a triode out of a tetrode or pentode again? Or, what to do with the “superfluous” grids? All additional grids serve a certain purpose and function – they were added to a basic triode system to improve the system behaviour in certain ways, for example efficiency. We must “disable” the functions of those additional grids in a defined and controlled manner to regain triode characteristics. Just letting them “dangle in vacuum unconnected” will not work – they would charge up uncontrolled in the electron stream, leading to unpredictable behaviour.
    [Show full text]
  • Eimac Care and Feeding of Tubes Part 3
    SECTION 3 ELECTRICAL DESIGN CONSIDERATIONS 3.1 CLASS OF OPERATION Most power grid tubes used in AF or RF amplifiers can be operated over a wide range of grid bias voltage (or in the case of grounded grid configuration, cathode bias voltage) as determined by specific performance requirements such as gain, linearity and efficiency. Changes in the bias voltage will vary the conduction angle (that being the portion of the 360° cycle of varying anode voltage during which anode current flows.) A useful system has been developed that identifies several common conditions of bias voltage (and resulting anode current conduction angle). The classifications thus assigned allow one to easily differentiate between the various operating conditions. Class A is generally considered to define a conduction angle of 360°, class B is a conduction angle of 180°, with class C less than 180° conduction angle. Class AB defines operation in the range between 180° and 360° of conduction. This class is further defined by using subscripts 1 and 2. Class AB1 has no grid current flow and class AB2 has some grid current flow during the anode conduction angle. Example Class AB2 operation - denotes an anode current conduction angle of 180° to 360° degrees and that grid current is flowing. The class of operation has nothing to do with whether a tube is grid- driven or cathode-driven. The magnitude of the grid bias voltage establishes the class of operation; the amount of drive voltage applied to the tube determines the actual conduction angle. The anode current conduction angle will determine to a great extent the overall anode efficiency.
    [Show full text]
  • RESEARCH for DEVELOPMENT of THIN-FILM SPACE-CHARGE-LIMITED TRIODE DEVICES (U) by Kenneth G. Aubuchon, Peter Knoll and Rainer
    RESEARCH FOR DEVELOPMENT OF THIN-FILM SPACE-CHARGE-LIMITED TRIODE DEVICES (U) BY Kenneth G. Aubuchon, Peter Knoll and Rainer Zuleeg May 1967 Distribution of this report is provided in the interest of information exchange and should not be construed as endorse- ment by NASA of the material presented. Responsibility for the contents resides in the organization that prepared it. Prepared under Contract No. NAS 12-144 by: Hughes Aircraft Company Applied Solid State Research Department Newport Beach, California Electronics Research Center National Aeronautics & Space Administration RESEARCH FOR DEVELOPMENT OF THIN-FILM SPACE-CHARGE-LIMITED TRIODE DEVICES (U) BY Kenneth G. Aubuchon, Peter Knoll and Rainer Zuleeg May 1967 Prepared under Contract No. NAS 12-144 by: Hughes Air craft Company Applied Solid State Research Department Newport Beach, California for Electronics Research Center National Aeronautics & Space Administration TABLE OF CONTENTS SECTION TITLE PAGE NO: ABSTRACT ii FORE WORD iii LIST OF ILLUSTRATIONS iv I MATERIAL PREPARATION AND ANALYSIS 1 A. Introduction 1 B. Literature Survey 1 C. Experimental 3 D. Results 6 E. Discussion 13 I1 DEVICE THEORY 18 I11 DEVICE DESIGN AND FABRICATION 20 A. Mask Design 20 B. Silicon Processing 24 C. Discussion of Processing Problems 25 D. Summary of Lots Fabricated 27 E. Discussion of Yield 29 IV DEVICE EVALUATION 32 A. Correlation Between Theory and Experiment 32 B. High Frequency Performance 42 C. Modes of Operation 49 D. High Temperature Stability 54 E. Radiation Effects 54 F. Noise 62 V CONCLUSION 64 LIST OF REFERENCES 66 ABSTRACT Silicon-on- sapphire space - charge-limited triodes were de signed and fabricated.
    [Show full text]
  • Anchorage Amateur Radio Club Next Meeting November 4Th
    Volume 34 No. 11: November 2005 Anchorage Amateur Radio Club Next Meeting November 4th Program for November communications support for this race since its inception in Jim Wiley, KL7CC 1973. Lee Wareham, KL7DTH, will speak about his adventures Gordon Hartlieb AL1W has again volunteered for the Start flying from Alaska to Norway and back over the pole in his Communications Coordinator and need over 35 Hams for the Cessna 185 - this is the adventure where Ron Sheardown lost 4th of March 2006. his Soviet built AN2 biplane through the ice. I saw the presentation a few years ago, just after the event, and it was Jim Bruton KL7HJ has volunteered to replace Dan O’barr absolutely fascinating. KL7BD as The Re-start Coordinator as Dan’s new job does not allow for the time required for this job. He will need more Lee has some audio tapes excerpts of the conversations on the than 35 hams for the “real” start on the 5th of March 2006. ham radio (between himself and Jerry Curry, KL7EDK, in Fairbanks), which kept up continuously for the whole flight, Kristin Young, (a poor unguided non ham) is the HQ across and back. There will be time for questions. coordinator and is in need of 144 volunteers to fill HQ shifts of which 33 are Ham required. This is a 24/7 operation with +++++++++++++++++++++++++ 6hr. shifts from the 2nd of March thru the 21st of March 2006. Bernadette Anne, (another poor unguided non ham), is the Trail Communications Coordinator and has 48 positions to fill of which 24 are Hams, 6 more than last year.
    [Show full text]
  • Restoring a Patterson Model 308 – Gerry O’Hara for SPARC
    Restoring a Patterson Model 308 – Gerry O’Hara for SPARC Introduction The SPARC Museum in Coquitlam, BC, Canada is an interesting place to be on a Sunday – there are usually a few ‘drop ins’ every week – folks that turn up at the museum with an interesting set to ask us about – usually questions like “can you get it to work?”, “can you identify this set/how old is it?”, “what’s it worth?”, or “ do you have a tube for this?”. Folks also want to donate sets to the Museum – which is great, but in recent years the Museum has been running out of space. This has meant two things – we have had to introduce a program of ‘de-acquisition’ for things that are ‘peripheral’ to radio/the mission of the Museum, that the Museum has duplicates of, or items that are not rare and are in poor shape. The second ‘triage factor’ is the country of origin – the name of the Museum is a clue here – with a primary focus on items of Canadian origin. However, there are many radios not manufactured in Canada that the museum is also interested in – especially those manufactured in Europe and the USA. Radios from the latter were widely sold across Canada and/or were imported across the USA/Canada border, and from the former by European immigrants bringing their radios with them and/or through a network of Canadian distributors for sets of European manufacture, especially from the UK. As a result, sets manufactured in the USA are very common in Canada, especially those from the larger manufacturers of the day.
    [Show full text]