Liste Des Tubes À Vide Il S'agit D'une Liste De Tubes À

Total Page:16

File Type:pdf, Size:1020Kb

Liste Des Tubes À Vide Il S'agit D'une Liste De Tubes À Liste des tubes à vide Il s'agit d'une liste de tubes à vide ou vannes thermo-ioniques et basse pression tubes remplis de gaz ou tubes à décharge . Avant l'avènement des semi-conducteurs périphériques, des centaines de types de tubes ont été utilisés dans l'électronique grand public et industriels; aujourd'hui seuls quelques types sont encore utilisés dans des applications spécialisées. Table des matières 1 chauffage ou notes filament 2 embases de tube 3 systèmes de numérotation 3.1 systèmes nord-américain 3.1.1 système RMA (1942) 3.1.2 système RETMA (tubes recevant, 1953) 3.1.3 Chiffre systèmes uniquement 3.2 systèmes d'Europe occidentale 3.2.1 système Marconi-Osram 3.2.2 système Mullard-Philips 3.2.2.1 tubes standard 3.2.2.2 tubes de qualité spéciaux 3.2.2.3 tubes professionnels 3.2.2.4 tubes Transmission 3.2.2.5 Phototubes et des photomultiplicateurs 3.2.2.6 stabilisateurs 3.2.3 systèmes Mazda / Ediswan 3.2.3.1 ancien système 3.2.3.2 tubes de signaux 3.2.3.3 Puissance redresseurs 3.2.4 STC / Brimar système de réception des tubes 3.2.5 Tesla système de tubes de réception 3.3 système de normalisation industrielle japonaise 3.4 systèmes russes 3.4.1 tubes standard 3.4.2 tubes électriques à très haute 3,5 tubes désignation Très-haute puissance (Eitel McCullough et ses dérivés) 3.6 ETL désignation des tubes de calcul 3.7 systèmes de dénomination militaires 3.7.1 Colombie-système nommage CV 3.7.2 US systèmes de dénomination 3.8 Autres systèmes chiffre uniquement 3.9 Autre lettre suivie de chiffres 4 Liste des tubes américains, avec leurs équivalents européens 4,1 "0 volt" tubes à cathode froide remplies de gaz 4.2 1 tubes de chauffage / filament volts 4.3 1.25 volts tubes subminiatures à incandescence 4.4 1 préfixe pour les récepteurs à domicile 4,5 2 tubes de chauffage / filament volts 4.6 5 tubes de chauffage / filament volts 4.7 tubes de chauffage / de filament de 6 volts 4,8 "7" tubes loctal préfixe 4.9 12 tubes de chauffage / filament volts 4,10 préfixe "14" loctal tubes 4.11 25 chauffage / tubes filament volts 4.12 35 tubes de chauffage / filament volts 4.13 50 tubes de chauffage / filament volts 4.14 117 tubes de chauffage volts 4.15 Autres tubes avec des tensions de filaments non standard 4.16 tubes blindés pour les radios Majestic 4.17 tubes loctal Lettered utilisés dans les radios Philco 5 Liste des tubes Mullard-Philips européennes, avec leurs équivalents américains 5.1 A - 4 chauffe-V 5.1.1 AB 5.1.2 ABC 5.1.3 ABL 5.1.4 AC 5.1.5 ACH 5.1.6 A D 5.1.7 AF 5.1.8 AH 5.1.9 AK 5.1.10 AL 5.1.11 AM 5.1.12 AN 5.1.13 AX 5.1.14 AZ 5.2 B - 180 mA chauffage 5.2.1 BL 5,3 C - 200 mA chauffe 5.3.1 CB 5.3.2 CBC 5.3.3 CBL 5.3.4 CC 5.3.5 CCH 5.3.6 CF 5.3.7 CH 5.3.8 CK 5.3.9 CL 5.3.10 CY 5.4 D - 1,4 V filament / chauffage 5.4.1 DA 5.4.2 DAC 5.4.3 DAF 5.4.4 DAH 5.4.5 DBC 5.4.6 DC 5.4.7 DCC 5.4.8 DCF 5.4.9 DCH 5.4.10 DD 5.4.11 DDD 5.4.12 DF 5.4.13 DK 5.4.14 DL 5.4.15 DLL 5.4.16 DM 5.4.17 DY 5,5 E - 6,3 V chauffage 5.5.1 EA 5.5.2 EAA 5.5.3 EAB 5.5.4 EABC 5.5.5 EAC 5.5.6 EAF 5.5.7 EAM 5.5.8 EB 5.5.9 EBC 5.5.10 EBF 5.5.11 EBL 5.5.12 CE 5.5.13 ECC 5.5.14 ECF 5.5.15 ECH 5.5.16 ECL 5.5.17 ECLL 5.5.18 ED 5.5.19 EDD 5.5.20 EE 5.5.21 EEL 5.5.22 EF 5.5.23 EFF 5.5.24 EFL 5.5.25 EFM 5.5.26 EFP 5.5.27 EH 5.5.28 EK 5.5.29 EL 5.5.30 ELL 5.5.31 EM 5.5.32 EMM 05/05/33 FR 05/05/34 EQ 05/05/35 ET 05/05/36 EY 05/05/37 EYY 05/05/38 EZ 5,6 F - 12,6 V chauffage 5.6.1 FL 5,7 G - 5.0 V chauffage ou misc. 5.7.1 GA 5.7.2 GY 5.7.3 GZ 5,8 H - 150 mA chauffage 5.8.1 AHA 5.8.2 HABC 5.8.3 HBC 5.8.4 HCC 5.8.5 HCH 5.8.6 HF 5.8.7 HK 5.8.8 HL 5.8.9 HM 5.8.10 HY 5.9 I - 20 V chauffage 5.9.1 SI 5,10 K - 2,0 V chauffe 5.10.1 KA 5.10.2 KB 5.10.3 KBC 5.10.4 KC 5.10.5 KCH 5.10.6 KDD 5.10.7 KF 5.10.8 KH 5.10.9 KK 5.10.10 KL 5.10.11 KY 5.11 O - cathode froide incl. Semi-conducteurs 5.11.1 OA 5.11.2 OAP 5.11.3 OAZ 5.11.4 OC 5.11.5 OCP 5.11.6 OD 5.11.7 OM 5.11.8 OPF 5.11.9 ORP 5.11.10 OY 5.11.11 OZ 5,12 P - 300 mA chauffe 5.12.1 PABC 5.12.2 PC 5.12.3 PCC 5.12.4 PCF 5.12.5 PCH 5.12.6 PCL 5.12.7 PD 5.12.8 PF 5.12.9 PFL 5.12.10 PL 5.12.11 PLL 5.12.12 PM 5.12.13 PY 5.12.14 PZ 5.13 U - 100 mA chauffage 5.13.1 SAU 5.13.2 UABC 5.13.3 UAF 5.13.4 UB 5.13.5 UBC 5.13.6 UBF 5.13.7 UBL 5.13.8 UC 5.13.9 UCC 5.13.10 UCF 5.13.11 UCH 5.13.12 UCL 5.13.13 UEL 5.13.14 UF 5.13.15 UFM 13/05/16 UH 13/05/17 UL 13/05/18 ULL 13/05/19 UM 13/05/20 UQ 13/05/21 UY 5,14 V - 50 mA chauffe 5.14.1 VC 5.14.2 VCH 5.14.3 VCL 5.14.4 VEL 5.14.5 VF 5.14.6 VL 5.14.7 VY 5.15 X - 600 mA chauffage 5.15.1 XAA 5.15.2 XC 5.15.3 XCC 5.15.4 XCF 5.15.5 XCH 5.15.6 XCL 5.15.7 XF 5.15.8 XL 5.15.9 XY 5.16 Y - 450 mA chauffage 5.16.1 YF 5,17 Z - tube à cathode froide 5.17.1 ZA 5.17.2 ZC 5.17.3 ZE 5.17.4 ZM 5.17.5 ZS 5.17.6 ZT 5.17.7 ZU 5.17.8 ZW 6 Liste des tubes professionnels 6.1 X - tubes photosensibles 6.1.1 XA 6.1.2 XG 6.1.3 XL 6.1.4 XM 6.1.5 XP 6.1.6 XQ 6.1.7 XX 6.2 Y - Les tubes à vide 6.2.1 YA 6.2.2 YD 6.2.3 YG 6.2.4 YH 6.2.5 YJ 6.2.6 YK 6.2.7 YL 6.3 Z - tubes remplis de gaz 6.3.1 ZC 6.3.2 ZM 6.3.3 ZP 6.3.4 ZT 6.3.5 ZX 6.3.6 ZY 6.3.7 ZZ 7 Liste des tubes de transmission 7.1 M - AF modulateur Triode 7.1.1 MT 7.2 P - Pentode 7.2.1 PA 7.2.2 PAL 7.2.3 PAW 7.2.4 PB 7.2.5 PC 7.2.6 PE 7.3 Q - Tetrode 7.3.1 QB 7.3.2 QBL 7.3.3 QBW 7.3.4 QC 7.3.5 QE 7.3.6 QEL 7.3.7 QEP 7.3.8 QQC 7.3.9 QQE 7.3.10 QQV 7.3.11 QQZ 7.3.12 QV 7.3.13 QY 7,4 T - Triode AF / RF / oscillateur 7.4.1 TA 8 Liste des autres tubes de lettres 8.1 A 8.1.1 ACT 8.2 B 8.2.1 BA 8.3 C 8.3.1 CH 8.3.2 CL 8.4 D 8.4.1 DDR 8.4.2 DZ 8,5 G 8.5.1 GC 8.5.2 GCA 8.5.3 GD 8.5.4 GDT 8.5.5 GE 8.5.6 GK 8.5.7 GN 8.5.8 GR 8.5.9 GRD 8.5.10 GS 8.5.11 GSA 8.5.12 GTE 8.5.13 GTR 8,6 H 8.6.1 HD 8,7 K 8.7.1 KN 8.7.2 KT 8.8 P 8.8.1 PD 8.8.2 PX 8.9 R 8.10 S 8.10.1 SU 8.10.2 SY 8.11 T 8.11.1 TT 8.12 V 8.12.1 VS 9 Liste des autres tubes numériques 9.1 1 9.1.1 1600 9.2 2 9.2.1 200s 9.3 3 9.4 4 9.4.1 4000s 9,5 5 9.5.1 5000 9,6 6 9.6.1 6000s 9,7 7 9.7.1 7000s 9,8 8 9.8.1 800s 9.8.2 8000s 9,9 9 9.9.1 900s 10 Liste des tubes utilisés dans les années 1920 et 1930 récepteurs radio 10.1 tubes à cathodes à chauffage direct 10.1.1 avec 1,1 Volt filaments DC 10.1.2 Avec 2,0 Volts DC filaments 10.1.3 à 3,3 Volts DC filaments 10.1.4 avec 5,0 Volts DC filaments 10.1.5 Autres tubes directement DC-chauffés 10.1.6 Directement tubes d'alimentation AC-chauffés 10.2 tubes à cathodes à chauffage indirect 10.2.1 Avec chauffe DC 10.2.2 Pour l'utilisation d'un chauffage transformateur AC 10.2.3 Pour une utilisation avec AC / DC ou un véhicule basé sur le stockage de batterie alimentations 10.3 tubes rarement utilisé 11 tubes russes 11.1 Liste des tubes standard, avec les équivalents américains 11.2 Liste des tubes électriques à très haute 11.3 Liste des tubes indicateurs 12 Voir aussi 12.1 Les tubes à vide par nombre d'électrodes 12.2 Les tubes à vide par fonction ou d'autres propriétés 12.3 tubes cathodiques 12,4 à gaz ou à la vapeur des tubes remplis d' 13 Références 14 Liens externes Chauffage ou filament notes Article détaillé: cathode chaude Les tubes à vide se répartissent en trois catégories principalement non interchangeables quant à leur appareil de chauffage ou de tension de filament (les appareils de chauffage de certains tubes fonctionnent à une tension et un courant adaptés pour chaque série ou en parallèle, par exemple, de 6,3 V à 300 mA).
Recommended publications
  • A THESIS Presented to Georgia School of Technology in Partial
    OPTIMUM OPERATING CONDITIONS OF A MULTI-GRID FREQUENCY CONVERTER A THESIS Presented to the Faculty of the Division of Graduate Studies Georgia School of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering William Thomas Clary, Jr. March 1948 C? . F^ 0 5fJ ii OPTIIVIUM OPERATING CONDITIONS OF A MULTI-GRID FREQUENCY CONVERTER Approved: ^2 ^L it Date Approved by Chairman Sxj- ±j /f^o iii ACKNOY^LEDGLIENTS I wish to express my sincerest thanks to Dr. W, A. Eds on for his invaluable aid and guidance in the problem herein undertaken. I also wish to thank Professor M. A. Honnell for his great assistance in carrying out the experimental study. iv PREPACK: MEANING OF SYMBOLS USED I .....Bessel*s Function of 1st kind, order m, and imaginary argument* G-m Signal electrode to plate transconductance. G_ Conversion transconductance. c E„ ...•Bias of first electrode from cathode. cl E ....Bias of third electrode from cathode. eg.....Total signal electrode voltage. e Total oscillator electrode voltage. W Angular frequency of the oscillator electrode voltage. ..g Angular frequency of signal electrode voltage. a __.•••Angular intermediate frequency. lb i .....Alternating component of plate current. iw ...Alternating component at w__, of plate current. R.•»•*.Amplitude of alternating component of signal voltage. s EQ.....Amplitude of alternating component of oscillator voltage• RT.....Plate load resistance. Li k......Boltzmann,s Constant, Tc Cathode temperature in degrees Kelvin. YQ..«..Input admittance in mho. Af•••.Frequency band width in cycles per second. a n» ^n, C ••••Empirical coefficients of plate family.
    [Show full text]
  • 118 Bernards Radio Manuals 5
    § i PRACTICAL 118 voor de Historie v/d Radio iSHB 130. BERNARDS RADIO MANUALS 5/ ■ ■ tUOTHEEK N.V.H.R, i PRACTICAL F.M. CIRCUITS FOR THE HOME CONSTRVCTOR by R. Deschepper BERNARDS (PUBLISHERS) LTD. THE GRAMPIANS WESTERN GATE LONDON, W.6 General Editor Walter J. May First Published in Great Britain, February, 1955. First published in France under the copyright title “ Schemas de recepteurs pour la modulation de “ frequence,” by Societe des Editions Radio, 9, Rue Jacob, Paris (6e) i i ; i i iii THE FREQUENCY MODULATION ERA From its infancy Broadcasting has been considered to fulfill the primary function of conveying to very large audiences the sounds produced in front of the microphone or held in store in the form of recordings. In the early days, the possibility of picking up distant stations appealed strongly to the first amateurs. Long distance records used to be claimed on all sides, and the ‘‘last word” in 1925 was to “receive America.” Although in this way sen­ sitivity came into the foreground among the principal qualities demanded from a receiver, the density of the traffic through the ether soon brought up the critical problems of selectivity. However, up to 1930, radio remained the privilege of a small group of enthusiasts, since the installation, maintenance and control of a receiver layout (comprising, besides the receiver itself, a frame aerial, a loud speaker, a filament battery together with its charger, and an H.T. battery eventually to be replaced by a “battery eliminator”) necessitated a certain amount of technical knowledge and more than a little patience.
    [Show full text]
  • History of Thethermionic Tube / Valve / Vacuum
    History of theThermionic Tube / Valve / Vacuum Tube – Page 1 The following notes have been assembled by Phil (VK5SRP) from original material and material from several web sites, including Wikipedia for a class run at the North East Radio Club, South Australia January 2016. In electronics, a vacuum tube, an electron tube, or just a tube (North America), or valve (Britain and some other regions) is a device that controls electric current between electrodes in an evacuated container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament/heater. This type is called a thermionic tube or thermionic valve. A Photo-tube, however, achieves electron emission through the photoelectric effect. Not all electronic circuit valves/electron tubes are vacuum tubes (evacuated). Gas-filled tubes are similar devices containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases, usually without a heater. Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1883 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilised, most notably by John Ambrose Fleming, who used the Diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "Audion" was also developed as a radio detector, and soon led to the development of the Triode tube.
    [Show full text]
  • Restoring a Patterson Model 308 – Gerry O’Hara for SPARC
    Restoring a Patterson Model 308 – Gerry O’Hara for SPARC Introduction The SPARC Museum in Coquitlam, BC, Canada is an interesting place to be on a Sunday – there are usually a few ‘drop ins’ every week – folks that turn up at the museum with an interesting set to ask us about – usually questions like “can you get it to work?”, “can you identify this set/how old is it?”, “what’s it worth?”, or “ do you have a tube for this?”. Folks also want to donate sets to the Museum – which is great, but in recent years the Museum has been running out of space. This has meant two things – we have had to introduce a program of ‘de-acquisition’ for things that are ‘peripheral’ to radio/the mission of the Museum, that the Museum has duplicates of, or items that are not rare and are in poor shape. The second ‘triage factor’ is the country of origin – the name of the Museum is a clue here – with a primary focus on items of Canadian origin. However, there are many radios not manufactured in Canada that the museum is also interested in – especially those manufactured in Europe and the USA. Radios from the latter were widely sold across Canada and/or were imported across the USA/Canada border, and from the former by European immigrants bringing their radios with them and/or through a network of Canadian distributors for sets of European manufacture, especially from the UK. As a result, sets manufactured in the USA are very common in Canada, especially those from the larger manufacturers of the day.
    [Show full text]
  • Behemoth: Restoration of an RCA Victor Model 15K-1 – Gerry O'hara
    A Mid-1930’s ‘Magic’ Behemoth: Restoration of an RCA Victor Model 15K-1 – Gerry O’Hara Background I recently completed the refurbishment of a Marconi CSR-5 receiver for a friend. Shortly before work on that receiver was completed, he asked if I would be able to restore an RCA Victor 15K-1 receiver as my next project. Quite a different ‘beast’ from the CSR-5, a WWII Canadian communications receiver built for the Canadian Navy, whereas the RCA Victor 15K-1 is a high-end domestic console style set dating from the 1936/37 model year. The cabinet was in poor condition (photo, right), and in need of stripping/re-finishing, but the chassis appeared complete and in reasonable shape from the photos I was sent in advance. To save bringing the large, heavy cabinet over to Victoria from the BC Mainland, and as I don’t have the facility to refinish large cabinets at my house at the moment, it was agreed that I would restore the chassis and the cabinet would be restored by a mutual friend at the SPARC Museum. The RCA ‘K’ series Radios and the ‘Magic Brain’ RCA Victor introduced receivers with a separate RF sub- chassis, marketed as the ‘Magic Brain’, in the mid-1930’s, initially with their models 128, 224, C11-1 and others: “Inside RCA Victor all-wave sets is an uncanny governing unit ... Human in its thinking, we compare it to the human brain. You choose the broadcast - from no matter where in the whole world. Then, watchman-like, it keeps out undesired radio signals.
    [Show full text]
  • Valve Type Numbers
    Valve Type Numbers The information in this document has been gathered and assembled from various sources including Radio Bygones magazine No. 9 (February/March 1991). Pro-Electron/Mullard Code This are probably the most commonly encountered numbering system in the UK - and the most informative. It consists of two or more letters followed by a number (normally two digits). Examples - UL41, ECC85, UABC80. The first letter gives heater rating: Character Heater Rating A 4V B 180mA C 200mA D 0 - 1.5V (previously 1.4V) E 6.3V F 12.6V G Misc. (previously 5V) H 150mA K 2V L 450mA P 300mA T 7.4V U 100mA V 50mA W 600mA X 450mA The remaining letters give the types of device in the valve. They are normally listed in alphabetical order. Character Device Type A Signal Diode B Double Diode C Signal Triode D Power Triode E Signal Tetrode F Signal Pentode H Hexode or Heptode (Hexode type) K Octode or Heptode (Octode type) L Output Tetrode or Pentode M Magic Eye (Tuning Indicator) N Gas-filled Triode (Thyrathon) Q Nonode X Gas-filled Full-wave Rectifier Y Half-wave Rectifier Z Full-Wave Rectifier The first digit indicates the base type. Where there is only one digit this is assumed to be the second digit, and be preceded by a zero. For example, EM4 should be interpreted as EM04. Digit Base Type 0 and 1 Miscellaneous Bases (P-Base, Side Contact etc) 2 B10B (previously B8B/B8G (Loctal)) 3 International Octal (8-pin with centre locating spigot) 4 B8A (8 pin with locating pip on side) 5 B9G and B9D (wire ended) 6 and 7 Subminatures 8 B9A (9-pin glass) 9 B7G (7-pin glass) The remaining digit(s) are used to differentiate between valves that would otherwise have identical numbers:- • One digit for early valves • Two figures for later entertainment valves • Three or Four figures for later professional types GEC Code (also used on Marconi and Osram valves) This consists of one or two letters followed by a number (normally two digits).
    [Show full text]
  • 英国の軍用撫線機で, 第6章を一応終える。 第7革 無拉惧アラカルトは省略し,第8葦 各様 データの第1項 目本絹川,第2項 米酢I川1,第3 項 その他の国の刑用のうら,第2項 米国粥川のV T Nuillberと第3項のうち圭に英睦ⅲ川=一郎NAT O準jrhのcv Numberを今匝=ま取り上げて解説する ことにする。
    軍川無柁櫓概説の総目次では,第6草 第2次大戦 後の鷹緑筒の動向を荊1耳 軌鮮戦争,第2項 中東 戦争.第3項 ベトナム戦争,第4項 現代掛こ要求 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVT,Tl 1 1 1 1 1 1 ■一 1 1 1 1 1 「.■. l l されるもの.と小項目に分けて耶説する予定であった が.前号の第1項 糾鮮戦争(7)英国の軍用撫線機で, 第6章を一応終える。 第7革 無拉惧アラカルトは省略し,第8葦 各様 データの第1項 目本絹川,第2項 米酢I川1,第3 項 その他の国の刑用のうら,第2項 米国粥川のV T NuIllberと第3項のうち圭に英睦Ⅲ川=一郎NAT O準JrHのCV Numberを今匝=ま取り上げて解説する ことにする。 8 Vacuum Tube NumberとCommunications Valve Number 第1表 VTナンパ嶋表(その日 VT Nm11berとCV Numberは,(その60)で肺説 した無線隣器の命名法と同じ時期に制定されて,第2 VT No. Tube Type Hth ClaH Dt亨Crlptl【‖1 mVTVTVTVTVTVTVTVTVTVTVTVT叩WVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTVTV→V→V→V→V→V→V→日日V→町VIH12ユ44156781111111112〜22222222231333331131414111111144 VE-~0コA T.trlodt amP.(obSql亡とり 次大戦【卜の連合国軍川j惧掛こ鮒‡ほれた屯子管の表示 VE-2058 0b501tt亡 は.公式にはlJT菅又はCV管名が記載されている。 AHRC 。12二J▲▼6789012≡5弘67890123456789抽012拍ミ56…7; Coml¶亡rcla1 211 T.亡rlode amp. 第2次大戦後.米国国防総省はMI L-SPEC,M JAN 211 WE_215人 R.AFもIF amp. I L-HDBIく等の見直しと整備を実施し,1959年11月 212A T.trlode 8mP.fobさ01亡tt〉 VX・・12 R.trlod亡 dtttCt.aMP.t UV-204 T.trlt】d8 † にMilitary Handbook-213ElecLron Tubes,Cross 0b5018te IIldexaIldTyPeldelllihcatio11を発行した。1963咋11 川二はMIL-HDBK-213Aに改定され.多少の改定を 860 T・tetr■Ode さmp. 経て,現在もこの213Aが適川さJしている。 0bSDltltt 861 T・七色ヒrode amp. hlJ L-HDliK-213Aには,粥川電子管の一般名 0b801ett 称,最新型名称.他の呼称法(VT.CV等)及び用 204人 T.trlode Ob501亡tモ 途が記鵜されている。 864 R.trlode 帥P.(lov n01引H 10 T.もR.trlode 帥P. 1ページ当り約50使用の電子符が戦っていて,303ペ 10 8peC141 22 R.tetrode amp.tOb301ettI ージにわたって粥川として使用された電子管について 30 R,trlodt d亡teCt.amP. 24.24人 R.tetrode amp. 27 R.trlodt dtttCt.amp. は全て的昭されている。 01人 (obSqltteI 31 R.trlodt pt川tr む叩. 車代-ほれている屯手管規惜表等に掲破きJしているV
    [Show full text]
  • Technician License Course Chapter 3.2
    Technician License Course Chapter 3.2 Electricity, Components and Circuits Lesson Plan Module 6 Larry Hall KD0RIU 1 Electronics – Controlling the Flow of Current • To make an electronic device (like a radio) do something useful (like a receiver), we need to control and manipulate the flow of current. • There are a number of different electronic components that we use to do this. 2 The Resistor • The function of the • Circuit Symbol resistor is to restrict (limit) the flow of current through it. 3 The Capacitor • The function of the • Circuit Symbol capacitor is to temporarily store electric field or charge. – Like a very temporary storage battery. – Stores energy in an electrostatic field of electrons. 4 The Inductor • The function of the • Circuit Symbol inductor is to temporarily store energy in a magnetic field around the inductor. – Is basically a coil of wire. 5 Resonance • Because capacitors and inductors store energy in different ways, the stored energy can actually cancel each other under the right conditions. – Capacitors – electric field – Inductors – magnetic field • Cancelled current = no reactance, just leaving resistance. 6 Resonant Antenna • If an antenna is designed correctly, the capacitive reactance cancels the inductive reactance. • Theoretically, the resulting reactance is zero. – Leaving only resistance – meaning minimum impediment to the radio frequency currents flowing in the antenna and sending the radio wave into space. 7 Antennas are Part Capacitor – Part Inductor – Part Resistor • Antennas actually have characteristics of capacitor, inductor and resistor electronic components. • Capacitors and inductors, because they store energy in fields, react differently to ac than dc. – Special kind of resistance to the flow of ac – called reactance.
    [Show full text]
  • Radio Eavesdropping of the B.B.C
    SEPTEMBER 1954 VOL. 60 No. 9 .1 to t h o i í t y and 1 so << t p e tt d en f E have now had ample time to study the new there is still another body that comes into the Television Act, which became law just after our last picture : the P.M.G.'s decisions on technical policy issue appeared. The Government's plan for an for both the I.T.A. and B.B.C. will be affected by " additional " television service, though somewhat the recommendations of the Television Advisory involved, is not on the face of it, difficult to under- Committee. stand, though we must admit to doubts as to how Fortunately, there is a good deal of flexibility in some of the details will work out in practice. the Act, and plenty of room for second thoughts. To us, the most interesting section of the Act is The word "may" occurs much more often than that in which the Postmaster -General is given what " shall " and the P.M.G. can make new regulations at appears to be very wide powers over the technical short notice. Throughout all the debates, the activities of the Independent Television Authority. Government has wisely kept to the principle of In this matter, at least, there appears to be little leaving a loophole for subsequent changes. independence and no authority! Of course, it is a It is wrong to shoot the pianist who is doing his fact that in Great Britain the P.M.G.'s power over best, and still worse to shoot him before he has played every form of radio activity is sweeping; he may a single note.
    [Show full text]
  • Antique Electronic Supply Tube Prices 2019
    ANTIQUE ELECTRONIC SUPPLY TUBE PRICES 2019 201A - Triode, Low-MU, Globe -Long Pin $54.10 2A3 - Triode, Power Amp, Single Plate - Used $263.85 201A - Triode, Low-MU, Globe - Used $27.05 2A5 - Pentode, Power Amplifier $21.90 0A2/150C2 - Voltage Reg, Diode, Glow $6.90 2A5 - Pentode, Power Amplifier - Used $11.65 0A3/VR75 - Voltage Regr, Diode, Glow $6.90 2A6 - Diode, Dual - Triode $7.90 0B2 - Voltage Reg, Diode, Glow $5.90 2A7 - Pentagrid Converter $9.90 0B3/VR90 - Voltage Regulator $3.90 2C22/7193 - Triode $8.05 0C2 - Voltage Regulator $8.90 2D21/PL21 - Thyratron $6.90 0C3-A/VR105 - Voltage Regulator $6.90 2E5 - Indicator, ST Shape Glass $14.35 0D3-A/VR150 - Voltage Regulator $6.15 2E5 - Indicator, Tubular Glass $14.35 0G3/85A2 - Voltage Regulator $3.30 2E24 - Beam Power Amplifier $8.70 0Z4-A - Rectifier, Full Wave, Gas $3.90 2E26 - Pentode, Beam $6.90 1A5GT - Pentode, Power Amplifier $4.90 2X2A/2Y2_879 - Rectifier $2.66 1A7GT - Pentagrid Converter $4.90 3A4 - Pentode, Power Amplifier $5.90 1AD4 - Pentode $4.45 3A5/DCC90 - Triode, Dual $5.90 1C5GT - Pentode, Power Amplifier $3.65 3AV6 - Diode, Dual - Triode $3.55 1G4GT - Triode, Medium MU $14.90 3B28 - Rectifier, Half Wave $29.00 1H4G - Triode, Medium MU $15.90 3C24/24G - Triode $19.90 1H5GT-G - Diode - Triode, High MU $3.90 3Q4 - Pentode, Power $5.90 1H6G - Diode, Dual - Triode $2.85 3Q5GT - Pentode, Beam Power $4.90 1J6G - Triode, Dual, Power Amplifier $7.55 3S4 - Tetrode, Beam Power $4.90 1L4/DF92 - Pentode $2.67 3V4/DL94 - Pentode, Power $8.90 1L6 - Heptode $99.90 4-125A/4D21 - Tetrode,
    [Show full text]
  • SUPERHETERODYNE CONVERTORS and 1-F AMPLIFIERS
    ELECTRONIC TECHNOLOGY SERIES SUPERHETERODYNE CONVERTORS and 1-F AMPLIFIERS ,#.,_. •~· .• :· :-,:·,' . ...~ ' ' ' . ' ,\,.. • · ,, . ,·;, . :; ~: ~, :· ,. ~: '.·· .. '. •'.~ ;·. '~ . ' . ., . :• a publication SUPERHETERODYNE CONVERTERS AND 1-F AMPLIFIERS Edited by Alexander Schure, Ph. D., Ed. D. JOHN F. RIDER PUBLISHER, INC., NEW YORK a division of HAYDEN PUBLISHING COMPANY, INC. Copyright IC 1963 JOHN F. RIDER PUBLISHER, INC. All rights reserved. This book or any parts there may not be reproduced in any form or in any language without permission. SECOND EDITION Library of Congress Catalog Number 6J-20JJ6 Printed in the United States of America PREFACE The utilization of heterodyning action in receiver design via local oscillator, mixer, or converter action marks one of the major steps in the advance of communications. Application of the basic prin­ ciples of superheterodyne operation solved many of the problems inherent in the earlier tuned radio frequency receivers. Such factors as receiver stability, gain, selectivity, and uniform bandpass over an entire band could be improved by using the superheterodyne receiver. The reasons for the enormous popularity of this design are apparent, as is the need for the technician to understand the theory and operation of superheterodyne converters and i-f ampli­ fiers. This book is organized to provide the student with an under­ standing of these fundamental principles, with emphasis on the descriptive treatment and analyses. Mathematical formulas or numerical examples are presented where pertinent and necessary to illustrate the discussion more fully. Specific attention has been given to the essential theory of mixers and converters; basic superheterodyne operation; arithmetic selec­ tivity; image frequency considerations; double conversion; conver­ sion efficiency; oscillator tracking; pulling and squegging; types of converters (both early and modern) ; functions and design factors of i-f amplifiers; choices of i-f frequencies; ave and davc; the Miller effect; and the consideration of alignment procedures.
    [Show full text]
  • The BASICS INSIDE a TUBE
    The BASICS Back in 1904, British scientist John Ambrose Fleming first showed his device to convert an alternating current signal into direct current. The "Fleming diode" was based on an effect that Thomas Edison had first discovered in 1880, and had not put to useful work at the time. This diode essentially consisted of an incandescent light bulb with an extra electrode inside. When the bulb's filament is heated white-hot, electrons are boiled off its surface and into the vacuum inside the bulb. If the extra electrode (also called an "plate" or "anode") is made more positive than the hot filament, a direct current flows through the vacuum. And since the extra electrode is cold and the filament is hot, this current can only flow from the filament to the electrode, not the other way. So, AC signals can be converted into DC. Fleming's diode was first used as a sensitive detector of the weak signals produced by the new wireless telegraph. Later (and to this day), the diode vacuum tube was used to convert AC into DC in power supplies for electronic equipment. Many other inventors tried to improve the Fleming diode, most without success. The only one who succeeded was New York inventor Lee de Forest. In 1907 he patented a bulb with the same contents as the Fleming diode, except for an added electrode. This "grid" was a bent wire between the plate and filament. de Forest discovered that if he applied the signal from the wireless-telegraph antenna to the grid instead of the filament, he could obtain a much more sensitive detector of the signal.
    [Show full text]