Valve Tube Equivalents

Total Page:16

File Type:pdf, Size:1020Kb

Valve Tube Equivalents Tube_Equivalents Valve Tube Equivalents ID Type Description Base Vh Qty New Qty Used 18768 00 Triode 7-Pin Cold 19378 00A Triode UX4 5 9518 01307 Octode P8 13 9519 015/400 Triode B4 4 20007 01AA Triode UX4 5 20008 01B Triode UX4 5 9520 0200/2500 Triode 5 9521 0202 Octode B7 2 9522 0240/2000 Triode B4 11 9523 0241/2000 Triode B4 14 9524 0250/2000 Triode Special 3-Pin 11 9525 0300/3000 Triode 4,5 9526 040/1000 Triode 10 9527 0406 Octode P8 4 9528 0407 Octode P8 4 16195 054V Triode B5 4 9529 0606 Octode P8 6,3 9530 0607 Octode I/O 6,3 17241 06F90 Pentode B5A 0,625 9531 075/1000 Triode Jumbo 4-Pin 10 20009 084 Triode B4 4 9534 0A3 Voltage Regulator I/O Cold 9535 0A3A Voltage Regulator I/O Cold 15579 0A4 Voltage Stabiliser I/O Cold 9536 0A4G Voltage Stabiliser I/O Cold 9540 0BC3 Double Diode Triode I/O 12,6 9541 0BF2 Double Diode Pentode I/O 9 9546 0CH4 Triode Heptode I/O 15 16753 0D3A Voltage Regulator I/O Cold 9548 0D3W Voltage Regulator I/O Cold 9549 0D3WA Voltage Regulator 9550 0D4 Triode B4 4 9551 0D407a Triode B4 4 9552 0D407b Triode B4 4 9553 0E-250e Diode UX4 2,5 9554 0E3 Voltage Stabiliser B8G None 9556 0E300c Diode 9555 0E4 Triode B4 4 9557 0E400d Double Diode B4 4 9558 0E400e Double Diode B4 4 9559 0E400f Double Diode B4 4 9560 0F1 Pentode I/O 6,3 9561 0F5 Pentode I/O 12,6 9562 0F9 Pentode I/O 8,5 9564 0H4 Heptode I/O 12,6 9565 0HR430 Triode B4 4 9566 0HR430b Triode B4 4 9567 0M1 Diode I/O 30 Page 1 Tube_Equivalents 9568 0M10 Triode Hexode I/O 6,3 9569 0M3 Double Diode I/O 6,3 9570 0M4 Double Diode Triode I/O 6,3 9571 0M5 Tuning Indicator I/O 12,6/6,3 15827 0M525 Magnetron 9572 0M5B Pentode I/O 6,3 17402 0M5C Pentode I/O 6,3 9573 0M6 Pentode I/O 6,3 15828 0M9 Pentode I/O 6,3 9574 0P10/400 Triode B4 4 9575 0P10/500 9576 0P200/2000 Triode Special 3-Pin 11 9577 0P38/600 Triode B4 7,5 9578 0P42 Pentode B7 4 9579 0P70/1000 Triode Jumbo 4-Pin 10 9580 0P71/1000 Triode Jumbo 4-Pin 10 9581 0Q10/400 Triode B4 4 9582 0Q15/600 Triode B4 4 9583 0Q71/1000 Triode B4 10 9584 0QQ150/3000 Triode Jumbo 4-Pin 10 9585 0QQ151/3000 Triode Jumbo 4-Pin 10,5 9586 0QQ50/1500 Triode UX4 7,5 9587 0QQ500/3000 Triode UX3 23 9588 0QQ501/3000 Triode UX3 23 9589 0QQ55/1500 Triode UX4 7,5 9590 0QQ56/1500 Triode UX4 7,5 9591 0RP11 PE Cell 3-Pin Cold 9592 0RP90 PE Cell B7G Cold 9593 0S1 Pentode 6,3 9594 0S12/500 Pentode UX7 12,6 9595 0S12/501 Pentode UX7 6,3 9596 0S125/2000 Pentode UX5 10 9597 0S15/500 Pentode P8 12 9598 0S18/600 Pentode P8 6,3 9599 0S2 12,6 9600 0S40/1250 Pentode UX5 7,5 9601 0S41/1250 Pentode UX5 7,5 9602 0S450 12,6 9603 0S450a Tetrode B4 4 9604 0S450c Tetrode B4 4 9605 0S6/300 Pentode B5 4 9606 0S70/1750 Pentode Giant 5-Pin 10 9607 0S75/20 15829 0S75/60 Thyratron 9608 0SW2025 9609 0SW2190 Pentode I/O 6,3 9610 0SW2192 Pentode I/O 6,3 9611 0SW2600 Pentode I/O 6,3 9612 0SW2601 9613 0SW2811 9614 0SW3101 Triode B3 10,5 9615 0SW3103 Pentode P8 4 9616 0SW3104 Heptode I/O 6,3 9617 0SW3105 Double Diode Triode I/O 6,3 Page 2 Tube_Equivalents 9618 0SW3106 Pentode I/O 6,3 9619 0SW3107 Double Diode I/O 5 9620 0SW3108 Pentode I/O 6,3 9621 0SW3109 Double Diode I/O 6,3 9622 0SW3110 Tuning Indicator UX6 6,3 9623 0SW3111 Pentode I/O 6,3 9624 0SW3112 Triode I/O 6,3 9625 0SW3116 Double Diode I/O 6,3 9626 0SW3119 Pentode P8 4 9627 0SW3127 Pentode I/O 6,3 9628 0SW3128 Pentode I/O 6,3 9629 0SW3129 9630 0SW3132 9631 0SW3801 Voltage Stabiliser Cold 9632 0SW3804 Voltage Stabiliser Special 3-Pin Cold 9633 0SW3806 Voltage Stabiliser B5 Cold 9634 0SW3807 Voltage Stabiliser Special 6-Pin Cold 9635 0SW3808 Voltage Stabiliser B5 Cold 9636 0SW3809 Voltage Stabiliser Special 6-Pin Cold 9637 0SW3811 Voltage Stabiliser Special 4-Pin Cold 9638 0T100 Triode UX4 10 9639 0T400 Triode Special 2-Pin 10 15830 0TK-4 Triode 9640 0U402 Triode B4 4 9641 0U404a Triode B4 4 9642 0U404b Triode B4 4 9643 0V4100 Octode P8 4 9644 0V4110 Octode P8 4 9645 0VD407 Triode B5 4 9646 0VR410 Triode B5 4 9647 0VS450 Tetrode B5 4 9648 0VS452 Tetrode B5 4 9649 0X10/400 9650 0Y1 9651 0Y4 Diode I/O Cold 9652 0Y4G Diode I/O Cold 9653 0Z3 Double Diode UX5 Cold 9655 0Z4A Double Diode I/O Cold 20010 1 Diode UX4 6,3 14472 100T Triode 14473 100TH Triode UX4 Medium + Ba5 14474 104V Triode B5 4 14475 108C1 Voltage Stabiliser B7G Cold 19514 108K CRT B4E 6,3 16808 10BM8 Triode Pentode B9A 10 18567 10BQ5 Pentode B9A 10 17291 10C1 Triode Heptode B8A 28 14476 10C14 Triode Hexode B9A 19 17292 10C2 Triode Pentode B8A 28 14477 10D1 Double Diode B5 13 16809 10DR7 Double Triode B9A 9,7 14480 10E/45 Diode 16981 10EB8 Triode Pentode B9A 10,5 14478 10F1 Pentode B8A 22 Page 3 Tube_Equivalents 18151 10F18 Pentode B9A 13 18380 10F3 Pentode B8A 22 18150 10F9 Pentode B8A 12,6 14479 10FD12 Double Diode Pentode B9A 19 16812 10FD7 Double Triode B9A 9,7 16984 10FR7 Double Triode B9A 9,7 16813 10GW8 Triode Pentode B9A 10 19219 10L1 Triode B7G 19 14481 10L14 Double Triode B9A 26 19228 10LD11 Double Diode Triode B8A 15 14482 10LD12 Triple Diode Triode B9A 28 14483 10LD13 Double Diode Triode B9A 13 14484 10LD3 Double Diode Triode B8A 13 16991 10LW8 Triode Pentode B9A 10,9 16992 10LZ8 Triode Pentode B9A 10,5 14485 10P13 Tetrode B8A 40 18788 10P14 Tetrode I/O 40 14486 10P18 Tetrode B9A 45 14487 10PL12 Triode Pentode B9A 50 18037 10Y Triode UX4 7,5 17744 11 Triode UX4 1,1 14494 11000 Tetrode B7 4 14488 116/Pen Pentode B7 11,5 17117 117L7 Diode Pentode I/O 117 17118 117N7 Diode Tetrode I/O 117 17955 117P7GT Diode Pentode I/O 117 17273 11A1 Regulator B9A Cold 18837 11A1 Pentode B9A 6,3 19034 11A2 Double Diode Triode B7 4 16993 11C5 Triode I/O 10 14493 11D3 Double Diode Triode B7 13 19047 11D5 Double Diode Triode B7 13 19404 11E13 Triode B9A 6,3 18838 11E14 Pentode I/O 6,3 17268 11TA31 Voltage Regulator B7G Cold 14495 120 Tetrode B5 2 17123 1201 Triode B8G 6,3 17124 1203 Diode B8G 6,3 17125 1204 Pentode B8A 6,3 17126 1206 Double Pentode B8G 6,3 14496 1210 Voltage Stabliser B7G Cold 19446 121K CRT B12A 6,3 14497 121VP Pentode B8A 12,6 17127 1221 Pentode UX6 6,3 17128 1223 Pentode I/O 6,3 17129 1229 Pentode UX4 2 17130 1230 Triode UX4 2 17131 1231 Pentode B8G 6,3 17132 1232 Pentode B8G 6,3 17133 1267 Thyratron I/O Cold 17134 1273 Pentode B8G 6,3 17135 1274 Double Diode B8G 6,3 17136 1275 Double Diode UX4 5 17137 1280 Pentode B8G 12,6 Page 4 Tube_Equivalents 17138 1284 Pentode B8G 12,6 17139 1291 Double Triode I/O 1,4 17140 1294 Diode B8G 1,4 17141 1299 Tetrode B8G 2,8/1,4 14500 12A6GT Tetrode I/O 12,6 17340 12A8 Heptode I/O 12,6 14503 12AC5 Pentode B8A 12,6 17002 12AG6 Heptode B7G 12,6 14505 12AH8 Triode Heptode B9A 12,6/6,3 17752 12AJ8 Double Diode Triode B7G 12,6 16815 12AK7 Double Triode B9A 12,6 18548 12AS5 Pentode B7G 12,6 17003 12AT6A Double Diode Triode B7G 12,6 17004 12AU6A Pentode B7G 12,6 16816 12AU8 Triode Pentode B9A 12,6 17006 12AV6A Double Diode Triode B7G 12,6 17007 12AX4GT Diode I/O 12,6 17010 12AXTA 17764 12AZ7 Double Triode B9A 12,6/6,3 18152 12B-B14 Pentode B9D 14 14513 12B7 Pentode B8B 12,6 17013 12BA6A Pentode B7G 12,6 18153 12BC32 Double Diode Triode B7G 12,6 17016 12BK6 Double Diode Triode B7G 12,6 17018 12BQ6GT Pentode I/O 12,6 17776 12BV7 Pentode B9A 12,6/6,3 14520 12C8GT Double Diode Pentode I/O 12,6 18969 12CD6 Pentode I/O 12,6 17784 12CR6 Diode Pentode B7G 12,6 14521 12CS7GT Double Triode 17792 12DE8 Diode Pentode B9A 12,6 17793 12DK6 Pentode B7G 12,6 16817 12DL4 Triode B9A 10 17796 12DM4 Diode I/O 12,6 16818 12DM7 Double Triode B9A 12,6/6,3 17799 12DQ7 Pentode B9A 12,6/6,3 17801 12DS7A Double Diode Tetrode B9A 12,6 16026 12DT1 Triode B7G 12,6 16027 12DT2 Triode B7G 12,6 14522 12DT7 Double Triode B9A 6,3 17807 12DY8 Triode Pentode B9A 12,6 17808 12DZ6 Pentode B7G 12,6 14523 12E13 Pentode I/O 6,3 20005 12E14 Pentode I/O 6,3 18840 12E1C Pentode I/O 6,3 17810 12EC8 Triode Pentode B9A 12,6 17815 12EM6 Diode Tetrode B9A 12,6 17816 12EN6 Pentode I/O 12,6 17817 12EQ7 Diode Pentode B9A 12,6 16028 12ES5 Triode B7G 12,6 18154 12F31 Pentode B7G 12,6 16819 12FQ8 Double Triode B9A 12,6 16820 12FR8 Diode Triode Pentode B9A 12,6 17190 12FV7 Double Triode B9A 12,6/6,3 Page 5 Tube_Equivalents 17823 12FX8 Triode Heptode B9A 12,6 18177 12G-K17 Diode I/O 12,6 17824 12GA6 Heptode B7G 12,6 17827 12GJ5 Pentode B9D 12,6 17828 12GN7 Pentode B9A 12,6/6,3 17830 12GW6 Pentode I/O 12,6 18178 12H31 Heptode B7G 12,6 18497 12J7 Pentode I/O 12,6 17833 12JB6 Pentode B9D 12,6 18498 12K7 Pentode I/O 12,6 16203 12K8GT Triode Hexode I/O 12,6 17837 12KL8 Diode Pentode B9A 12,6 19044 12Q7 Double Diode Triode I/O 12,6 16821 12R-LL3 Double Triode B9A 12,6/6,3 18180 12R-LL5 Double Triode B9A 12,6 14532 12S7 Diode Pentode B8A 12,6 14533 12S7WGT Double Triode B8A 12,6 17841 12S8GT Triple Diode Triode I/O 12,6 14535 12SF5GT Triode I/O 12,6 14537 12SF7GT Diode Pentode I/O 12,6 14540 12SH7GT Pentode I/O 12,6 14546 12SN7 Double Triode I/O 12,6 14549 12SQ7GT Double Diode Triode I/O 12,6 14551 12SR7GT Double Diode Triode I/O 12,6 14552 12SW7 Double Diode Triode I/O 12,6 14554 12SY7 Heptode I/O 12,6 19586 12U5 Tuning Indicator UX6 12,6 14555 12VPA Pentode B7 13 14556 12X825 19506 12XP4 CRT B12A 6,3 19507 12XP4A CRT B12A 6,3 19756 13201A Voltage Stabiliser B5 Cold 18970 13CM5 Pentode I/O 12,6 14557 13D1 Double Triode I/O 25 14558 13D2 Double Triode I/O 6,3 14559 13D3 Double Triode B9A 12,6/6,3 14560 13D5 Double Triode B9A 6,3 14561 13D7 Double Triode B9A 6,3 16220 13D8 Double Triode B9A 12,6/6,3 14562 13DHA Double Diode Triode B7 13 14563 13E1 Triode B7A 13 18841 13E12 Triode B7A 13 17023 13FR7 Double Triode B9A 13 17856 13J10 Double Pentode B12A 13,2 14564 13SPA Pentode B7 13 14565 13VPA Pentode B7 13 14566 141DDT Double Diode Triode B8A 13 19447 141K CRT B12A
Recommended publications
  • El156 Audio Power
    EL156 AUDIO POWER Gerhard Haas Thanks to its robustness, the legendary EL156 audio power pentode has found its way into many professional amplifier units. Its attraction derives not just from its appealing shape, but also from its impressive audio characteristics. We therefore bring you this classical circuit, updated using high- quality modern components. 28 elektor electronics - 3/2005 AMPLIFIER Return of a legend The EL156 was manufactured in the enough to give adequate sensitivity, electrolytic capacitor: this voltage is legendary Telefunken valve factory in even before allowing any margin for further filtered on the amplifier board. Ulm, near the river Danube in Ger- negative feedback. The ECC81 many. The EL156 made amplifiers with (12AT7), however, which has an open- It is not possible to build an ultra-lin- an output power of up to 130 W possi- loop gain of 60 and which can be oper- ear amplifier using the EL156 with a ble, using just two valves in the output ated with anode currents of up to high anode voltage. The same goes for stage and one driver valve. Genuine 10 mA, can be used to build a suitably the EL34. The output transformer is EL156s are no longer available new at low-impedance circuit. therefore connected in such a way that realistic prices, and hardly any are Two EL156s can be used to produce an the impedance of the grid connection available second-hand. The original output power of 130 W with only 6 % to the output valve is much lower than devices used a metal valve base which distortion.
    [Show full text]
  • Vacuum Tube Theory, a Basics Tutorial – Page 1
    Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode.
    [Show full text]
  • The Beginner's Handbook of Amateur Radio
    FM_Laster 9/25/01 12:46 PM Page i THE BEGINNER’S HANDBOOK OF AMATEUR RADIO This page intentionally left blank. FM_Laster 9/25/01 12:46 PM Page iii THE BEGINNER’S HANDBOOK OF AMATEUR RADIO Clay Laster, W5ZPV FOURTH EDITION McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto McGraw-Hill abc Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-139550-4 The material in this eBook also appears in the print version of this title: 0-07-136187-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade- marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe- ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc.
    [Show full text]
  • Operation, Tetrode, Pentode in the Single-Ended, Class-A
    10-76 10. Guitar Amplifiers 10.5.1 Single-ended (class A)-operation, tetrode, pentode In the single-ended, class-A power-stage, one (single) power-tube operates in common- cathode configuration with the output transformer being part of the plate circuit (transformer- coupling). Without AC-drive (“quiescent state”), a stable balance appears – it is called the operating point (OPP). The characteristics shown in Fig. 10.5.2 yield an OPP at 250 V and 48 mA, if a voltage of -7.5 V between (control) grid (g1) and cathode is chosen. This can be done e.g. by using a cathode-resistor of 142 Ω. The cathode-current (the sum of the 48-mA- plate-current and the 5-mA-screen-grid-current) will then generate a positive cathode-voltage of + 7.5 V (relative to ground). With the control-grid at ground-potential (Ug1 = 0) a control- grid-to-cathode-voltage of -7.5 V results (i.e. the control grid is negative vs. the cathode). Fig. 10.5.2: Output characteristics of the EL84, power-stage circuit (single-ended class-A operation). AP = OPP As a drive signal appears (Ug1 ≠ 0), plate-voltage and –current change. As a first approach, it will be sufficient to consider the transformer in the plate-circuit as a large inductance connected in parallel with an ohmic resistor (Chapter 10.6). In this model we have only pure DC flowing through the inductance, and only pure AC flowing through the resistor. With a drive-signal present, the Ua/Ia-point will move along the load-line given in Fig.
    [Show full text]
  • Liste Des Tubes À Vide Il S'agit D'une Liste De Tubes À
    Liste des tubes à vide Il s'agit d'une liste de tubes à vide ou vannes thermo-ioniques et basse pression tubes remplis de gaz ou tubes à décharge . Avant l'avènement des semi-conducteurs périphériques, des centaines de types de tubes ont été utilisés dans l'électronique grand public et industriels; aujourd'hui seuls quelques types sont encore utilisés dans des applications spécialisées. Table des matières 1 chauffage ou notes filament 2 embases de tube 3 systèmes de numérotation 3.1 systèmes nord-américain 3.1.1 système RMA (1942) 3.1.2 système RETMA (tubes recevant, 1953) 3.1.3 Chiffre systèmes uniquement 3.2 systèmes d'Europe occidentale 3.2.1 système Marconi-Osram 3.2.2 système Mullard-Philips 3.2.2.1 tubes standard 3.2.2.2 tubes de qualité spéciaux 3.2.2.3 tubes professionnels 3.2.2.4 tubes Transmission 3.2.2.5 Phototubes et des photomultiplicateurs 3.2.2.6 stabilisateurs 3.2.3 systèmes Mazda / Ediswan 3.2.3.1 ancien système 3.2.3.2 tubes de signaux 3.2.3.3 Puissance redresseurs 3.2.4 STC / Brimar système de réception des tubes 3.2.5 Tesla système de tubes de réception 3.3 système de normalisation industrielle japonaise 3.4 systèmes russes 3.4.1 tubes standard 3.4.2 tubes électriques à très haute 3,5 tubes désignation Très-haute puissance (Eitel McCullough et ses dérivés) 3.6 ETL désignation des tubes de calcul 3.7 systèmes de dénomination militaires 3.7.1 Colombie-système nommage CV 3.7.2 US systèmes de dénomination 3.8 Autres systèmes chiffre uniquement 3.9 Autre lettre suivie de chiffres 4 Liste des tubes américains, avec leurs
    [Show full text]
  • 1999-2017 INDEX This Index Covers Tube Collector Through August 2017, the TCA "Data Cache" DVD- ROM Set, and the TCA Special Publications: No
    1999-2017 INDEX This index covers Tube Collector through August 2017, the TCA "Data Cache" DVD- ROM set, and the TCA Special Publications: No. 1 Manhattan College Vacuum Tube Museum - List of Displays .........................1999 No. 2 Triodes in Radar: The Early VHF Era ...............................................................2000 No. 3 Auction Results ....................................................................................................2001 No. 4 A Tribute to George Clark, with audio CD ........................................................2002 No. 5 J. B. Johnson and the 224A CRT.........................................................................2003 No. 6 McCandless and the Audion, with audio CD......................................................2003 No. 7 AWA Tube Collector Group Fact Sheet, Vols. 1-6 ...........................................2004 No. 8 Vacuum Tubes in Telephone Work.....................................................................2004 No. 9 Origins of the Vacuum Tube, with audio CD.....................................................2005 No. 10 Early Tube Development at GE...........................................................................2005 No. 11 Thermionic Miscellany.........................................................................................2006 No. 12 RCA Master Tube Sales Plan, 1950....................................................................2006 No. 13 GE Tungar Bulb Data Manual.................................................................
    [Show full text]
  • The Electron Volt
    ApPENDIX A The Electron Volt Before we discuss the electron volt (e V) let us go over the following phe­ nomenon without the use of that unit. When a potential difference exists between two points, and a charged particle is in that field, a force is exerted on this particle by the electric field. An example of this is the beam of electrons in a TV picture tube. Each electron in this beam is accelerated by the force exerted on it by the electric field. As it is accelerated its kinetic energy is increased until it is maximum just prior to striking the screen at the front of the picture tube. When it strikes the front of the picture tube this energy must be conserved so the kinetic energy is converted into the form of electromagnetic energy or x rays. One problem is to find a description of the emitted x-ray photon. Let us assume that the accelerating voltage in the TV picture tube was 20 kV. Without the use of the electron volt as a unit the following units would be required in this calculation: 1. The charge on an electron (q) = 1.602 x 10- 19 coulomb. 2. Planck's constant (h) = 6.547 x 10-27 erg-second. 3. One angstrom (A) = 1 x 10- 10 meter (used to measure the wavelength of light). 4. The velocity of light (C) = 3 x 1010 cm/s. The force on an electron, due to the presence of an electric field, can be ex­ pressed as qE, where q is the charge on an electron and E is the potential differ­ ence, in volts, between the two points, divided by the distance between the two points, in meters.
    [Show full text]
  • Pentodes Connected As Triodes
    Pentodes connected as Triodes by Tom Schlangen Pentodes connected as Triodes About the author Tom Schlangen Born 1962 in Cologne / Germany Studied mechanical engineering at RWTH Aachen / Germany Employments as „safety engineering“ specialist and CIO / IT-head in middle-sized companies, now owning and running an IT- consultant business aimed at middle-sized companies Hobby: Electron valve technology in audio Private homepage: www.tubes.mynetcologne.de Private email address: [email protected] Tom Schlangen – ETF 06 2 Pentodes connected as Triodes Reasons for connecting and using pentodes as triodes Why using pentodes as triodes at all? many pentodes, especially small signal radio/TV ones, are still available from huge stock cheap as dirt, because nobody cares about them (especially “TV”-valves), some of them, connected as triodes, can rival even the best real triodes for linearity, some of them, connected as triodes, show interesting characteristics regarding µ, gm and anode resistance, that have no expression among readily available “real” triodes, because it is fun to try and find out. Tom Schlangen – ETF 06 3 Pentodes connected as Triodes How to make a triode out of a tetrode or pentode again? Or, what to do with the “superfluous” grids? All additional grids serve a certain purpose and function – they were added to a basic triode system to improve the system behaviour in certain ways, for example efficiency. We must “disable” the functions of those additional grids in a defined and controlled manner to regain triode characteristics. Just letting them “dangle in vacuum unconnected” will not work – they would charge up uncontrolled in the electron stream, leading to unpredictable behaviour.
    [Show full text]
  • 118 Bernards Radio Manuals 5
    § i PRACTICAL 118 voor de Historie v/d Radio iSHB 130. BERNARDS RADIO MANUALS 5/ ■ ■ tUOTHEEK N.V.H.R, i PRACTICAL F.M. CIRCUITS FOR THE HOME CONSTRVCTOR by R. Deschepper BERNARDS (PUBLISHERS) LTD. THE GRAMPIANS WESTERN GATE LONDON, W.6 General Editor Walter J. May First Published in Great Britain, February, 1955. First published in France under the copyright title “ Schemas de recepteurs pour la modulation de “ frequence,” by Societe des Editions Radio, 9, Rue Jacob, Paris (6e) i i ; i i iii THE FREQUENCY MODULATION ERA From its infancy Broadcasting has been considered to fulfill the primary function of conveying to very large audiences the sounds produced in front of the microphone or held in store in the form of recordings. In the early days, the possibility of picking up distant stations appealed strongly to the first amateurs. Long distance records used to be claimed on all sides, and the ‘‘last word” in 1925 was to “receive America.” Although in this way sen­ sitivity came into the foreground among the principal qualities demanded from a receiver, the density of the traffic through the ether soon brought up the critical problems of selectivity. However, up to 1930, radio remained the privilege of a small group of enthusiasts, since the installation, maintenance and control of a receiver layout (comprising, besides the receiver itself, a frame aerial, a loud speaker, a filament battery together with its charger, and an H.T. battery eventually to be replaced by a “battery eliminator”) necessitated a certain amount of technical knowledge and more than a little patience.
    [Show full text]
  • Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976
    NAT'L INST. OF STAND ms & TECH R.I.C. Pubii - cations A111D4 4 Tfi 3 4 4 NBSIR 78-1564 Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final QC— U.S. DEPARTMENT OF COMMERCE 100 NATIONAL BUREAU OF STANDARDS U56 73-1564 Buraev of Standard! NBSIR 78-1564 1 4 ^79 fyr *'• 1 f TABULATION OF PUBLISHED DATA ON ELECTRON DEVICES OF THE U.S.S.R. THROUGH DECEMBER 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary / Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director - 1 TABLE OF CONTENTS Page Preface i v 1. Introduction 2. Description of the Tabulation ^ 1 3. Organization of the Tabulation ’ [[ ] in ’ 4. Terminology Used the Tabulation 3 5. Groups: I. Numerical 7 II. Receiving Tubes 42 III . Power Tubes 49 IV. Rectifier Tubes 53 IV-A. Mechanotrons , Two-Anode Diode 54 V. Voltage Regulator Tubes 55 VI. Current Regulator Tubes 55 VII. Thyratrons 56 VIII. Cathode Ray Tubes 58 VIII-A. Vidicons 61 IX. Microwave Tubes 62 X. Transistors 64 X-A-l . Integrated Circuits 75 X-A-2. Integrated Circuits (Computer) 80 X-A-3. Integrated Circuits (Driver) 39 X-A-4. Integrated Circuits (Linear) 89 X- B.
    [Show full text]
  • History of Thethermionic Tube / Valve / Vacuum
    History of theThermionic Tube / Valve / Vacuum Tube – Page 1 The following notes have been assembled by Phil (VK5SRP) from original material and material from several web sites, including Wikipedia for a class run at the North East Radio Club, South Australia January 2016. In electronics, a vacuum tube, an electron tube, or just a tube (North America), or valve (Britain and some other regions) is a device that controls electric current between electrodes in an evacuated container. Vacuum tubes mostly rely on thermionic emission of electrons from a hot filament or a cathode heated by the filament/heater. This type is called a thermionic tube or thermionic valve. A Photo-tube, however, achieves electron emission through the photoelectric effect. Not all electronic circuit valves/electron tubes are vacuum tubes (evacuated). Gas-filled tubes are similar devices containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases, usually without a heater. Although thermionic emission was originally reported in 1873 by Frederick Guthrie, it was Thomas Edison's 1883 investigation that spurred future research, the phenomenon thus becoming known as the "Edison effect". Edison patented what he found, but he did not understand the underlying physics, nor did he have an inkling of the potential value of the discovery. It wasn't until the early 20th century that the rectifying property of such a device was utilised, most notably by John Ambrose Fleming, who used the Diode tube to detect (demodulate) radio signals. Lee De Forest's 1906 "Audion" was also developed as a radio detector, and soon led to the development of the Triode tube.
    [Show full text]
  • A Relatively Simple Device for Recording Radiation Intensities in The
    A RELATIVELY SIMPLE DEVICE FOR RECORDING RADIATION INTENSITIES IN HE ULTRAVIOLET PORTION OF THE SPECTRUM by HENRY WALLACE HENDRICKS A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 19S0 APPROVED: Professor of Physics In Charge of Major Chairman of School Graduate Committee Dean of Graduate School ACKN OWLEDGMENT Sincere appreciation and thanks are expressed to Dr. Weniger for his interest and assistance in the preparation of this thesis. TABLE OF CONThNTS a ge I NTROD[JCTION . ..... , . i Statement of . Problem . i Some Basic Information about Ultraviolet, Sun and Sky Radiation, Its Biological Etc. Effectiveness, . 1 INSTRUMLNTS FOR RECORDING ULTRAVIOLET INTENSITIES . 3 DESIGNOONSIDERATIONS. ... .. .. The R e e e i y e . r ....... The . Receiving Circuit . 9 The R e c o e . rd r . 9 . ThePowerSupply . .10 EX>ERIMENTAL . 1)EVELOPMENT . 11 THE FINAL CIRCUIT AND . 7OER SUPPLY . 16 PREPARATION AND SILVERING OF THE QUARTZ PLATES . 20 THERECEIVERUNIT..................23 TESTOFAPPARATtJS . .26 Adjustment8 . 26 Results and Conclusions . 27 . Data . 3]. BILIOGRAPHY . 37 LIST OF ILLUBTRATIONS Figure Page J. Spectral Sensitivfty of the S Photocathode 6 2 OriginalCircuit . 12 3 First Vacuum Tube Circuit . 12 Lj. Variation of the Counts per Minute with Filament Voltage . 11i The Final Circuit . ........ 17 6 The Power Suoply, Counter and Receiver . 22 The 7 Receiver ............... 2)4. 8 Step-diagram from Data ObtaIned on MaylO,l9O ............. 28 9 Step-diagram from Data Obtained on Mayll,l9O ............. 29 10 Step-diagram from Data Obtained on Mayl2,l95O ......... .. 30 A RELATIVELY SIMPLE DEVICE FOR RECORDING RADIATION .LNTENSITIES IN T}IE ULTRAVIOLET PORTION OF THE SPECTRUM INTRODUCTION Statement of Problem The purpose of this thesis is to develop a more or less portable aiaratua that will measure ultraviolet energy in or near the erythemal region.
    [Show full text]