Multi-Model Ecologies for Shaping Future Energy Systems: Design Patterns and Development Paths

Total Page:16

File Type:pdf, Size:1020Kb

Multi-Model Ecologies for Shaping Future Energy Systems: Design Patterns and Development Paths University of Groningen Multi-model ecologies for shaping future energy systems Bollinger, L. A.; Davis, C. B.; Evins, R.; Chappin, E. J. L.; Nikolic, I. Published in: Renewable & Sustainable Energy Reviews DOI: 10.1016/j.rser.2017.10.047 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bollinger, L. A., Davis, C. B., Evins, R., Chappin, E. J. L., & Nikolic, I. (2018). Multi-model ecologies for shaping future energy systems: Design patterns and development paths. Renewable & Sustainable Energy Reviews, 82(Part 3), 3441-3451. https://doi.org/10.1016/j.rser.2017.10.047 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 03-10-2021 Renewable and Sustainable Energy Reviews 82 (2018) 3441–3451 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Multi-model ecologies for shaping future energy systems: Design patterns T and development paths ⁎ L.A. Bollingera, , C.B. Davisb, R. Evinsa,c, E.J.L. Chappind, I. Nikolicd a Empa - Swiss Federal Laboratories for Materials Science and Technology, Urban Energy Systems Laboratory, Überlandstrasse 129, Dübendorf 8600, Switzerland b University of Groningen, Faculty of Science and Engineering, Energy and Environmental Studies ESRIG, Nijenborgh 6, AG Groningen 9747, The Netherlands c University of Victoria, Department of Civil Engineering, Engineering and Computer Science (ECS) 304, PO Box 1700 STN CSC, Victoria, BC, Canada V8W 2Y2 d Delft University of Technology, Faculty of Technology, Policy and Management, Jaffalaan 5, 2628 BX Delft, The Netherlands ARTICLE INFO ABSTRACT Keywords: As energy systems grow more complex, modeling efforts spanning multiple scales, disciplines and perspectives Energy systems are essential. Improved methods are needed to guide the development of not just individual models, but also Modeling multi-model ecologies – systems of interacting models. Currently there is a lack of knowledge concerning how Multi-model ecologies multi-model ecologies can and should be designed to facilitate adequate understanding of energy system com- Complexity plexity and its consequences. Via an analysis of twelve multi-model initiatives both within and outside the Energy policy energy domain, this paper elucidates possible design patterns and development paths for multi-model ecologies. The results highlight two broad paths to developing energy system multi-model ecologies, one prioritizing interoperability and the other prioritizing diversity. The former path facilitates the efficient development of models spanning multiple scales and (to a degree) disciplines, and can ease systematic testing of assumptions. The latter is suited to bridging traditional disciplines and perspectives and advancing knowledge within the interstices of different knowledge communities. It is furthermore suggested that a combination of diversity, connectivity and hierarchy in multi-model ecology composition is central to enabling the development of complex webs of models capable of addressing the complexity of real-world energy systems. 1. Introduction As energy systems grow more complex and society's demands on their performance more stringent, we need improved methods to guide Current trends towards less carbon intensive, more decentralized, the development of not just individual models, but also of multi-model more interconnected and smarter energy systems are threads in a ecologies – systems of interacting models [4]. Multi-model ecologies are continuous process of energy systems evolution. The need to under- essential for exploring the interactions amongst energy consumption, stand and steer this evolution with effective policies demands knowl- production, distribution and transmission; amongst different energy edge creation and management processes aligned with the complexity and non-energy infrastructures such as electricity, heat, gas, transpor- of the energy system itself. Insofar as they enable systematic explora- tation and communications; and amongst socio-economic, environ- tion of the consequences of complex sets of technical and societal in- mental and technical phenomena. By facilitating exploration of com- teractions, computer models are vital tools in this process. plex energy system dynamics on multiple scales and from multiple The implementation of mathematical relations in the form of com- perspectives and disciplines, multi-model ecologies open up possibi- puter models combined with ongoing advancements in computational lities for addressing problems and questions that were previously be- capabilities have drastically expanded our ability to grasp complex yond reach, and enable systematic testing of assumptions. interactions. However, individual computer models are still undeniably Moreover, deliberately viewing systems of models as multi-model restricted in the scope of system complexity they are able to effectively ecologies enhances our capacity to strategically steer their combined capture [1–3]. This limits our ability to holistically understand the development. Rather than starting from scratch with each new pro- operation and development of energy systems – across scales, dis- blem, question or research agenda, existing models can be reused, ciplines and perspectives – and thus our capacity to effectively shape combined, expanded or adapted to address new questions that arise. their evolution. Focus shifts from the development of individual models to the ⁎ Corresponding author. E-mail addresses: [email protected] (L.A. Bollinger), [email protected] (C.B. Davis), [email protected] (R. Evins), [email protected] (E.J.L. Chappin), [email protected] (I. Nikolic). https://doi.org/10.1016/j.rser.2017.10.047 Received 10 October 2016; Received in revised form 22 June 2017; Accepted 26 October 2017 Available online 10 November 2017 1364-0321/ © 2017 Elsevier Ltd. All rights reserved. L.A. Bollinger et al. Renewable and Sustainable Energy Reviews 82 (2018) 3441–3451 deliberate cultivation of a system of models in a manner which provides goal in itself – and indeed brings many challenges – it is a fundamental ongoing value and effectively adapts to changes in knowledge needs. side-effect of efforts to enhance energy system sustainability, flexibility, The relevance of multi-model ecologies for energy systems is high- efficiency and resilience. This is illustrated by several trends: lighted by a variety of research initiatives seeking to develop and in- tegrate energy system models addressing different scales, scopes and • The push towards smarter and more distributed energy systems will disciplines, and by recent appeals to the need for such research: entail the instantiation of more and faster communication feedbacks between system elements and levels – from the scale of buildings • Spataru, et al [5] cite the need for a “holistic, multi-dimensional and and neighbourhoods to countries and continents – as well as the multi-scale framework” to address urban energy challenges. integration of a diversity of IT devices into the existing infra- • Grijalva [6] suggests that emerging engineering challenges in the structure. electricity sector require a “holistic, multi-dimensional, multi-scale • The liberalization/deregulation of energy systems has already led to framework”, and notes specific challenges aggravated by computa- a variety of new roles and markets and, in the future, can be ex- tional limitations, such as dispatch with large penetration of wind pected to further the involvement of a greater diversity of autono- generation, demand response in smart grids and multi-level in- mous actors in the energy system – e.g. power producers, trans- formation in transmission and distribution. mission and distribution system operators, retailers, aggregators – • Strachan, et al [7] describe the danger of silos built around specific interacting with one another within an increasing diversity of modeling approaches in energy modeling, and the need for explicit markets. model comparisons for effectively informing policy. • The integration of different infrastructures – such as electricity, gas, • Ferris [8] calls for layered or hierarchical models to support decision heat, transport and IT – will create new feedbacks fand inter- processes in power systems planning, and notes specifically a need dependencies, local and global, amongst infrastructures
Recommended publications
  • Technical Implementation and Success Factors for a Global Solar and Wind Atlas Carsten Hoyer-Klick
    The Global Atlas for Solar and Wind Energy Carsten Hoyer-Klick Folie 1 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Getting Renewable Energy to Work Technology data and learning Available Resources Resource mapping Socio-economic Which and policy data Framework Economic + Political technologies Technical and are feasible? economical Potentials Setting the right the Setting How can RE Technology contribute to the deployment scenarios Best practices energy system? How to get them into the Strategies for market? Where to start? market development Legislation, incentives Political and financial Instruments RE-Markets Slide 2 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Project Development for Renewable Energy Systems Pre feasibility Resources Finding suitable (Atlas) sites with high The Atlas should Feasibility resolution maps few few data no no market Project developmentsupport the first steps and economic Engineering evaluations 1200 in potential assessment, ground 1000 satellite 800 Resources 600 W/m² Detailed 400 policy development200 0 13 14 15 16 17 18 day in march, 2001 (time series) and project pre feasibility, engineering with site Engineering specific data with high Construction temporal resolution as input to Commissioning simulation software data and servicesavailable Operation existing existing commerical market Slide 3 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten
    [Show full text]
  • The Nexus Solutions Tool (NEST): an Open Platform for Optimizing Multi-Scale Energy-Water-Land System Transformations
    https://doi.org/10.5194/gmd-2019-134 Preprint. Discussion started: 15 July 2019 c Author(s) 2019. CC BY 4.0 License. The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations Adriano Vinca1,2, Simon Parkinson1,2, Edward Byers1, Peter Burek1, Zarrar Khan3, Volker Krey1,4, Fabio A. Diuana5,1, Yaoping Wang1, Ansir Ilyas6, Alexandre C. Köberle7,5, Iain Staffell8, Stefan Pfenninger9, Abubakr Muhammad6, Andrew Rowe2, Roberto Schaeffer5, Narasimha D. Rao10,1, Yoshihide Wada1,11, Ned Djilali2, and Keywan Riahi1,12 1International Institute for Applied Systems Analysis, Austria 2Institute for Integrated Energy Systems, University of Victoria, Canada 3Joint Global Change Research Institute, Pacific Northwest National Laboratory, United States 4Dept. of Energy & Process Engineering, Norwegian University of Science and Technology, Norway 5Energy Planning Program, Federal University of Rio de Janeiro, Brazil 6Center for Water Informatics & Technology, Lahore University of Management Sciences, Pakistan 7Grantham Institute, Faculty of Natural Sciences, Imperial College London, United Kingdom 8Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, United Kingdom 9 Dept. of Environmental Systems Science, ETH Zurich, Switzerland 10School of Forestry and Environmental Studies, Yale University, United States 11Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands 12Institute for Thermal Engineering, TU Graz, Austria Correspondence: Adriano Vinca ([email protected]) Abstract. The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs be- tween sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • The March 10, 2020 Council Packet May Be Viewed by Going to the Town of Frisco Website
    THE MARCH 10, 2020 COUNCIL PACKET MAY BE VIEWED BY GOING TO THE TOWN OF FRISCO WEBSITE. RECORD OF PROCEEDINGS WORK SESSION MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 5:00 PM Agenda Item #1: Excavation Code Amendment Discussion Agenda Item #2: Fuel Discussion Agenda Item #3: Remodel Design of Police Department Draft RECORD OF PROCEEDINGS REGULAR MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 7:00PM STARTING TIMES INDICATED FOR AGENDA ITEMS ARE ESTIMATES ONLY AND MAY CHANGE Call to Order: Gary Wilkinson, Mayor Roll Call: Gary Wilkinson, Jessica Burley, Daniel Fallon, Rick Ihnken, Hunter Mortensen, Deborah Shaner, and Melissa Sherburne Public Comments: Citizens making comments during Public Comments or Public Hearings should state their names and addresses for the record, be topic-specific, and limit comments to no longer than three minutes. NO COUNCIL ACTION IS TAKEN ON PUBLIC COMMENTS. COUNCIL WILL TAKE ALL COMMENTS UNDER ADVISEMENT AND IF A COUNCIL RESPONSE IS APPROPRIATE THE INDIVIDUAL MAKING THE COMMENT WILL RECEIVE A FORMAL RESPONSE FROM THE TOWN AT A LATER DATE. Mayor and Council Comments: Staff Updates: Presentation: Frisco’s Finest Award – Jeff Berino Consent Agenda: • Minutes February 25, 2020 Meeting • Warrant List • Purchasing Cards New Business: Agenda Item #1: First Reading Ordinance 20-03, an Ordinance Amending Chapters 65 and 180 of the Code of Ordinances of the Town of Frisco, Concerning Building Construction and Housing Standards, and the Unified Development Code, Respectively,
    [Show full text]
  • Opportunities for Energy Efficient Computing: a Study of Inexact General Purpose Processors for High-Performance and Big-Data Applications
    Opportunities for Energy Efficient Computing: A Study of Inexact General Purpose Processors for High-Performance and Big-data Applications Peter Düben Jeremy Schlachter AOPP, University of Oxford EPFL Oxford, United Kingdom Lausanne, Switzerland [email protected] [email protected] Parishkrati, Sreelatha Yenugula, John Augustine Christian Enz Indian Institute of Technology Madras EPFL India Lausanne, Switzerland [email protected], [email protected] [email protected], [email protected] K. Palem T. N. Palmer Electrical Engineering and Computer Science AOPP, University of Oxford Rice University, Houston, USA Oxford, United Kingdom [email protected] [email protected] Abstract—In this paper, we demonstrate that disproportionate hardware artifacts such as adders, multiplier or FFT engines gains are possible through a simple devise for injecting inexactness [22], [23], [20], [21]. For additional references on inexact or approximation into the hardware architecture of a computing hardware, architectures and related topics, please also see [1], system with a general purpose template including a complete [32], [12], [39], [35], [2]. More recently, this work has also memory hierarchy. The focus of the study is on energy savings been extended to evaluations of large-scale applications—in possible through this approach in the context of large and challenging applications. We choose two such from different ends of the context of our own group, climate modeling and weather the computing spectrum—the IGCM model for weather and climate prediction served as the driving example in which the floating modeling which embodies significant features of a high-performance point operations were rendered inexact [9].
    [Show full text]
  • Building Performance Analysis Considering Climate Change
    Building performance analysis considering climate change Yiyu Chen1, Karen Kensek1, Joon-Ho Choi1, Marc Schiler1 1University of Southern California, Los Angeles, CA ABSTRACT: Climate change will significantly influence building performance in the future both through differences in energy consumption (perhaps drastically in certain climate zones) and by changing the thermal level of comfort that occupants experience. A building that meets the current energy consumption standard has the potential to become energy inefficient in the future, and well-meaning designers might be applying passive strategies for current conditions without understanding what impact their choices have under different climate change scenarios for their location. By analyzing a case study building’s thermal performance, specifically lifecycle energy use, for multiple climate change scenarios and in different climate zones, it is possible to inspect the resilience of passive design strategies over time. Varying the solar heat gain coefficient (SGHC) was the first strategy tested. To estimate the building’s future performance, three projected future climate conditions were created (for low, moderate, and severe climate change) in three climate zones for three different time periods (2020s, 2050s, and 2080s). The first step was to create new projected weather files. They were calculated from a world climate change weather file generation tool that was developed at the University of Southampton. Then the weather files were used in EnergyPlus to determine the energy consumption. Aggregated multiple runs provided lifecycle energy use for each of the three locations. Then the SHGC values were varied to determine which initial values provided the best long- term result. Although currently only SHGC was tested, this research provides a methodology for architects and engineers during the early stage of design that they can use to avoid the detrimental consequences that might be caused by climate change over the lifecycle of the building.
    [Show full text]
  • Quantifying the Air Pollution Exposure Consequences Of" Distributed Electricity Generation
    Energy Development and Technology 005R "Quantifying the Air Pollution Exposure Consequences of" Distributed Electricity Generation Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W. Nazaroff May 2005 Revised Version: November 2005 This paper is part of the University of California Energy Institute's (UCEI) Energy Policy and Economics Working Paper Series. UCEI is a multi-campus research unit of the University of California located on the Berkeley campus. UC Energy Institute 2547 Channing Way Berkeley, California 94720-5180 www.ucei.org This report was issued in order to disseminate results of and information about energy research at the University of California campuses. Any conclusions or opinions expressed are those of the authors and not necessarily those of the Regents of the University of California, the University of California Energy Institute or the sponsors of the research. Readers with further interest in or questions about the subject matter of the report are encouraged to contact the authors directly. QUANTIFYING THE AIR POLLUTION EXPOSURE CONSEQUENCES OF DISTRIBUTED ELECTRICITY GENERATION Final Report Grant No. 07427 Prepared for the University of California Energy Institute Prepared by Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W Nazaroff Department of Civil and Environmental Engineering University of California Berkeley, CA 94720-1710 Original version: May 2005 Revised version: November 2005 Note Concerning Revision Subsequent to the original version of this report being made publicly available, the authors discovered an error in the model inputs of population density. While none of the qualitative results and conclusions were affected by this error, the absolute value of intake fractions and intake-to-generation ratio were overestimated by a constant factor of 2.59 (representing the conversion from square kilometers to square miles).
    [Show full text]
  • Energy Systems Modeling for Twenty-First Century Energy Challenges
    Energy systems modeling for twenty-first century energy challenges Stefan Pfenninger1,* Adam Hawkes2 James Keirstead1 8 January 2014 (author version of accepted paper) * Corresponding author: [email protected]. 1 Department of Civil and Environmental Engineering, Imperial College London 2 Centre for Environmental Policy, Imperial College London Published version: Renewable and Sustainable Energy Reviews, 33, pp. 74-86. DOI: 10.1016/j.rser.2014.02.003 Abstract Energy systems models are important methods used to generate a range of insight and analysis on the supply and demand of energy. Developed over the second half of the twentieth century, they are now seeing increased relevance in the face of stringent climate policy, energy security and economic development concerns, and increasing challenges due to the changing nature of the twenty-first century energy system. In this paper, we look particularly at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios. We examine four challenges they face and the efforts being taken to address them: (1) resolving time and space, (2) balancing uncertainty and transparency, (3) addressing the growing complexity of the energy system, and (4) integrating human behavior and social risks and opportunities. In discussing these challenges, we present possible avenues for future research and make recommendations to ensure the continued relevance for energy systems models as important sources of information for policy-making. Keywords: energy systems modeling; energy policy 1 Introduction Hamming (1962) argued that the purpose of computing is insight, not numbers.
    [Show full text]
  • Renewable Energy and Efficiency Modeling Analysis Partnership REMI Regional Economic Models Inc
    Technical Report Renewable Energy and Efficiency NREL/TP-6A2-45656 Modeling Analysis Partnership (REMAP): September 2009 An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025 Nate Blair, Thomas Jenkin, James Milford, Walter Short, Patrick Sullivan National Renewable Energy Laboratory David Evans, Elliot Lieberman Environmental Protection Agency Gary Goldstein, Evelyn Wright International Resources Group Kamala R. Jayaraman, Boddu Venkatesh ICF International Gary Kleiman Northeast States for Coordinated Air Use Management Christopher Namovicz, Bob Smith Energy Information Administration Karen Palmer Resources for the Future Ryan Wiser Lawrence Berkeley National Laboratory Frances Wood OnLocation Technical Report Renewable Energy and Efficiency NREL/TP-6A2-45656 Modeling Analysis Partnership (REMAP): September 2009 An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025 Nate Blair, Thomas Jenkin, James Milford, Walter Short, Patrick Sullivan National Renewable Energy Laboratory David Evans, Elliot Lieberman Environmental Protection Agency Gary Goldstein, Evelyn Wright International Resources Group Kamala R. Jayaraman, Boddu Venkatesh ICF International Gary Kleiman Northeast States for Coordinated Air Use Management Christopher Namovicz, Bob Smith Energy Information Administration Karen Palmer Resources for the Future Ryan Wiser Lawrence Berkeley National Laboratory Frances Wood OnLocation Prepared under Task No. SAO1.1005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.
    [Show full text]
  • Innovations in Building Energy Modeling
    Innovations in Building Energy Modeling Research and Development Opportunities Report for Emerging Technologies November 2020 Innovations in Building Energy Modeling: Research and Development Opportunities Report Disclaimer This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, its contractors or subcontractors. ii Innovations in Building Energy Modeling: Research and Development Opportunities Report Acknowledgments Prepared by Amir Roth, Ph.D. Special thanks to the following individuals and groups. Robert Zogg and Emily Cross of Guidehouse (then Navigant Consulting) conducted the interviews, organized the stakeholder workshops, and wrote the first DRAFT BEM Roadmap. Janet Reyna of NREL (then an ORISE Fellow at BTO) provided extensive feedback on the initial DRAFT BEM Roadmap and helped create the organization for the subsequent DRAFT BEM Research and Development Opportunities (RDO) document.
    [Show full text]
  • UNEP Guide for Energy Efficiency and Renewable Energy Laws
    UNEP Guide for Energy Efficiency and Renewable Energy Laws United Nations Environment Programme, Pace University Law School Energy and Climate Center UNEP United Nations Environment Programme i Published by the United Nations Environment Programme (UN Environment) September 2016 UNEP Guide for Energy Efficiency and Renewable Energy Laws – English ISBN No: 978-92-807-3609-0 Job No: DEL/2045/NA Reproduction This publication may be reproduced in whole or in part and in any form for educational and non profit pur- poses without special permission from the copyright holder, provided that acknowledgement of the source is made. UN Environment Programme will appreciate receiving a copy of any publication that uses this material as a source. No use of this publication can be made for the resale or for any other commercial purpose whatsoever without the prior permission in writing of UN Environment Programme. Application for such permission with a statement of purpose of the reproduction should be addressed to the Communications Division, of the UN Environment Programme, P.O BOX 30552, Nairobi 00100 Kenya. The use of information from this document for publicity of advertising is not permitted. Disclaimer The contents and views expressed in this publication do not necessarily reflect the views or policies of the UN Environment Programme or its member states. The designations employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of UN Environ- ment concerning the legal status of any country, territory or its authorities, or concerning the delimitation of its frontiers and boundaries.
    [Show full text]
  • Cooling Energy Implications of Occupant Factor in Buildings Under Climate Change
    sustainability Article Cooling Energy Implications of Occupant Factor in Buildings under Climate Change Ji Hyun Lim and Geun Young Yun * ID Department of Architectural Engineering, Kyung Hee University, Gyeonggi-do 17104, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-201-3859 Received: 24 October 2017; Accepted: 6 November 2017; Published: 7 November 2017 Abstract: Occupant factor is a critical element in the overall energy consumption of buildings. This study aims to reveal how occupant factors influence the energy consumption of example buildings in Seoul, Tokyo, and Hong Kong under climate change projections, and to prioritize factors with energy saving potential for buildings in consideration of future climate change. The study finds that the cooling degree-hours base of 23.3 ◦C in the three cities sharply increases with future climate change by analyzing future hourly weather data produced herein. Simulations are made with EnergyPlus Runtime Language (Erl) for modeling occupant behavior. The simulation results reveal that a dynamic thermostat control based on an adaptive comfort model is an effective method to reduce cooling energy consumption under future climate change, reducing cooling energy consumption by up to 18% in some instances. In particular, we reveal that a combined application of the adaptive comfort control, nighttime ventilation, and the use of occupancy-based lighting and equipment result in reducing cooling energy consumption by 28%. The outcomes of this study are potentially useful in providing cost-effective solutions to adapt buildings for future climate change with simple modifications to occupant behavior. Also, the roles of renewable energy are briefly discussed.
    [Show full text]