Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning by Andrew James Knox A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Andrew James Knox 2015 Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning Andrew James Knox Doctor of Philosophy Chemical Engineering and Applied Chemistry University of Toronto 2015 Abstract Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis’ innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario’s former coal-fired generating stations is $5.74/MWh (using an upper-bound value of $265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario’s Long- Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than ii air-quality externalities from Ontario’s electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy’s externalities form a complex situation in which today’s decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and that there are economically efficient conservation opportunities, particularly in the building sector, being missed. iii Acknowledgments I’ll be grateful to my supervisor, Greg Evans, for the rest of my life. He guided me through the process of writing this thesis but that guidance has been far from the extent of the effect he’s had on my life. I remember my interview with him when I was wanting to start my Master’s degree and I often think about how much richer my life has been as a result of him deciding to take me onboard then. (And then again as a result of him having me back to do my Ph.D.). I have loved my time at graduate school and feel truly fortunate to have had the experience. Greg is someone who cares a great deal about his students’ development, and I have benefitted from that care. He has a talent for pushing people to work hard and develop their skills, but he is never demanding or controlling. He sets a good example with his leadership and actively helps others become leaders. I feel like he’s spent so much time thinking about how to help me and guide me that I worry that he doesn’t leave any time for himself. He truly acts selflessly on behalf of his students, and I am grateful to have been able to be one of those students. I also acknowledge Bryan Karney, for supervising me and my thesis. Chapter 4 of this thesis was the result of Bryan asking me to write a paper for a special publication invitation he’d received. He asked me to write something on a tight timeline that was “not a cold start,” and it made me think deeper about where I could go with this thesis. Bryan has provided me with life- changing opportunities, especially in teaching. He’s consistently supportive, inspiring, and a source of good and helpful ideas. Like Greg, he is selfless in his contributions to his students, and while I sometimes worry that both Greg and Bryan work too hard, I acknowledge that I have benefited greatly from that hard work, and I am thankful for it. Professor Pressnail also had critical input on this thesis in the areas of building science. His building science course was the inspiration for much of the research I did. Actually, he said in an early committee meeting, “Well, what if you bring together building science and what you know about air pollution?” I acknowledge my wife, Stephanie Long, for supporting me throughout my Master’s degree and my Ph.D. She’s been understanding in the times when I’ve need to work long hours, but more importantly, she made sure I continued give attention to my life outside of school, and that has been essential to my enjoyment of this time, as well as my enjoyment of school. iv I acknowledge my other friends and family who were there for me throughout this time in my life. The SOCAAR (Southern Ontario Centre for Atmospheric Aerosol Research) group has been full of great people and friends for all the years I’ve been in it (and years when I wasn’t). I am grateful that I’ve been able to learn from and be supported by the SOCAAR team, and that I’ve been able to have so much fun with SOCAAR. I acknowledge that Jeffrey Douglas Berg provided the inspiration for the kernel of the idea that became Chapter 4 in this thesis. While I was trying to come up with an idea that was “not a cold start,” I remembered something Jeff said about the externalities associated with houses that freeze without fuel, have their pipes burst, and “become a good home for rats,” and that idea eventually became Chapter 4. Working with Jeff in Post Carbon Toronto was one of the things that made me want to do a Ph.D. On the topics of energy and energy politics, Jeff was one of the most knowledgeable people I knew, but Post Carbon Toronto couldn’t host “An Evening with Jeff Berg.” They had to find a person with a Ph.D. so that that person would seem credible when they presented some of what Jeff knew. That drove me towards doing my Ph.D., so that I could be one of those people. I dedicate this thesis to my dad. I did this work for myself and on my own initiative, but I know he wanted me to do it, and, like many of the best things in my life, I might not have thought to do it if not for him. v Table of Contents Contents Abstract ........................................................................................................................................... ii Acknowledgments .......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Tables ............................................................................................................................... xiii List of Figures .............................................................................................................................. xvi Chapter 1 Introduction .................................................................................................................... 1 Thesis structure and ordering of papers ..................................................................................... 5 Chapter 2 A Refined Simple Method for Calculating Health Externalities from Fossil-Fuel Electricity Generation Stations .................................................................................................. 9 2.1 Author Contributions ........................................................................................................ 11 2.2 Abstract ............................................................................................................................. 11 2.3 Introduction ....................................................................................................................... 11 2.4 Use of AERMOD in Impact Pathways externalities modeling ........................................ 12 2.4.1 Short and Mid-range Dispersion Modeling with AERMOD ................................ 13 2.4.2 Reaction Kinetics and Pollutant Chemical Transformation .................................. 17 2.4.3 Population Exposure ............................................................................................. 19 2.4.4 Concentration-Response Slopes ............................................................................ 20 2.4.5 Evaluation of YOLL ............................................................................................. 20 2.4.6 Uncertainty ............................................................................................................ 20 2.5 Results: Externalities from Fossil Fueled Generating Stations in Ontario ...................... 21 2.5.1 AERMOD vs. Circular Dispersion ....................................................................... 22 2.5.2 Externalities from Fossil Fuel-Fired Generating Stations in Ontario ................... 23 2.5.3 Consistency in damage per unit
Recommended publications
  • Technical Implementation and Success Factors for a Global Solar and Wind Atlas Carsten Hoyer-Klick
    The Global Atlas for Solar and Wind Energy Carsten Hoyer-Klick Folie 1 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Getting Renewable Energy to Work Technology data and learning Available Resources Resource mapping Socio-economic Which and policy data Framework Economic + Political technologies Technical and are feasible? economical Potentials Setting the right the Setting How can RE Technology contribute to the deployment scenarios Best practices energy system? How to get them into the Strategies for market? Where to start? market development Legislation, incentives Political and financial Instruments RE-Markets Slide 2 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Project Development for Renewable Energy Systems Pre feasibility Resources Finding suitable (Atlas) sites with high The Atlas should Feasibility resolution maps few few data no no market Project developmentsupport the first steps and economic Engineering evaluations 1200 in potential assessment, ground 1000 satellite 800 Resources 600 W/m² Detailed 400 policy development200 0 13 14 15 16 17 18 day in march, 2001 (time series) and project pre feasibility, engineering with site Engineering specific data with high Construction temporal resolution as input to Commissioning simulation software data and servicesavailable Operation existing existing commerical market Slide 3 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten
    [Show full text]
  • The Nexus Solutions Tool (NEST): an Open Platform for Optimizing Multi-Scale Energy-Water-Land System Transformations
    https://doi.org/10.5194/gmd-2019-134 Preprint. Discussion started: 15 July 2019 c Author(s) 2019. CC BY 4.0 License. The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations Adriano Vinca1,2, Simon Parkinson1,2, Edward Byers1, Peter Burek1, Zarrar Khan3, Volker Krey1,4, Fabio A. Diuana5,1, Yaoping Wang1, Ansir Ilyas6, Alexandre C. Köberle7,5, Iain Staffell8, Stefan Pfenninger9, Abubakr Muhammad6, Andrew Rowe2, Roberto Schaeffer5, Narasimha D. Rao10,1, Yoshihide Wada1,11, Ned Djilali2, and Keywan Riahi1,12 1International Institute for Applied Systems Analysis, Austria 2Institute for Integrated Energy Systems, University of Victoria, Canada 3Joint Global Change Research Institute, Pacific Northwest National Laboratory, United States 4Dept. of Energy & Process Engineering, Norwegian University of Science and Technology, Norway 5Energy Planning Program, Federal University of Rio de Janeiro, Brazil 6Center for Water Informatics & Technology, Lahore University of Management Sciences, Pakistan 7Grantham Institute, Faculty of Natural Sciences, Imperial College London, United Kingdom 8Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, United Kingdom 9 Dept. of Environmental Systems Science, ETH Zurich, Switzerland 10School of Forestry and Environmental Studies, Yale University, United States 11Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands 12Institute for Thermal Engineering, TU Graz, Austria Correspondence: Adriano Vinca ([email protected]) Abstract. The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs be- tween sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • The March 10, 2020 Council Packet May Be Viewed by Going to the Town of Frisco Website
    THE MARCH 10, 2020 COUNCIL PACKET MAY BE VIEWED BY GOING TO THE TOWN OF FRISCO WEBSITE. RECORD OF PROCEEDINGS WORK SESSION MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 5:00 PM Agenda Item #1: Excavation Code Amendment Discussion Agenda Item #2: Fuel Discussion Agenda Item #3: Remodel Design of Police Department Draft RECORD OF PROCEEDINGS REGULAR MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 7:00PM STARTING TIMES INDICATED FOR AGENDA ITEMS ARE ESTIMATES ONLY AND MAY CHANGE Call to Order: Gary Wilkinson, Mayor Roll Call: Gary Wilkinson, Jessica Burley, Daniel Fallon, Rick Ihnken, Hunter Mortensen, Deborah Shaner, and Melissa Sherburne Public Comments: Citizens making comments during Public Comments or Public Hearings should state their names and addresses for the record, be topic-specific, and limit comments to no longer than three minutes. NO COUNCIL ACTION IS TAKEN ON PUBLIC COMMENTS. COUNCIL WILL TAKE ALL COMMENTS UNDER ADVISEMENT AND IF A COUNCIL RESPONSE IS APPROPRIATE THE INDIVIDUAL MAKING THE COMMENT WILL RECEIVE A FORMAL RESPONSE FROM THE TOWN AT A LATER DATE. Mayor and Council Comments: Staff Updates: Presentation: Frisco’s Finest Award – Jeff Berino Consent Agenda: • Minutes February 25, 2020 Meeting • Warrant List • Purchasing Cards New Business: Agenda Item #1: First Reading Ordinance 20-03, an Ordinance Amending Chapters 65 and 180 of the Code of Ordinances of the Town of Frisco, Concerning Building Construction and Housing Standards, and the Unified Development Code, Respectively,
    [Show full text]
  • Opportunities for Energy Efficient Computing: a Study of Inexact General Purpose Processors for High-Performance and Big-Data Applications
    Opportunities for Energy Efficient Computing: A Study of Inexact General Purpose Processors for High-Performance and Big-data Applications Peter Düben Jeremy Schlachter AOPP, University of Oxford EPFL Oxford, United Kingdom Lausanne, Switzerland [email protected] [email protected] Parishkrati, Sreelatha Yenugula, John Augustine Christian Enz Indian Institute of Technology Madras EPFL India Lausanne, Switzerland [email protected], [email protected] [email protected], [email protected] K. Palem T. N. Palmer Electrical Engineering and Computer Science AOPP, University of Oxford Rice University, Houston, USA Oxford, United Kingdom [email protected] [email protected] Abstract—In this paper, we demonstrate that disproportionate hardware artifacts such as adders, multiplier or FFT engines gains are possible through a simple devise for injecting inexactness [22], [23], [20], [21]. For additional references on inexact or approximation into the hardware architecture of a computing hardware, architectures and related topics, please also see [1], system with a general purpose template including a complete [32], [12], [39], [35], [2]. More recently, this work has also memory hierarchy. The focus of the study is on energy savings been extended to evaluations of large-scale applications—in possible through this approach in the context of large and challenging applications. We choose two such from different ends of the context of our own group, climate modeling and weather the computing spectrum—the IGCM model for weather and climate prediction served as the driving example in which the floating modeling which embodies significant features of a high-performance point operations were rendered inexact [9].
    [Show full text]
  • Building Performance Analysis Considering Climate Change
    Building performance analysis considering climate change Yiyu Chen1, Karen Kensek1, Joon-Ho Choi1, Marc Schiler1 1University of Southern California, Los Angeles, CA ABSTRACT: Climate change will significantly influence building performance in the future both through differences in energy consumption (perhaps drastically in certain climate zones) and by changing the thermal level of comfort that occupants experience. A building that meets the current energy consumption standard has the potential to become energy inefficient in the future, and well-meaning designers might be applying passive strategies for current conditions without understanding what impact their choices have under different climate change scenarios for their location. By analyzing a case study building’s thermal performance, specifically lifecycle energy use, for multiple climate change scenarios and in different climate zones, it is possible to inspect the resilience of passive design strategies over time. Varying the solar heat gain coefficient (SGHC) was the first strategy tested. To estimate the building’s future performance, three projected future climate conditions were created (for low, moderate, and severe climate change) in three climate zones for three different time periods (2020s, 2050s, and 2080s). The first step was to create new projected weather files. They were calculated from a world climate change weather file generation tool that was developed at the University of Southampton. Then the weather files were used in EnergyPlus to determine the energy consumption. Aggregated multiple runs provided lifecycle energy use for each of the three locations. Then the SHGC values were varied to determine which initial values provided the best long- term result. Although currently only SHGC was tested, this research provides a methodology for architects and engineers during the early stage of design that they can use to avoid the detrimental consequences that might be caused by climate change over the lifecycle of the building.
    [Show full text]
  • Quantifying the Air Pollution Exposure Consequences Of" Distributed Electricity Generation
    Energy Development and Technology 005R "Quantifying the Air Pollution Exposure Consequences of" Distributed Electricity Generation Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W. Nazaroff May 2005 Revised Version: November 2005 This paper is part of the University of California Energy Institute's (UCEI) Energy Policy and Economics Working Paper Series. UCEI is a multi-campus research unit of the University of California located on the Berkeley campus. UC Energy Institute 2547 Channing Way Berkeley, California 94720-5180 www.ucei.org This report was issued in order to disseminate results of and information about energy research at the University of California campuses. Any conclusions or opinions expressed are those of the authors and not necessarily those of the Regents of the University of California, the University of California Energy Institute or the sponsors of the research. Readers with further interest in or questions about the subject matter of the report are encouraged to contact the authors directly. QUANTIFYING THE AIR POLLUTION EXPOSURE CONSEQUENCES OF DISTRIBUTED ELECTRICITY GENERATION Final Report Grant No. 07427 Prepared for the University of California Energy Institute Prepared by Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W Nazaroff Department of Civil and Environmental Engineering University of California Berkeley, CA 94720-1710 Original version: May 2005 Revised version: November 2005 Note Concerning Revision Subsequent to the original version of this report being made publicly available, the authors discovered an error in the model inputs of population density. While none of the qualitative results and conclusions were affected by this error, the absolute value of intake fractions and intake-to-generation ratio were overestimated by a constant factor of 2.59 (representing the conversion from square kilometers to square miles).
    [Show full text]
  • Energy Systems Modeling for Twenty-First Century Energy Challenges
    Energy systems modeling for twenty-first century energy challenges Stefan Pfenninger1,* Adam Hawkes2 James Keirstead1 8 January 2014 (author version of accepted paper) * Corresponding author: [email protected]. 1 Department of Civil and Environmental Engineering, Imperial College London 2 Centre for Environmental Policy, Imperial College London Published version: Renewable and Sustainable Energy Reviews, 33, pp. 74-86. DOI: 10.1016/j.rser.2014.02.003 Abstract Energy systems models are important methods used to generate a range of insight and analysis on the supply and demand of energy. Developed over the second half of the twentieth century, they are now seeing increased relevance in the face of stringent climate policy, energy security and economic development concerns, and increasing challenges due to the changing nature of the twenty-first century energy system. In this paper, we look particularly at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios. We examine four challenges they face and the efforts being taken to address them: (1) resolving time and space, (2) balancing uncertainty and transparency, (3) addressing the growing complexity of the energy system, and (4) integrating human behavior and social risks and opportunities. In discussing these challenges, we present possible avenues for future research and make recommendations to ensure the continued relevance for energy systems models as important sources of information for policy-making. Keywords: energy systems modeling; energy policy 1 Introduction Hamming (1962) argued that the purpose of computing is insight, not numbers.
    [Show full text]
  • Renewable Energy and Efficiency Modeling Analysis Partnership REMI Regional Economic Models Inc
    Technical Report Renewable Energy and Efficiency NREL/TP-6A2-45656 Modeling Analysis Partnership (REMAP): September 2009 An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025 Nate Blair, Thomas Jenkin, James Milford, Walter Short, Patrick Sullivan National Renewable Energy Laboratory David Evans, Elliot Lieberman Environmental Protection Agency Gary Goldstein, Evelyn Wright International Resources Group Kamala R. Jayaraman, Boddu Venkatesh ICF International Gary Kleiman Northeast States for Coordinated Air Use Management Christopher Namovicz, Bob Smith Energy Information Administration Karen Palmer Resources for the Future Ryan Wiser Lawrence Berkeley National Laboratory Frances Wood OnLocation Technical Report Renewable Energy and Efficiency NREL/TP-6A2-45656 Modeling Analysis Partnership (REMAP): September 2009 An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025 Nate Blair, Thomas Jenkin, James Milford, Walter Short, Patrick Sullivan National Renewable Energy Laboratory David Evans, Elliot Lieberman Environmental Protection Agency Gary Goldstein, Evelyn Wright International Resources Group Kamala R. Jayaraman, Boddu Venkatesh ICF International Gary Kleiman Northeast States for Coordinated Air Use Management Christopher Namovicz, Bob Smith Energy Information Administration Karen Palmer Resources for the Future Ryan Wiser Lawrence Berkeley National Laboratory Frances Wood OnLocation Prepared under Task No. SAO1.1005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.
    [Show full text]
  • Innovations in Building Energy Modeling
    Innovations in Building Energy Modeling Research and Development Opportunities Report for Emerging Technologies November 2020 Innovations in Building Energy Modeling: Research and Development Opportunities Report Disclaimer This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, its contractors or subcontractors. ii Innovations in Building Energy Modeling: Research and Development Opportunities Report Acknowledgments Prepared by Amir Roth, Ph.D. Special thanks to the following individuals and groups. Robert Zogg and Emily Cross of Guidehouse (then Navigant Consulting) conducted the interviews, organized the stakeholder workshops, and wrote the first DRAFT BEM Roadmap. Janet Reyna of NREL (then an ORISE Fellow at BTO) provided extensive feedback on the initial DRAFT BEM Roadmap and helped create the organization for the subsequent DRAFT BEM Research and Development Opportunities (RDO) document.
    [Show full text]
  • UNEP Guide for Energy Efficiency and Renewable Energy Laws
    UNEP Guide for Energy Efficiency and Renewable Energy Laws United Nations Environment Programme, Pace University Law School Energy and Climate Center UNEP United Nations Environment Programme i Published by the United Nations Environment Programme (UN Environment) September 2016 UNEP Guide for Energy Efficiency and Renewable Energy Laws – English ISBN No: 978-92-807-3609-0 Job No: DEL/2045/NA Reproduction This publication may be reproduced in whole or in part and in any form for educational and non profit pur- poses without special permission from the copyright holder, provided that acknowledgement of the source is made. UN Environment Programme will appreciate receiving a copy of any publication that uses this material as a source. No use of this publication can be made for the resale or for any other commercial purpose whatsoever without the prior permission in writing of UN Environment Programme. Application for such permission with a statement of purpose of the reproduction should be addressed to the Communications Division, of the UN Environment Programme, P.O BOX 30552, Nairobi 00100 Kenya. The use of information from this document for publicity of advertising is not permitted. Disclaimer The contents and views expressed in this publication do not necessarily reflect the views or policies of the UN Environment Programme or its member states. The designations employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of UN Environ- ment concerning the legal status of any country, territory or its authorities, or concerning the delimitation of its frontiers and boundaries.
    [Show full text]
  • Cooling Energy Implications of Occupant Factor in Buildings Under Climate Change
    sustainability Article Cooling Energy Implications of Occupant Factor in Buildings under Climate Change Ji Hyun Lim and Geun Young Yun * ID Department of Architectural Engineering, Kyung Hee University, Gyeonggi-do 17104, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-201-3859 Received: 24 October 2017; Accepted: 6 November 2017; Published: 7 November 2017 Abstract: Occupant factor is a critical element in the overall energy consumption of buildings. This study aims to reveal how occupant factors influence the energy consumption of example buildings in Seoul, Tokyo, and Hong Kong under climate change projections, and to prioritize factors with energy saving potential for buildings in consideration of future climate change. The study finds that the cooling degree-hours base of 23.3 ◦C in the three cities sharply increases with future climate change by analyzing future hourly weather data produced herein. Simulations are made with EnergyPlus Runtime Language (Erl) for modeling occupant behavior. The simulation results reveal that a dynamic thermostat control based on an adaptive comfort model is an effective method to reduce cooling energy consumption under future climate change, reducing cooling energy consumption by up to 18% in some instances. In particular, we reveal that a combined application of the adaptive comfort control, nighttime ventilation, and the use of occupancy-based lighting and equipment result in reducing cooling energy consumption by 28%. The outcomes of this study are potentially useful in providing cost-effective solutions to adapt buildings for future climate change with simple modifications to occupant behavior. Also, the roles of renewable energy are briefly discussed.
    [Show full text]