Regional Energy Deployment System (Reeds) Model Documentation

Total Page:16

File Type:pdf, Size:1020Kb

Regional Energy Deployment System (Reeds) Model Documentation Regional Energy Deployment System (ReEDS) Model Documentation: Version 2019 Maxwell Brown, Wesley Cole, Kelly Eurek, Jon Becker, David Bielen, Ilya Chernyakhovskiy, Stuart Cohen, Will Frazier, Pieter Gagnon, Nathaniel Gates, Daniel Greer, Sai Sameera Gudladona, Jonathan Ho, Paige Jadun, Katherine Lamb, Trieu Mai, Matthew Mowers, Caitlin Murphy, Amy Rose, Anna Schleifer, Daniel Steinberg, Yinong Sun, Nina Vincent, Ella Zhou, and Matthew Zwerling National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-74111 Operated by the Alliance for Sustainable Energy, LLC March 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Regional Energy Deployment System (ReEDS) Model Documentation: Version 2019 Maxwell Brown, Wesley Cole, Kelly Eurek, Jon Becker, David Bielen, Ilya Chernyakhovskiy, Stuart Cohen, Will Frazier, Pieter Gagnon, Nathaniel Gates, Daniel Greer, SaiSameera Gudladona, Jonathan Ho, Paige Jadun, Katherine Lamb, Trieu Mai, Matthew Mowers, Caitlin Murphy, Amy Rose, Anna Schleifer, Daniel Steinberg, Yinong Sun, Nina Vincent, Ella Zhou, and Matthew Zwerling National Renewable Energy Laboratory Suggested Citation Brown, Maxwell, Wesley Cole, Kelly Eurek, Jon Becker, David Bielen, Ilya Chernyakhovskiy, Stuart Cohen et al. 2020. Regional Energy Deployment System (ReEDS) Model Documentation: Version 2019. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-74111. https://www.nrel.gov/docs/fy20osti/74111.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-74111 Operated by the Alliance for Sustainable Energy, LLC March 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office and Office of Strategic Programs. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097, NREL 46526. NREL prints on paper that contains recycled content. Acknowledgments We gratefully acknowledge the many people whose efforts contributed to this report. The ReEDS modeling and analysis team at the National Renewable Energy Laboratory (NREL) was active in developing and testing the ReEDS model version 2019. We also acknowledge the vast number of current and past NREL employees on and beyond the ReEDS team who have participated in data and model development, testing, and analysis. We are especially grateful to Walter Short who first envisioned and developed the Wind Deployment System (WinDS) and ReEDS models. We thank Walter Short, Ella Zhou, Owen Zinaman, Laura Vimmerstedt, Jeffrey Logan, Cara Marcy, Gokul Iyer, and Mike Meshek for their comments and improvements on successive versions of this report. Finally, we are grateful to all those who helped sponsor ReEDS model development and analysis, particularly supporters from the U.S. Department of Energy (DOE) but also others who have funded our work over the years. This report was funded by the DOE Office of Energy Efficiency and Renewable Energy under contract number DE- AC36-08GO28308. Any errors or omissions are the sole responsibility of the authors. ReEDS Team Members for version 2019 Jon Becker Pieter Gagnon Caitlin Murphy Dave Bielen Nathaniel Gates Amy Rose Maxwell Brown Danny Greer Anna Schleifer Ilya Chernyakhovskiy Sameera Gudladona Daniel Steinberg Stuart Cohen Jonathan Ho Yinong Sun Wesley Cole Paige Jadun Nina Vincent Kelly Eurek Katie Lamb Ella Zhou Will Frazier Trieu Mai Matthew Zwerling Bethany Frew Matthew Mowers iii This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. List of Abbreviations and Acronyms AC alternating current AEO Annual Energy Outlook ATB Annual Technology Baseline BA balancing area CAES compressed-air energy storage CAIR Clean Air Interstate Rule CC combined cycle CCS carbon capture and sequestration CES clean energy standard CF capacity factor CFL compact fluorescent lamp CO2 carbon dioxide CMIP Coupled Model Intercomparison Project CPP Clean Power Plan CPUC California Public Utilities Commission CSAPR Cross-State Air Pollution Rule CSP concentrating solar power CT combustion turbine CV capacity value DC direct current DG distributed generation DNI direct normal insolation DOE U.S. Department of Energy DSIRE Database of State Incentives for Renewables & Efficiency DUPV distribution-side utility-scale photovoltaic EAC early action credit EGR enhanced gas recovery EGS enhanced geothermal system EIA U.S. Energy Information Administration ELCC effective load carrying capability EMM Electricity Market Module EOR enhanced oil recovery EPA U.S. Environmental Protection Agency ERC emission rate credit ERCOT Electric Reliability Council of Texas FERC Federal Energy Regulatory Commission GCM general circulation model GHG greenhouse gas GIS geographic information systems GW gigawatt HMI U.S. Bureau of Reclamation Hydropower Modernization Initiative HSIP Homeland Security Infrastructure Project HVDC high-voltage direct current IGCC integrated gasification combined cycle IOU investor-owned utility iv This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. IPM U.S. Environmental Protection Agency Integrated Planning Model IPP independent power producer ISO independent system operator IRS Internal Revenue Service ITC investment tax credit JEDI Jobs and Economic Development Impact model km2 square kilometer kV kilovolt kW kilowatt kWh kilowatt hour LCOE levelized cost of energy LDC load-duration curve LED light-emitting diode LOLP loss of load probability MACRS Modified Accelerated Cost Recovery System MATS Mercury and Air Toxic Standards MMBtu million British thermal units MPI materials price index MW megawatt MWh megawatt hour NaS sodium-sulfur NEB Canadian National Energy Board NEMS National Energy Modeling System NERC North American Electric Reliability Corporation NG natural gas NHAAP National Hydropower Asset Assessment Program NLDC net load-duration curve NOx nitrogen oxide NPD non-powered dam NRC Nuclear Regulatory Commission NREL National Renewable Energy Lab NSD new stream-reach development NSRDB National Solar Radiation Database O&M operation and maintenance OGS oil-gas steam PCM production-cost model PRODESEN Mexican Programa de Desarrollo del Sistema Eléctrico Nacional PSH pumped storage hydropower PTC production tax credit PV photovoltaic RCP representative concentration pathway REC renewable energy certificate ReEDS Regional Energy Deployment System reV Renewable Energy Potential tool RGGI Regional Greenhouse Gas Initiative RLDC residual load-duration curve v This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. RPS renewable portfolio standard RROE rate of return on equity RTO regional transmission organization SAM System Advisor Model SENER Secretaría de Energía for Mexico SM solar multiple SO2 sulfur dioxide T&D transmission and distribution TDY typical direct normal insolation year TEPPC Transmission Expansion Planning Policy Committee TRG techno-resource group tCO2 metric ton of carbon dioxide TW terawatt TWh terawatt hour UPV utility-scale photovoltaic VRE variable renewable energy WACC weighted average cost of capital WECC Western Electricity Coordination Council WIND Wind Integration National Dataset WinDS Wind Deployment System vi This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Table of Contents 1 Introduction ........................................................................................................................................... 1 1.1 Overview ....................................................................................................................................... 1 1.2 ReEDS History .............................................................................................................................. 2 1.3 Summary of Major Changes ......................................................................................................... 2 1.4 Summary of Caveats ..................................................................................................................... 3 2 Modeling Framework ............................................................................................................................ 5 2.1 Model Structure ............................................................................................................................
Recommended publications
  • Pacific DC Intertie (PDCI) Upgrade Outage / De-Rate Schedule 2014
    Version No. Pacific DC Intertie (PDCI) Upgrade 10 POWER SYSTEM Effective Outage / De-rate Schedule 2014-2016 1/12/2016 Date: Introduction The upcoming scheduled outages due to major upgrades on the Pacific DC Intertie (PDCI) will result in reduced available capacity on the line during various periods from 2014 to 2016. Most of the upgrades are convertor station and line work by the Bonneville Power Administration (BPA) to modernize its infrastructure at the Celilo Converter Station, which is the northern terminal of the PDCI. Other work will be performed by the Los Angeles Department of Water and Power (LADWP) in conjunction with the upgrades. Scheduling MW Capacity The schedule below will be updated as outages are scheduled. Start Date End Date Direction Scheduling Capacity (MW) June 28, 2015 October 3, 2015 North – South 1956 HE21 HE3 South – North 975 October 3, 2015 January 20, 2016 North – South 0 HE4 HE24 South – North 0 January 21, 2015 North – South 29901 HE1 South – North 975 From October 3, 2015 to January 21, 2015, the Celilo‐Sylmar Pole 3 1000kV Line and Celilo‐Sylmar Pole 4 1000kV Line will be removed from service and the PDCI will not be available [0MW (N‐S) and 0MW (S‐ N)]. Version Version Revised By Date 1 Document Creation OASIS Group 09/22/2014 2 Corrected outage information OASIS Group 10/14/2014 3 Corrected outage information OASIS Group 10/15/2014 4 Updated outage information OASIS Group 10/16/2014 5 Updated outage information OASIS Group 11/03/2014 6 Updated outage information OASIS Group 12/23/2014 7 Updated outage information OASIS Group 01/09/2015 8 Updated outage information OASIS Group 08/26/2015 Updated PDCI capacity after 12/21/2015 from 3220MW to 9 OASIS Group 09/17/2015 2990MW.
    [Show full text]
  • The History of High Voltage Direct Current Transmission*
    47 The history of high voltage direct current transmission* O Peake† Power Systems Electrical Engineer, Collingwood, Victoria SUMMARY: Transmission of electricity by high voltage direct current (HVDC) has provided the electric power industry with a powerful tool to move large quantities of electricity over great distances and also to expand the capacity to transmit electricity by undersea cables. The fi rst commercial HVDC scheme connected the island of Gotland to the Swedish mainland in 1954. During the subsequent 55 years, great advances in HVDC technology and the economic opportunities for HVDC have been achieved. Because of the rapid development of HVDC technology many of the early schemes have already been upgraded, modernised or decommissioned. Very little equipment from the early schemes has survived to illustrate the engineering heritage of HVDC. Conservation of the equipment remaining from the early projects is now an urgent priority, while the conservation of more recent projects, when they are retired, is a future challenge. 1 INTRODUCTION technology for the valves to convert AC to DC and vice versa. At the beginning of the electricity supply industry there was a great battle between the proponents In the late 1920s, the mercury arc rectifi er emerged of alternating current (AC) and direct current as a potential converter technology, however, it was (DC) alternatives for electricity distribution. This not until 1954 that the mercury arc valve technology eventually played out as a win for AC, which has had matured enough for it to be used in a commercial maintained its dominance for almost all domestic, project. This pioneering development led to a industrial and commercial supplies of electricity number of successful projects.
    [Show full text]
  • Technical Implementation and Success Factors for a Global Solar and Wind Atlas Carsten Hoyer-Klick
    The Global Atlas for Solar and Wind Energy Carsten Hoyer-Klick Folie 1 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Getting Renewable Energy to Work Technology data and learning Available Resources Resource mapping Socio-economic Which and policy data Framework Economic + Political technologies Technical and are feasible? economical Potentials Setting the right the Setting How can RE Technology contribute to the deployment scenarios Best practices energy system? How to get them into the Strategies for market? Where to start? market development Legislation, incentives Political and financial Instruments RE-Markets Slide 2 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Project Development for Renewable Energy Systems Pre feasibility Resources Finding suitable (Atlas) sites with high The Atlas should Feasibility resolution maps few few data no no market Project developmentsupport the first steps and economic Engineering evaluations 1200 in potential assessment, ground 1000 satellite 800 Resources 600 W/m² Detailed 400 policy development200 0 13 14 15 16 17 18 day in march, 2001 (time series) and project pre feasibility, engineering with site Engineering specific data with high Construction temporal resolution as input to Commissioning simulation software data and servicesavailable Operation existing existing commerical market Slide 3 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten
    [Show full text]
  • The Nexus Solutions Tool (NEST): an Open Platform for Optimizing Multi-Scale Energy-Water-Land System Transformations
    https://doi.org/10.5194/gmd-2019-134 Preprint. Discussion started: 15 July 2019 c Author(s) 2019. CC BY 4.0 License. The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations Adriano Vinca1,2, Simon Parkinson1,2, Edward Byers1, Peter Burek1, Zarrar Khan3, Volker Krey1,4, Fabio A. Diuana5,1, Yaoping Wang1, Ansir Ilyas6, Alexandre C. Köberle7,5, Iain Staffell8, Stefan Pfenninger9, Abubakr Muhammad6, Andrew Rowe2, Roberto Schaeffer5, Narasimha D. Rao10,1, Yoshihide Wada1,11, Ned Djilali2, and Keywan Riahi1,12 1International Institute for Applied Systems Analysis, Austria 2Institute for Integrated Energy Systems, University of Victoria, Canada 3Joint Global Change Research Institute, Pacific Northwest National Laboratory, United States 4Dept. of Energy & Process Engineering, Norwegian University of Science and Technology, Norway 5Energy Planning Program, Federal University of Rio de Janeiro, Brazil 6Center for Water Informatics & Technology, Lahore University of Management Sciences, Pakistan 7Grantham Institute, Faculty of Natural Sciences, Imperial College London, United Kingdom 8Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, United Kingdom 9 Dept. of Environmental Systems Science, ETH Zurich, Switzerland 10School of Forestry and Environmental Studies, Yale University, United States 11Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands 12Institute for Thermal Engineering, TU Graz, Austria Correspondence: Adriano Vinca ([email protected]) Abstract. The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs be- tween sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints.
    [Show full text]
  • Advanced Transmission Technologies
    Advanced Transmission Technologies December 2020 United States Department of Energy Washington, DC 20585 Executive Summary The high-voltage transmission electric grid is a complex, interconnected, and interdependent system that is responsible for providing safe, reliable, and cost-effective electricity to customers. In the United States, the transmission system is comprised of three distinct power grids, or “interconnections”: the Eastern Interconnection, the Western Interconnection, and a smaller grid containing most of Texas. The three systems have weak ties between them to act as power transfers, but they largely rely on independent systems to remain stable and reliable. Along with aged assets, primarily from the 1960s and 1970s, the electric power system is evolving, from consisting of predominantly reliable, dependable, and variable-output generation sources (e.g., coal, natural gas, and hydroelectric) to increasing percentages of climate- and weather- dependent intermittent power generation sources (e.g., wind and solar). All of these generation sources rely heavily on high-voltage transmission lines, substations, and the distribution grid to bring electric power to the customers. The original vertically-integrated system design was simple, following the path of generation to transmission to distribution to customer. The centralized control paradigm in which generation is dispatched to serve variable customer demands is being challenged with greater deployment of distributed energy resources (at both the transmission and distribution level), which may not follow the traditional path mentioned above. This means an electricity customer today could be a generation source tomorrow if wind or solar assets were on their privately-owned property. The fact that customers can now be power sources means that they do not have to wholly rely on their utility to serve their needs and they could sell power back to the utility.
    [Show full text]
  • 2002 ABB ELECTRIC UTILITY CONFERENCE HVDC Technologies
    2002 ABB ELECTRIC UTILITY CONFERENCE PAPER IV – 3 POWER SYSTEMS HVDC Technologies – The Right Fit for the Application Michael P. Bahrman ABB Inc. 1021 Main Campus Dr. Raleigh, NC 27606 Abstract: Traditional HVDC transmission has often provided economic solutions for special transmission applications. These include long-distance, bulk-power transmission, long submarine cable crossings and asynchronous interconnections. Deregulated generation markets, open access to transmission, formation of RTO’s, regional differences in generation costs and increased difficulty in siting new transmission lines, however, have led to a renewed interest in HVDC transmission often in non-traditional applications. HVDC transmission technologies available today offer the planner increased flexibility in meeting transmission challenges. This paper describes the latest developments in conventional HVDC technology as well as in alternative HVDC transmission technologies offering supplemental system benefits. Keywords: HVDC, DC, CCC, VSC, PWM, RTO, Asynchronous, HVDC Light I. INTRODUCTION Economic signals arising from deregulation of the generation market have led developers and transmission providers alike to follow the path of least resistance much like the power flow over the network on which their mutual business interests rely. On the generation side, the developer has invoked a quick-strike strategy siting units where there is convergence of low-cost fuel supplies, relative ease of permitting, water supply, ready access to transmission and proximity to load. On the transmission side, the transmission provider has been preoccupied with cost reduction, compensation for stranded assets, potential under-utilization of assets and reacting to evolving regulatory mandates. Although such development may result in a short-term gain in new, economic power resources, the long term benefit is not all that clear.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • The March 10, 2020 Council Packet May Be Viewed by Going to the Town of Frisco Website
    THE MARCH 10, 2020 COUNCIL PACKET MAY BE VIEWED BY GOING TO THE TOWN OF FRISCO WEBSITE. RECORD OF PROCEEDINGS WORK SESSION MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 5:00 PM Agenda Item #1: Excavation Code Amendment Discussion Agenda Item #2: Fuel Discussion Agenda Item #3: Remodel Design of Police Department Draft RECORD OF PROCEEDINGS REGULAR MEETING AGENDA OF THE TOWN COUNCIL OF THE TOWN OF FRISCO MARCH 10, 2020 7:00PM STARTING TIMES INDICATED FOR AGENDA ITEMS ARE ESTIMATES ONLY AND MAY CHANGE Call to Order: Gary Wilkinson, Mayor Roll Call: Gary Wilkinson, Jessica Burley, Daniel Fallon, Rick Ihnken, Hunter Mortensen, Deborah Shaner, and Melissa Sherburne Public Comments: Citizens making comments during Public Comments or Public Hearings should state their names and addresses for the record, be topic-specific, and limit comments to no longer than three minutes. NO COUNCIL ACTION IS TAKEN ON PUBLIC COMMENTS. COUNCIL WILL TAKE ALL COMMENTS UNDER ADVISEMENT AND IF A COUNCIL RESPONSE IS APPROPRIATE THE INDIVIDUAL MAKING THE COMMENT WILL RECEIVE A FORMAL RESPONSE FROM THE TOWN AT A LATER DATE. Mayor and Council Comments: Staff Updates: Presentation: Frisco’s Finest Award – Jeff Berino Consent Agenda: • Minutes February 25, 2020 Meeting • Warrant List • Purchasing Cards New Business: Agenda Item #1: First Reading Ordinance 20-03, an Ordinance Amending Chapters 65 and 180 of the Code of Ordinances of the Town of Frisco, Concerning Building Construction and Housing Standards, and the Unified Development Code, Respectively,
    [Show full text]
  • Opportunities for Energy Efficient Computing: a Study of Inexact General Purpose Processors for High-Performance and Big-Data Applications
    Opportunities for Energy Efficient Computing: A Study of Inexact General Purpose Processors for High-Performance and Big-data Applications Peter Düben Jeremy Schlachter AOPP, University of Oxford EPFL Oxford, United Kingdom Lausanne, Switzerland [email protected] [email protected] Parishkrati, Sreelatha Yenugula, John Augustine Christian Enz Indian Institute of Technology Madras EPFL India Lausanne, Switzerland [email protected], [email protected] [email protected], [email protected] K. Palem T. N. Palmer Electrical Engineering and Computer Science AOPP, University of Oxford Rice University, Houston, USA Oxford, United Kingdom [email protected] [email protected] Abstract—In this paper, we demonstrate that disproportionate hardware artifacts such as adders, multiplier or FFT engines gains are possible through a simple devise for injecting inexactness [22], [23], [20], [21]. For additional references on inexact or approximation into the hardware architecture of a computing hardware, architectures and related topics, please also see [1], system with a general purpose template including a complete [32], [12], [39], [35], [2]. More recently, this work has also memory hierarchy. The focus of the study is on energy savings been extended to evaluations of large-scale applications—in possible through this approach in the context of large and challenging applications. We choose two such from different ends of the context of our own group, climate modeling and weather the computing spectrum—the IGCM model for weather and climate prediction served as the driving example in which the floating modeling which embodies significant features of a high-performance point operations were rendered inexact [9].
    [Show full text]
  • Building Performance Analysis Considering Climate Change
    Building performance analysis considering climate change Yiyu Chen1, Karen Kensek1, Joon-Ho Choi1, Marc Schiler1 1University of Southern California, Los Angeles, CA ABSTRACT: Climate change will significantly influence building performance in the future both through differences in energy consumption (perhaps drastically in certain climate zones) and by changing the thermal level of comfort that occupants experience. A building that meets the current energy consumption standard has the potential to become energy inefficient in the future, and well-meaning designers might be applying passive strategies for current conditions without understanding what impact their choices have under different climate change scenarios for their location. By analyzing a case study building’s thermal performance, specifically lifecycle energy use, for multiple climate change scenarios and in different climate zones, it is possible to inspect the resilience of passive design strategies over time. Varying the solar heat gain coefficient (SGHC) was the first strategy tested. To estimate the building’s future performance, three projected future climate conditions were created (for low, moderate, and severe climate change) in three climate zones for three different time periods (2020s, 2050s, and 2080s). The first step was to create new projected weather files. They were calculated from a world climate change weather file generation tool that was developed at the University of Southampton. Then the weather files were used in EnergyPlus to determine the energy consumption. Aggregated multiple runs provided lifecycle energy use for each of the three locations. Then the SHGC values were varied to determine which initial values provided the best long- term result. Although currently only SHGC was tested, this research provides a methodology for architects and engineers during the early stage of design that they can use to avoid the detrimental consequences that might be caused by climate change over the lifecycle of the building.
    [Show full text]
  • Quantifying the Air Pollution Exposure Consequences Of" Distributed Electricity Generation
    Energy Development and Technology 005R "Quantifying the Air Pollution Exposure Consequences of" Distributed Electricity Generation Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W. Nazaroff May 2005 Revised Version: November 2005 This paper is part of the University of California Energy Institute's (UCEI) Energy Policy and Economics Working Paper Series. UCEI is a multi-campus research unit of the University of California located on the Berkeley campus. UC Energy Institute 2547 Channing Way Berkeley, California 94720-5180 www.ucei.org This report was issued in order to disseminate results of and information about energy research at the University of California campuses. Any conclusions or opinions expressed are those of the authors and not necessarily those of the Regents of the University of California, the University of California Energy Institute or the sponsors of the research. Readers with further interest in or questions about the subject matter of the report are encouraged to contact the authors directly. QUANTIFYING THE AIR POLLUTION EXPOSURE CONSEQUENCES OF DISTRIBUTED ELECTRICITY GENERATION Final Report Grant No. 07427 Prepared for the University of California Energy Institute Prepared by Garvin A. Heath, Patrick W. Granvold, Abigail S. Hoats and William W Nazaroff Department of Civil and Environmental Engineering University of California Berkeley, CA 94720-1710 Original version: May 2005 Revised version: November 2005 Note Concerning Revision Subsequent to the original version of this report being made publicly available, the authors discovered an error in the model inputs of population density. While none of the qualitative results and conclusions were affected by this error, the absolute value of intake fractions and intake-to-generation ratio were overestimated by a constant factor of 2.59 (representing the conversion from square kilometers to square miles).
    [Show full text]
  • Energy Systems Modeling for Twenty-First Century Energy Challenges
    Energy systems modeling for twenty-first century energy challenges Stefan Pfenninger1,* Adam Hawkes2 James Keirstead1 8 January 2014 (author version of accepted paper) * Corresponding author: [email protected]. 1 Department of Civil and Environmental Engineering, Imperial College London 2 Centre for Environmental Policy, Imperial College London Published version: Renewable and Sustainable Energy Reviews, 33, pp. 74-86. DOI: 10.1016/j.rser.2014.02.003 Abstract Energy systems models are important methods used to generate a range of insight and analysis on the supply and demand of energy. Developed over the second half of the twentieth century, they are now seeing increased relevance in the face of stringent climate policy, energy security and economic development concerns, and increasing challenges due to the changing nature of the twenty-first century energy system. In this paper, we look particularly at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios. We examine four challenges they face and the efforts being taken to address them: (1) resolving time and space, (2) balancing uncertainty and transparency, (3) addressing the growing complexity of the energy system, and (4) integrating human behavior and social risks and opportunities. In discussing these challenges, we present possible avenues for future research and make recommendations to ensure the continued relevance for energy systems models as important sources of information for policy-making. Keywords: energy systems modeling; energy policy 1 Introduction Hamming (1962) argued that the purpose of computing is insight, not numbers.
    [Show full text]