The History of High Voltage Direct Current Transmission*

Total Page:16

File Type:pdf, Size:1020Kb

The History of High Voltage Direct Current Transmission* 47 The history of high voltage direct current transmission* O Peake† Power Systems Electrical Engineer, Collingwood, Victoria SUMMARY: Transmission of electricity by high voltage direct current (HVDC) has provided the electric power industry with a powerful tool to move large quantities of electricity over great distances and also to expand the capacity to transmit electricity by undersea cables. The fi rst commercial HVDC scheme connected the island of Gotland to the Swedish mainland in 1954. During the subsequent 55 years, great advances in HVDC technology and the economic opportunities for HVDC have been achieved. Because of the rapid development of HVDC technology many of the early schemes have already been upgraded, modernised or decommissioned. Very little equipment from the early schemes has survived to illustrate the engineering heritage of HVDC. Conservation of the equipment remaining from the early projects is now an urgent priority, while the conservation of more recent projects, when they are retired, is a future challenge. 1 INTRODUCTION technology for the valves to convert AC to DC and vice versa. At the beginning of the electricity supply industry there was a great battle between the proponents In the late 1920s, the mercury arc rectifi er emerged of alternating current (AC) and direct current as a potential converter technology, however, it was (DC) alternatives for electricity distribution. This not until 1954 that the mercury arc valve technology eventually played out as a win for AC, which has had matured enough for it to be used in a commercial maintained its dominance for almost all domestic, project. This pioneering development led to a industrial and commercial supplies of electricity number of successful projects. However, at the same to customers. time a new technology, the silicon semiconductor thyristor, began to emerge as a viable technology As the size of electricity supply systems increased for the valves of HVDC systems. The thyristor valve several major challenges for AC systems emerged. fi rst came into use in HVDC applications in 1970 There were major difficulties in increasing the and from that time forward the limitations of HVDC voltage (and hence capacity) and the range of were largely eliminated (Asplund et al, 2003). undersea cables. Also the development of very large hydroelectric projects in areas quite remote from their The technology is now mature and experiencing load centres became an increasing challenge for AC rapid increases in the voltage, power carrying systems to transport vast quantities of electricity over capacity and length of transmission lines. This very great distances. For very large transmission has occurred at a time when the efficiency of schemes, high voltage direct current (HVDC) is both electricity supply systems is under great pressure more effi cient and has a greater capability than AC due to greenhouse gas considerations, while the systems. It was recognised as early as the 1920s that development of large hydroelectric schemes is an there were advantages in the use of DC transmission imperative to decrease the reliance on fossil fuel systems for these more challenging applications. power generation, which produces a large proportion Hence the concept of HVDC emerged, however, of the planet’s greenhouse gases. development was held back by the lack of a suitable * Paper presented at the 3rd Australasian 2 TERMINOLOGY Engineering Heritage Conference, “Engineering in the Development of a Region – Heritage and The following terminology and abbreviations are History”, 22-25 November 2009, University of used in this paper: Otago, Dunedin, New Zealand. • AC (alternating current) – a system of electrical † Corresponding author Owen Peake can be energy where the voltage fl uctuates around earth contacted at [email protected]. potential in the form of a sine wave at a frequency © Institution of Engineers Australia, 2010 Australian Journal of Multi-disciplinary Engineering, Vol 8 No 1 NN10-H0710-H07 PPeake.inddeake.indd 4747 116/11/106/11/10 2:232:23 PPMM 48 “The history of high voltage direct current transmission” – Peake of 50 Hz or 60 Hz in typical electricity distribution valves using IGBT technology. The IGBT is a and transmission systems throughout the world. fairly recent development, fi rst appearing in the • DC (direct current) – a system of electrical energy 1980s. Third-generation devices were available where the voltage remains constant over time in the 1990s and quickly gained a reputation for and is either positive or negative with respect to excellent ruggedness and tolerance of overloads. earth. This system is used universally in motor In HVDC applications, many devices are placed vehicle electrics, small devices operated from in series/parallel confi gurations to achieve the batteries and in many industrial applications. desired voltage and current ratings. It is also used in HVDC systems for specialised high-power, long-range transmission of electric 3 THE PIONEER WORK – energy. In this paper when the symbol ± is used MECHANICVILLE in association with DC voltages, it signifi es that the system operates with one pole above earth In 1932, the General Electric Company built an potential and one pole below earth potential with experimental HVDC scheme between a hydroelectric the mid-point (zero voltage) at earth potential. powerstation at Mechanicville, New York, and • kV (kilovolt) – the volt (V) is the SI unit of Schenectady, New York, a distance of 37 km. This electromotive force. The kilovolt is 1000 V and system used mercury arc rectifi ers to create the DC is the commonly used unit for voltage in high- voltage, but the load at Schenectady was DC motors, voltage electricity supply systems. Domestic so in a sense it was only half of a full HVDC scheme, electricity supplies operate between 120 and which typically consists of a connection between two 240 V, depending on national standards. AC systems. The line operated at 12 kV and had a • MW (megawatt) – the watt (W) is the SI unit for capacity of 5 MW. The General Electric Company power. The megawatt (one million watts) is the did not, surprisingly, pursue this technology and the measure commonly used for large systems in the scheme was dismantled after World War II without electricity supply industry. One MW is equivalent further development. to 1340 horsepower. Three types of converter devices have been used 4 THE EARLY ENGINEERS in HVDC schemes to date and are referred to in this paper: In Sweden in 1929, Uno Lamm, working for the • Mercury arc valves – a mercury arc valve consists Swedish electromechanical company ASEA, took of an evacuated chamber containing a pool of out a patent on the high-voltage mercury arc valve. mercury at the bottom forming the cathode. An experimental valve, tested in 1933, confi rmed The anode is a carbon electrode at the top of the the validity of Lamm’s earlier patent, although it chamber. When the mercury pool is heated, an arc had only a very short life. Research then continued can be struck within the chamber that conducts to improve materials to give the valves a longer life. electrons from the cathode to the anode, but not In 1944, a test rig of 2000 kW capacity operating at in the other direction. Hence the device operates 60 kV proved successful. Lamm continued in the as a rectifi er. The device was invented by Peter fi eld working systematically towards the goal of a Cooper Hewitt in 1902. The mercury arc valve was commercially-viable system for HVDC. the technology used to convert AC to DC and vice August Uno Lamm was born on 22 May 1904 at versa in HVDC schemes, until the introduction Gothenburg on the Swedish west coast (Gould, of the semiconductor thyristor was applied to 1992). He studied at the Swedish Royal Institute of HVDC schemes from 1970. Technology in Stockholm and obtained a degree in • Thyristor valves – the thyristor is a silicon solid- Electrical Engineering in 1927. After military service state semiconductor device with four layers of he joined ASEA and in 1929 was made the manager alternating N and P type materials. They act of a project to develop the high voltage mercury arc as bi-stable switches, conducting when their valve. He obtained his PhD from the Royal Institute gate receives a current pulse, and continuing in 1943, studying part-time, while he continued his to conduct as long as the voltage across the work on the mercury arc valve. device is not reversed. In HVDC applications, many devices are placed in series/parallel In 1955 he was made head of the project to build confi gurations to achieve the desired voltage and Sweden’s fi rst nuclear power reactors. In 1961 he current ratings. was appointed to head the ASEA team in the joint venture with General Electric in the United States to • Insulated-gate bipolar transistor (IGBT) – the IGBT build the Pacifi c DC Intertie and moved to Southern is a three-terminal silicon semiconductor device, California in 1964. noted for high effi ciency and fast switching. The IGBT is a voltage source converter, meaning that During his career, Lamm took out 150 patents and it can be switched off as well as on by gate control. wrote 80 technical papers. He wrote extensively This brings advantages to the control of HVDC and was published widely in the Swedish press Australian Journal of Multi-disciplinary Engineering Vol 8 No 1 NN10-H0710-H07 PPeake.inddeake.indd 4848 116/11/106/11/10 2:232:23 PPMM “The history of high voltage direct current transmission” – Peake 49 on subjects as diverse as societal commentary, site is therefore the most signifi cant heritage site in education, technology, political commentary and the development of HVDC for several reasons. economics. He was strongly anti-communist and From the commissioning of the Gotland scheme, anti-Nazi, which got him into some difficulties ASEA (later to become ABB) pursued commercial during World War II when he was required to work success with the HVDC technology and has remained on ASEA projects in Germany.
Recommended publications
  • Pacific DC Intertie (PDCI) Upgrade Outage / De-Rate Schedule 2014
    Version No. Pacific DC Intertie (PDCI) Upgrade 10 POWER SYSTEM Effective Outage / De-rate Schedule 2014-2016 1/12/2016 Date: Introduction The upcoming scheduled outages due to major upgrades on the Pacific DC Intertie (PDCI) will result in reduced available capacity on the line during various periods from 2014 to 2016. Most of the upgrades are convertor station and line work by the Bonneville Power Administration (BPA) to modernize its infrastructure at the Celilo Converter Station, which is the northern terminal of the PDCI. Other work will be performed by the Los Angeles Department of Water and Power (LADWP) in conjunction with the upgrades. Scheduling MW Capacity The schedule below will be updated as outages are scheduled. Start Date End Date Direction Scheduling Capacity (MW) June 28, 2015 October 3, 2015 North – South 1956 HE21 HE3 South – North 975 October 3, 2015 January 20, 2016 North – South 0 HE4 HE24 South – North 0 January 21, 2015 North – South 29901 HE1 South – North 975 From October 3, 2015 to January 21, 2015, the Celilo‐Sylmar Pole 3 1000kV Line and Celilo‐Sylmar Pole 4 1000kV Line will be removed from service and the PDCI will not be available [0MW (N‐S) and 0MW (S‐ N)]. Version Version Revised By Date 1 Document Creation OASIS Group 09/22/2014 2 Corrected outage information OASIS Group 10/14/2014 3 Corrected outage information OASIS Group 10/15/2014 4 Updated outage information OASIS Group 10/16/2014 5 Updated outage information OASIS Group 11/03/2014 6 Updated outage information OASIS Group 12/23/2014 7 Updated outage information OASIS Group 01/09/2015 8 Updated outage information OASIS Group 08/26/2015 Updated PDCI capacity after 12/21/2015 from 3220MW to 9 OASIS Group 09/17/2015 2990MW.
    [Show full text]
  • Transmission Benefit Quantification, Cost Allocation, and Cost Recovery
    Arnold Schwarzenegger Governor TRANSMISSION BENEFIT QUANTIFICATION, COST ALLOCATION AND COST RECOVERY REPORT PROJECT FINAL Prepared For: California Energy Commission Public Interest Energy Research Program PIER Prepared By: Lawrence Berkeley National Laboratory Prepared By: Vikram Budhraja, John Ballance, Jim Dyer, and Fred Mobasheri Electric Power Group, LLC Pasadena, California Joseph Eto, Lawrence Berkeley National Laboratory Principal Investigator Commission Contract No. 500-05-001 Commission Work Authorization No: MR0606/MR-051 Prepared For: Public Interest Energy Research (PIER) California Energy Commission Jamie Patterson Contract Manager Mike Gravely Program Area Lead ENERGY SYSTEMS INTEGRATION Mike Gravely Office Manager ENERGY SYSTEMS RESEARCH Martha Krebs, Ph.D. PIER Director Thom Kelly, Ph.D. Deputy Director ENERGY RESEARCH & DEVELOPMENT DIVISION Melissa Jones Executive Director DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGMENTS The PIER Research Manager for this project was Virgil Rose. A Technical Advisory Committee (TAC) was established to review research results and offer guidance to the research team. Two in-person TAC meetings were held along with other written and oral communications as needed and appropriate.
    [Show full text]
  • Advanced Transmission Technologies
    Advanced Transmission Technologies December 2020 United States Department of Energy Washington, DC 20585 Executive Summary The high-voltage transmission electric grid is a complex, interconnected, and interdependent system that is responsible for providing safe, reliable, and cost-effective electricity to customers. In the United States, the transmission system is comprised of three distinct power grids, or “interconnections”: the Eastern Interconnection, the Western Interconnection, and a smaller grid containing most of Texas. The three systems have weak ties between them to act as power transfers, but they largely rely on independent systems to remain stable and reliable. Along with aged assets, primarily from the 1960s and 1970s, the electric power system is evolving, from consisting of predominantly reliable, dependable, and variable-output generation sources (e.g., coal, natural gas, and hydroelectric) to increasing percentages of climate- and weather- dependent intermittent power generation sources (e.g., wind and solar). All of these generation sources rely heavily on high-voltage transmission lines, substations, and the distribution grid to bring electric power to the customers. The original vertically-integrated system design was simple, following the path of generation to transmission to distribution to customer. The centralized control paradigm in which generation is dispatched to serve variable customer demands is being challenged with greater deployment of distributed energy resources (at both the transmission and distribution level), which may not follow the traditional path mentioned above. This means an electricity customer today could be a generation source tomorrow if wind or solar assets were on their privately-owned property. The fact that customers can now be power sources means that they do not have to wholly rely on their utility to serve their needs and they could sell power back to the utility.
    [Show full text]
  • 2002 ABB ELECTRIC UTILITY CONFERENCE HVDC Technologies
    2002 ABB ELECTRIC UTILITY CONFERENCE PAPER IV – 3 POWER SYSTEMS HVDC Technologies – The Right Fit for the Application Michael P. Bahrman ABB Inc. 1021 Main Campus Dr. Raleigh, NC 27606 Abstract: Traditional HVDC transmission has often provided economic solutions for special transmission applications. These include long-distance, bulk-power transmission, long submarine cable crossings and asynchronous interconnections. Deregulated generation markets, open access to transmission, formation of RTO’s, regional differences in generation costs and increased difficulty in siting new transmission lines, however, have led to a renewed interest in HVDC transmission often in non-traditional applications. HVDC transmission technologies available today offer the planner increased flexibility in meeting transmission challenges. This paper describes the latest developments in conventional HVDC technology as well as in alternative HVDC transmission technologies offering supplemental system benefits. Keywords: HVDC, DC, CCC, VSC, PWM, RTO, Asynchronous, HVDC Light I. INTRODUCTION Economic signals arising from deregulation of the generation market have led developers and transmission providers alike to follow the path of least resistance much like the power flow over the network on which their mutual business interests rely. On the generation side, the developer has invoked a quick-strike strategy siting units where there is convergence of low-cost fuel supplies, relative ease of permitting, water supply, ready access to transmission and proximity to load. On the transmission side, the transmission provider has been preoccupied with cost reduction, compensation for stranded assets, potential under-utilization of assets and reacting to evolving regulatory mandates. Although such development may result in a short-term gain in new, economic power resources, the long term benefit is not all that clear.
    [Show full text]
  • Hamburg – European Green Capital 2011
    Hamburg – European Green Capital 2011 Final Report Published by: Freie und Hansestadt Hamburg Behörde für Stadtentwicklung und Umwelt Stadthausbrücke 8 20355 Hamburg www.hamburg.de/bsu Titel-Umweltprogramm-A3_eng.indd 1 05.03.13 11:10 Preface ABOUT THIS DOCUMENT As holder of the title of European Green Capital 2011, This document outlines the development of the Euro- Hamburg set itself the goals of developing sustaina- pean Green Capital 2011, and describes the approaches Dear citizens, ble environmental protection locally and also to raise taken to design the programme for the year. The orien- dear friends of the Green Capital! its profi le throughout Europe as a green metropolis in tation of the programme and the vast array of activities the vanguard of enlightened environmental practice. undertaken are illustrated using numerous examples. The European Commission awarded Hamburg the title continue to develop sustainably as a green waterfront In short, Hamburg achieved these goals. It is also to In addition to describing individual supporting projects, European Green Capital 2011, making it the second metropolis, particularly in times of population growth Hamburg’s credit that expenditure for achieving them their outcomes and impact are also recorded and, where ever city after Stockholm offi cially allowed to call itself and committed housing construction. The objective is was even under budget. Furthermore, the city is now possible, these are accompanied by statistical informa- European Green Capital. Not only is the title recognition a clear one: achieving a greener, fairer and stronger considered to be a showcase for the European Green tion. of Hamburg’s achievements in environmental protection, Hamburg.
    [Show full text]
  • European Coasts of Bohemia the Danube–Oder–Elbe Canal Attracted a Great Deal of Attention Throughout the Twentieth Century
    Jiří Janáč Jiří European Coasts of Bohemia The Danube–Oder–Elbe Canal attracted a great deal of attention throughout the twentieth century. Its promo- ters defined it as a tool for integrating a divided Europe. Negotiating the Danube-Oder-Elbe Canal in Although the canal was situated almost exclusively on Czech territory, it promised to create an integrated wa- a Troubled Twentieth Century Jiří Janáč terway system across the Continent that would link Black Sea ports to Atlantic markets. In return, the landlocked European Coasts of Bohemia Czechoslovakian state would have its own connections to the sea. Today, the canal is an important building block of the European Agreement on Main Inland Waterways. This book explains the crucial role that experts played in aligning national and transnational interests and in- frastructure developments. It builds on recent inves- tigations into the hidden integration of Europe as an outcome of transnational networking, system-building, and infrastructure development. The book analyzes the emergence of a transnational waterway expert network that continued to push for the development of the ca- nal despite unfavorable political circumstances. The book shows how the experts adapted themselves to various political developments, such as the break-up of the Austrian–Hungarian Empire, the rise of the Third Reich, and integration into the Soviet Bloc, while still managing to keep the Canal project on the map. This book provides a fascinating story of the experts who confronted and contributed to different and often con- flicting geopolitical visions of Europe. The canal was never completed, yet what is more re- markable is the fact that the canal remained on various agendas and attracted vast resources throughout the twentieth century.
    [Show full text]
  • Negotiating the Danube- Oder-Elbe Canal in a Troubled Twentieth Century Janác, J
    European coasts of Bohemia : negotiating the Danube- Oder-Elbe Canal in a troubled twentieth century Janác, J. DOI: 10.6100/IR748489 Published: 01/01/2012 Document Version Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication Citation for published version (APA): Janac, J. (2012). European coasts of Bohemia : negotiating the Danube-Oder-Elbe Canal in a troubled twentieth century Amsterdam: Amsterdam University Press DOI: 10.6100/IR748489 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Wind Power Transmission from Energy Rich North Dakota to California Through HVDC Lines
    Session 2433 A Novel Solution for California’s Energy Crisis: Wind Power Transmission from Energy Rich North Dakota to California through HVDC Lines Recayi Pecen William Leighty Electrical & Information The Leighty Foundation-Alaska Engineering Technology Program University of Northern Iowa Abstract This paper first investigates feasibility of establishing a 7,000 MW power capacity wind farm, and the conversion of the total AC electrical power of 4,000 MW to the DC in a large converter station in Olga, North Dakota. Then it includes transmission of this bulk power to Northern California through a 1,700 miles, two bipolar +500 kV, 2,000A high voltage DC (HVDC) lines. The study assumes that there exists an average AC electrical power of 4,000 MW generated through two wind farms located in Olga, ND with 10,000 MW capacity. An existing wind capacity factor (CF) of 40%, which shows actual or predicted output as a % of installed capacity, is considered for this study. Two wind farms are considered to be established at Olga 3 and Olga 5 locations with average wind data available by North Dakota Department of Commerce - Division of Community Services. The commercially available North Dakota wind resource alone is estimated at over 1,000 TWh (billion kWh) per year. Dakotas wind energy potential is very stranded allover the land. Manitoba HVDC Research Center’s PSCAD /EMTDC power system software is used for the system modeling and simulation studies of the proposed HVDC scheme. Overall, the researchers determined that it is feasible and economical to establish a total power capacity of 10,000 MW from two new wind farms including 5,000MW at Olga 3, and other 5,000MW at Olga 5 wind sites, both are located in the north east corner of North Dakota, and one large 4,000 MW AC to DC converter station in Olga 5, and to transfer this DC power to the Northern California by HVDC lines.
    [Show full text]
  • Upgrading the Intermountain HVDC Project to Handle 480 MW Additional Wind Power
    21, rue d’Artois, F-75008 PARIS B4-108 CIGRE 2012 http : //www.cigre.org Upgrading the Intermountain HVDC Project to handle 480 MW additional Wind Power Mohammed J. Beshir Hans Bjorklund Los Angeles Department of Water and Power ABB USA Sweden SUMMARY The Intermountain Power Project, Southern Transmission System (IPP STS) was built in the early 80’s and commissioned in 1986 to bring power from a 1600 MW coal-fired generating plant in Utah to Southern California. The original project comprised of one bipole with 1600 MW ±500 kV continuous rating, meeting (N-1) reliability criteria. IPP STS had a very unique short-time overload rating allowing one pole to run at 2.3 p.u. current for few seconds before ramping down to operate continuously at 1.5 p.u. current (1200 MW power) should one pole trip [1]. To achieve this large overload on one pole all redundant cooling equipment for the transformers and the valves were used. The reactive consumption increased for the overloaded pole, but the full reactive power compensation for the bipole was available for that single pole. Some of this overload capability was used in 1989 when the bipole was up-rated to 1920 MW. To advance California’s environmental policies, in 2005 Los Angeles initiated an aggressive renewable resource development program to reach a 20% renewable portfolio standard (RPS) by 2010 (which was later supplemented with 35% RPS by 2020 and 30% CO2 reduction by 2030). One possible source for additional renewable resources was the wind power potential of southern Utah.
    [Show full text]
  • OO-\EP-\B DATE AUG 0 1 2008 the STATE of CALIFORNIA Reed
    DOCKET OO-\EP-\B DATE AUG 0 1 2008 THE STATE OF CALIFORNIA REeD. AUG 0 4 2008 BEFORE THE : ••t CALIFORNIA ENERGY COMMISSION In the Matter qf: ) ) . Preparation of the ) Docket No. 08-IEP-IB 2008 Integrated Energy Policy Report ) Update and the 2009 Integrated ) Energy Policy Report ) POST WORKSHOP COMMENTS OF THE CALIFORNIA MUNICIPAL UTILITIES ASSOCIATION, IMPERIAL IRRIGATION DISTRICT, LOS ANGELES DEPARTMENT OF WATER AND POWER, AND THE SACRAMENTO MUNICIPAL UTILITY DISTRICT . Pursuant to the Notice of Staff Workshop on Transmission Issues for 33% Renewables by 2020, the California Municipal Utilities Association and certain of its member utilities, the Imperial Irrigation District ("IID"), Los Angeles Department of Water and Power ("LAPWP"), and the Sacramento Municipal Utility District ("SMUD") (collectively "Joint Commentors"), respectfully submit these Post-Workshop Comments on issues regarding transmission infrastructure development to meet renewable energy goals. CMUA is a statewide organization of local public agencies in California that provide water, gas, and electricity service to California consumers. CMUA membership includes 43 electric distribution systems and other public agencies directly involved in the electricity industry. 1 CMUA members, including those listed above, own and operate CMUA electric utility members iilclude the Cities of Alameda, Anaheim, Azusa, Banning, Burbank, Cerritos, Colton, Corona, Glendale, Healdsburg, Lodi, Lompoc, Los Angeles, Needles, Palo Alto, Pasadena, Rancho Cucamonga, Redding, Riverside, Roseville, Santa Clara, and Vernon, as well as the Imperial, Merced, Modesto, Turlock Irrigation Districts, the Northern California Power Agency, Southern California Public Power Authority, Transmission Agency of Northern California, Lassen Municipal Utility District, Power and Water Resources Pooling Authority, Sacramento Municipal Utility District, the Trinity and Truckee Donner Public Utility Districts, the Metropolitan Water District of Southern California, and the City and COlmty of San Francisco, Hetch-Hetchy.
    [Show full text]
  • Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction Or Distribution Or Commercial Use
    Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use. This article was originally published by IWA Publishing. IWA Publishing recognizes the retention of the right by the author(s) to photocopy or make single electronic copies of the paper for their own personal use, including for their own classroom use, or the personal use of colleagues, provided the copies are not offered for sale and are not distributed in a systematic way outside of their employing institution. Please note that you are not permitted to post the IWA Publishing PDF version of your paper on your own website or your institution’s website or repository. Please direct any queries regarding use or permissions to [email protected] Water Policy 17 (2015) 114–132 Translating policies into actions: the case of the Elbe River Wolfgang Grabsa and Hans Moserb aCorresponding author. Federal Institute of Hydrology, Koblenz, Germany. E-mail: [email protected] bInternational Commission for the Hydrology of the Rhine Basin, Lelystad, The Netherlands Abstract This paper describes methods and processes to link policy development to the implementation of those policies in actionable implementation plans. It is shown that policies can only be implemented effectively if they are embedded in a legal framework that is designed to facilitate achievement of the policy objectives. The paper shows different levels of policy making and decision support for the development of policies at different levels, ranging from the level of Federal States in Germany to policy development and implementation at the European level as part of the European Framework Directive.
    [Show full text]
  • Sylmar Converter Station Turns 50
    Sylmar Converter Station Turns 50 By Christy Holland Fifty years ago, LADWP celebrated the completion of the 846-mile Pacific DC Intertie (PDCI) and the launch of the Sylmar Converter Station—a state-of-the-art power transmission facility. The Sylmar Converter Station is the southern anchor of the PDCI, which is a high-voltage, direct current transmission power line that originates at the Celilo Converter Station in The Dalles, Oregon. Today, the station has not only withstood the test of time; it remains just as relevant and vital as when it received its first megawatt in 1970. “When the PDCI was first completed, it was the longest and highest voltage DC line in the United States,” said Robert Fick, Manager, Hydro & Renewable Generation/High Voltage Stations, Power Supply Operations Division. “Nothing of this magnitude had been built before, so there was a lot of risk in taking on a project of this size.” Giant thyristors at Sylmar Converter Station. Photo by Chris Corsmeier Flash forward 50 years and the PDCI is still the longest DC line in the United States and in North America. While it is no longer the highest voltage DC line, it can boast that its southern anchor, the Sylmar Converter Station, has recently increased its capacity from 3,100 megawatts (MW) to 3,220 MW following a $223 million facility upgrade. This modernization project was designed to extend the facility’s lifespan for 40 more years, ensuring continued reliability of power transmission between the two regions. Think of the PDCI as a high-voltage electric superhighway and the Sylmar Converter Station as a transfer hub.
    [Show full text]