2008 Annual Report of the Western Electricity Coordinating Council's

Total Page:16

File Type:pdf, Size:1020Kb

2008 Annual Report of the Western Electricity Coordinating Council's 2008 Annual Report of the Western Electricity Coordinating Council’s Transmission Expansion Planning Policy Committee ___________________ Part 3 Western Interconnection Transmission Path Utilization Study An analysis of Path Flows and Schedules on the WECC Transmission System during 2007 Historical Analysis Work Group April 2009 TABLE OF CONTENTS I. INTRODUCTION ------------------------------------------------------------------------------------ 1 II. OBJECTIVE OF STUDY -------------------------------------------------------------------------- 2 III. ANALYSIS METHODOLOGY ------------------------------------------------------------------ 2 Nomenclature ------------------------------------------------------------------------------------ 2 WECC Paths Analyzed ------------------------------------------------------------------------ 3 Methodology --------------------------------------------------------------------------------------- 6 Historical Actual Flow Data -------------------------------------------------------------------- 7 Historical Schedule Data ----------------------------------------------------------------------- 7 POR POD Mapping Process ------------------------------------------------------------------ 8 Other Historical Data ---------------------------------------------------------------------------- 9 Congestion Indices ----------------------------------------------------------------------------- 10 OTC/TTC Assumptions ------------------------------------------------------------------------ 10 WECC Scheduling and OASIS Posting Process ---------------------------------------- 10 IV. RESULTS ------------------------------------------------------------------------------------------- 11 Path by Path Analysis and Congestion Indices Calculations ---------------------------- 11 Path Usage Rankings ---------------------------------------------------------------------------- 20 Related Transmission Projects ----------------------------------------------------------------- 22 Unscheduled (Loop) Flow ----------------------------------------------------------------------- 23 WECC Unscheduled Flow Curtailments in 2007 ------------------------------------------- 23 California Import ----------------------------------------------------------------------------------- 24 Regional flow analysis ---------------------------------------------------------------------------- 24 V. TREND ANALYSIS ------------------------------------------------------------------------------- 26 1998 through 2007 -------------------------------------------------------------------------------- 26 VI. LIMITATIONS ON APPLICATION OF STUDY RESULTS --------------------------- 27 VII. CONCLUSIONS ---------------------------------------------------------------------------------- 27 VIII. FIGURES ------------------------------------------------------------------------------------------ 31 Figures 4 – 7 Typical Path Chronology & Duration plots for Path 66 (COI) ----- 31 Figures 8 – 11 U75 bar charts & peak flow chart ---------------------------------------- 35 Figures 12 - 14 Usage Ranking Charts ----------------------------------------------------- 39 Figures 15 Major Loop Flow 2007 ----------------------------------------------------- 42 Figures 16 California Import ------------------------------------------------------------- 43 Figure 17 Trend Analysis --------------------------------------------------------------- 44 XI. APPENDICES ------------------------------------------------------------------------------------ 45 I. Path-by-Path Observations ---------------------------------------------------------------- 45 II. Individual Path Performance Appendix IIa – NW Paths (Paths 3, 8, 14, 17, 18, 19, 20) ------------------------------- 55 Appendix IIb – SW Paths (Paths 22, 23, 47, 48, 49, 50, 51) ---------------------------- 85 Appendix IIc - RM Paths (Paths 30, 31, 34, 35, 36) ------------------------------------- 113 Appendix IId – CA Paths (Paths 45, 46, 65, 66, CA Import)--------------------------- 134 Appendix IIe – Regional Analysis (PNW, CA, DSW, RM) ----------------------------- 152 III. Metric Calculations -U75, U90, U99 All Hour, Seasonal and Heavy/Light Load ------------------------------------------------------------------------------------------------------- 156 IV. Path Usage Ranking Charts ------------------------------------------------------------ 173 TEPPC Annual Report - Part 3 I. INTRODUCTION The analysis of historical power flow and schedule data for the Western Interconnection transmission system provides an indication of how marketers and load serving entities have utilized the transmission system to market energy and serve load. This information is also useful in the analysis and identification of potential future areas of congestion and for verifying model representation for power flow and production costing analysis. Previous studies have analyzed only actual MW flow data. For the first time, this study gathered and analyzed historical path schedule data for 23 Western Electricity Coordinating Council (WECC) paths. Schedule data was obtained by OATI from archived electronic scheduling tags (e-Tags) by mapping POR POD segments to WECC paths, searching the OATI archived e-Tag database and converting the individual e-Tag schedules to WECC path schedules. Together with actual flow data from the WECC PI database, the study was able to evaluate usage of the transmission system considering both actual flows and transaction schedules. This work is the latest in a continuing effort to analyze utilization of the Western Interconnection transmission system that started in 1999. The WECC Transmission Expansion Planning Policy Committee’s (TEPPC) Historical WG (HWG) performed the analysis in this report. Similar analysis was performed previously by the three western Regional Transmission Associations (RTAs) as documented in their Biennial Transmission Plan dated July 2000 and by the Seams Steering Group – Western Interconnection (SSG_WI), in their report dated February 2003. A previous analysis by TEPPC was documented in the report “Western Interconnection Transmission Path Flow Study” dated September 2007. The analysis in this report was performed for 23 Western Interconnection transmission paths, representing the major transmission paths in the western interconnection. The analysis utilized real time hourly power flow and operating transfer capability data archived in the WECC PI database. Schedule data was obtained by OATI from archived e-Tags. An attempt was made to utilize ATC and Reservation data from the WestTrans OASIS. However, this data was found to be incomplete and could not be used in this study. Actual flow and schedule data was also obtained from the Bonneville Power Administration, El Paso Electric Company and PacifiCorp. To facilitate performance comparison among the paths, utilization metrics were calculated. These metrics represent the percentage of time the path flow or schedule exceeds 75%, 90% and 99% of its operating transfer capability. The 75% utilization level was chosen as an indicator of a path that may be considered heavily utilized. The 90% utilization level is an indicator of very heavy path loading. The 99% utilization indicator is representative of the time a path is operating at its full capacity. The magnitudes of the metrics by themselves are not necessarily an indication that there is congestion (an inability to meet the needs of transmission users on the path) or that Final - 06Apr2009 Page 1 of 177 TEPPC Annual Report - Part 3 there is a reliability concern. In the Western Interconnection, paths are designed to be loaded to 100% of their operating transfer capability and withstand credible outages without violating WECC and NERC reliability standards. Some paths are designed to operate at very high capacity factors such as those dedicated to integrating specific generating plants. II. OBJECTIVE OF STUDY The purpose of the study was to measure the historical utilization of the major transmission paths in the Western Interconnection during 2007 and to provide insight into where transmission congestion might be occurring. It should not be concluded from this analysis that it is necessary or economical to take corrective actions for the loading levels reported. The results may, however, provide information for identifying paths for further study regarding the potential benefits and costs of increasing their transfer capacity. Additional information may be needed to help identify where heavy loadings and heavy schedules on the transmission system are a bottleneck to the operation of a more efficient resource market. A portion of this study effort was funded by Lawrence Berkeley National Laboratory. The information in this report is being provided to the US Department of Energy for use in their 2009 transmission congestion report of the nation’s transmission infrastructure. III. ANALYSIS METHODOLOGY 1. Nomenclature Following is a definition of some of the acronyms and terms used in this report (These may be abbreviated definitions and not the official WECC definitions for these terms): 1. OTC – Operating Transfer Capability - the MW capacity limitation of a path which can vary hourly with changing operating conditions 2. TTC – Total Transfer Capability - the WECC Path Rating as defined in the 2008 WECC Path Rating Catalog 3. WECC Path Number – a unique number assigned to each path described in the WECC Path Rating Catalog 4. TP – Transmission Provider 5. U75, U90, U99 – congestion metrics defined as the % of
Recommended publications
  • Pacific DC Intertie (PDCI) Upgrade Outage / De-Rate Schedule 2014
    Version No. Pacific DC Intertie (PDCI) Upgrade 10 POWER SYSTEM Effective Outage / De-rate Schedule 2014-2016 1/12/2016 Date: Introduction The upcoming scheduled outages due to major upgrades on the Pacific DC Intertie (PDCI) will result in reduced available capacity on the line during various periods from 2014 to 2016. Most of the upgrades are convertor station and line work by the Bonneville Power Administration (BPA) to modernize its infrastructure at the Celilo Converter Station, which is the northern terminal of the PDCI. Other work will be performed by the Los Angeles Department of Water and Power (LADWP) in conjunction with the upgrades. Scheduling MW Capacity The schedule below will be updated as outages are scheduled. Start Date End Date Direction Scheduling Capacity (MW) June 28, 2015 October 3, 2015 North – South 1956 HE21 HE3 South – North 975 October 3, 2015 January 20, 2016 North – South 0 HE4 HE24 South – North 0 January 21, 2015 North – South 29901 HE1 South – North 975 From October 3, 2015 to January 21, 2015, the Celilo‐Sylmar Pole 3 1000kV Line and Celilo‐Sylmar Pole 4 1000kV Line will be removed from service and the PDCI will not be available [0MW (N‐S) and 0MW (S‐ N)]. Version Version Revised By Date 1 Document Creation OASIS Group 09/22/2014 2 Corrected outage information OASIS Group 10/14/2014 3 Corrected outage information OASIS Group 10/15/2014 4 Updated outage information OASIS Group 10/16/2014 5 Updated outage information OASIS Group 11/03/2014 6 Updated outage information OASIS Group 12/23/2014 7 Updated outage information OASIS Group 01/09/2015 8 Updated outage information OASIS Group 08/26/2015 Updated PDCI capacity after 12/21/2015 from 3220MW to 9 OASIS Group 09/17/2015 2990MW.
    [Show full text]
  • The History of High Voltage Direct Current Transmission*
    47 The history of high voltage direct current transmission* O Peake† Power Systems Electrical Engineer, Collingwood, Victoria SUMMARY: Transmission of electricity by high voltage direct current (HVDC) has provided the electric power industry with a powerful tool to move large quantities of electricity over great distances and also to expand the capacity to transmit electricity by undersea cables. The fi rst commercial HVDC scheme connected the island of Gotland to the Swedish mainland in 1954. During the subsequent 55 years, great advances in HVDC technology and the economic opportunities for HVDC have been achieved. Because of the rapid development of HVDC technology many of the early schemes have already been upgraded, modernised or decommissioned. Very little equipment from the early schemes has survived to illustrate the engineering heritage of HVDC. Conservation of the equipment remaining from the early projects is now an urgent priority, while the conservation of more recent projects, when they are retired, is a future challenge. 1 INTRODUCTION technology for the valves to convert AC to DC and vice versa. At the beginning of the electricity supply industry there was a great battle between the proponents In the late 1920s, the mercury arc rectifi er emerged of alternating current (AC) and direct current as a potential converter technology, however, it was (DC) alternatives for electricity distribution. This not until 1954 that the mercury arc valve technology eventually played out as a win for AC, which has had matured enough for it to be used in a commercial maintained its dominance for almost all domestic, project. This pioneering development led to a industrial and commercial supplies of electricity number of successful projects.
    [Show full text]
  • Planning Transmission for Uncertainty
    WESTERN ELECTRICITY COORDINATING COUNCIL Planning Transmission for Uncertainty: Applications and Lessons for the Western Interconnection FINAL REPORT JANUARY 2016 Jonathan L. Ho, Benjamin F. Hobbs, Pearl Donohoo‐Vallett, Qingyu Xu, Saamrat Kasina, Sang Woo Park, and Yueying Ouyang Department of Geography & Environmental Engineering Environment, Energy, Sustainability & Health Institute The Johns Hopkins University Baltimore, MD Report Prepared for The Western Electricity Coordinating Council Acknowledgement This material is based upon work supported by the Western Electricity Coordinating Council and by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability through a contract man‐ aged by the Lawrence Berkeley National Laboratory. The project team would like to thank Vijay Satyal, Gary Simonson, Michael Bailey, and Keenan Moyer of WECC and Joseph Eto of LBNL for their support and advice during this project. We also gratefully acknowledge the contributions of the members of the Technical Advisory Committee whose advice was invaluable in development of the study cases. We also thank Yujia Zhu and Prof. Daniel Tylavsky of the Department of Electrical Engineering at Arizona State University for access to their software for power network reduction and the advice they provided on its use. Jim McCalley contributed to an earlier ver‐ sion of the literature survey in Section 2. However, the authors are solely responsible for any opinions or errors in this document. All authors performed this work when associated with Johns Hopkins University. Jonathan Ho is now with the National Renewable Energy Laboratory, Pearl Donohoo‐Vallett is with Brattle Consultants, and Yueying Ouyang is with Energy & Environmental Economics (E3) Consultants.
    [Show full text]
  • Advanced Transmission Technologies
    Advanced Transmission Technologies December 2020 United States Department of Energy Washington, DC 20585 Executive Summary The high-voltage transmission electric grid is a complex, interconnected, and interdependent system that is responsible for providing safe, reliable, and cost-effective electricity to customers. In the United States, the transmission system is comprised of three distinct power grids, or “interconnections”: the Eastern Interconnection, the Western Interconnection, and a smaller grid containing most of Texas. The three systems have weak ties between them to act as power transfers, but they largely rely on independent systems to remain stable and reliable. Along with aged assets, primarily from the 1960s and 1970s, the electric power system is evolving, from consisting of predominantly reliable, dependable, and variable-output generation sources (e.g., coal, natural gas, and hydroelectric) to increasing percentages of climate- and weather- dependent intermittent power generation sources (e.g., wind and solar). All of these generation sources rely heavily on high-voltage transmission lines, substations, and the distribution grid to bring electric power to the customers. The original vertically-integrated system design was simple, following the path of generation to transmission to distribution to customer. The centralized control paradigm in which generation is dispatched to serve variable customer demands is being challenged with greater deployment of distributed energy resources (at both the transmission and distribution level), which may not follow the traditional path mentioned above. This means an electricity customer today could be a generation source tomorrow if wind or solar assets were on their privately-owned property. The fact that customers can now be power sources means that they do not have to wholly rely on their utility to serve their needs and they could sell power back to the utility.
    [Show full text]
  • 2002 ABB ELECTRIC UTILITY CONFERENCE HVDC Technologies
    2002 ABB ELECTRIC UTILITY CONFERENCE PAPER IV – 3 POWER SYSTEMS HVDC Technologies – The Right Fit for the Application Michael P. Bahrman ABB Inc. 1021 Main Campus Dr. Raleigh, NC 27606 Abstract: Traditional HVDC transmission has often provided economic solutions for special transmission applications. These include long-distance, bulk-power transmission, long submarine cable crossings and asynchronous interconnections. Deregulated generation markets, open access to transmission, formation of RTO’s, regional differences in generation costs and increased difficulty in siting new transmission lines, however, have led to a renewed interest in HVDC transmission often in non-traditional applications. HVDC transmission technologies available today offer the planner increased flexibility in meeting transmission challenges. This paper describes the latest developments in conventional HVDC technology as well as in alternative HVDC transmission technologies offering supplemental system benefits. Keywords: HVDC, DC, CCC, VSC, PWM, RTO, Asynchronous, HVDC Light I. INTRODUCTION Economic signals arising from deregulation of the generation market have led developers and transmission providers alike to follow the path of least resistance much like the power flow over the network on which their mutual business interests rely. On the generation side, the developer has invoked a quick-strike strategy siting units where there is convergence of low-cost fuel supplies, relative ease of permitting, water supply, ready access to transmission and proximity to load. On the transmission side, the transmission provider has been preoccupied with cost reduction, compensation for stranded assets, potential under-utilization of assets and reacting to evolving regulatory mandates. Although such development may result in a short-term gain in new, economic power resources, the long term benefit is not all that clear.
    [Show full text]
  • 6 Analysis of Blm's Solar Energy Development
    1 6 ANALYSIS OF BLM’S SOLAR ENERGY DEVELOPMENT ALTERNATIVES 2 3 4 Through this programmatic environmental impact statement (PEIS), the U.S. Department 5 of the Interior (DOI) Bureau of Land Management (BLM) is evaluating three alternatives for 6 managing utility-scale solar energy development on BLM-administered lands in the six-state 7 study area. These alternatives, which are described in Section 2.2, include two action 8 alternatives—a solar energy development program alternative and a solar energy zone (SEZ) 9 program alternative—and a no action alternative. 10 11 Under the action alternatives, the BLM would establish a new Solar Energy Program 12 to replace certain elements of its existing Solar Energy Policies (BLM 2007, 2010a,b; 13 see Appendix A, Section A.1).1 The action alternatives identify lands that would be excluded 14 from utility-scale solar energy development and, on the basis of those exclusions, the lands that 15 would be available for solar right-of-way (ROW) application.2 Both action alternatives also 16 identify SEZs where the agency would prioritize solar energy and associated transmission 17 infrastructure development. Final SEZs would be identified in the Record of Decision (ROD) for 18 the Solar Programmatic Environmental Impact Statement (PEIS). Under the solar energy 19 development program alternative, the SEZs would constitute a subset of the total lands available 20 (i.e., applications would be accepted within the SEZs and on specific lands outside the SEZs). 21 Under the SEZ program alternative, applications would only be accepted within the SEZs, and 22 no additional lands would be available outside the SEZs.
    [Show full text]
  • 2010 Ten-Year Transmission Assessment
    Los Angeles Department of Water & Power 2010 Ten-Year Transmission Assessment November 2010 Transmission Planning & Studies Power System Planning & Development Table of Contents EXECUTIVE SUMMARY ....................................................................................1 INTRODUCTION ................................................................................................5 METHODOLOGY ...............................................................................................7 WECC REFERENCE CASE. .......................................................................................................... 7 Table 2. POWER FLOWS ALONG MAJOR SOUTHERN CALIFORNIA TRANSMISSION CORRIDORS IN THE REFERENCE CASE .......................................................................... 7 ANALYSIS. ................................................................................................................................... 8 CRITERIA..................................................................................................................................... 8 ASSUMPTIONS ...............................................................................................10 LADWP LOADS. ........................................................................................................................ 10 Table 3. COMPARISON OF 1-IN-10 SYSTEM LOADS (MW) ........................................... 10 Table 4. RECEIVING STATION (RS) PEAK LOADS (MW) ............................................... 11 INFRASTRUCTURE IMPROVEMENTS
    [Show full text]
  • Nevada Energy Markets and Planning (E-MAP) Baseline Assessment
    Nevada Energy Markets and Planning (E-MAP) Baseline Assessment Overview: ....................................................................................................................................................... 1 State Energy Landscape (Electric Sector)................................................................................................... 1 A. Electric Utility Providers .................................................................................................................. 2 B. Delivery Systems ................................................................................................................................ 5 C. Generation (in-state, out of state, and imports) ............................................................................ 13 D. Markets ............................................................................................................................................ 25 E. Existing Policies (Laws/Regulations) ............................................................................................. 27 F. Challenges ........................................................................................................................................ 36 G. Trends ............................................................................................................................................... 41 Governor Sandoval’s Energy Policy Goals ............................................................................................... 44 A. Executive Order..............................................................................................................................
    [Show full text]
  • Wind Power Transmission from Energy Rich North Dakota to California Through HVDC Lines
    Session 2433 A Novel Solution for California’s Energy Crisis: Wind Power Transmission from Energy Rich North Dakota to California through HVDC Lines Recayi Pecen William Leighty Electrical & Information The Leighty Foundation-Alaska Engineering Technology Program University of Northern Iowa Abstract This paper first investigates feasibility of establishing a 7,000 MW power capacity wind farm, and the conversion of the total AC electrical power of 4,000 MW to the DC in a large converter station in Olga, North Dakota. Then it includes transmission of this bulk power to Northern California through a 1,700 miles, two bipolar +500 kV, 2,000A high voltage DC (HVDC) lines. The study assumes that there exists an average AC electrical power of 4,000 MW generated through two wind farms located in Olga, ND with 10,000 MW capacity. An existing wind capacity factor (CF) of 40%, which shows actual or predicted output as a % of installed capacity, is considered for this study. Two wind farms are considered to be established at Olga 3 and Olga 5 locations with average wind data available by North Dakota Department of Commerce - Division of Community Services. The commercially available North Dakota wind resource alone is estimated at over 1,000 TWh (billion kWh) per year. Dakotas wind energy potential is very stranded allover the land. Manitoba HVDC Research Center’s PSCAD /EMTDC power system software is used for the system modeling and simulation studies of the proposed HVDC scheme. Overall, the researchers determined that it is feasible and economical to establish a total power capacity of 10,000 MW from two new wind farms including 5,000MW at Olga 3, and other 5,000MW at Olga 5 wind sites, both are located in the north east corner of North Dakota, and one large 4,000 MW AC to DC converter station in Olga 5, and to transfer this DC power to the Northern California by HVDC lines.
    [Show full text]
  • Upgrading the Intermountain HVDC Project to Handle 480 MW Additional Wind Power
    21, rue d’Artois, F-75008 PARIS B4-108 CIGRE 2012 http : //www.cigre.org Upgrading the Intermountain HVDC Project to handle 480 MW additional Wind Power Mohammed J. Beshir Hans Bjorklund Los Angeles Department of Water and Power ABB USA Sweden SUMMARY The Intermountain Power Project, Southern Transmission System (IPP STS) was built in the early 80’s and commissioned in 1986 to bring power from a 1600 MW coal-fired generating plant in Utah to Southern California. The original project comprised of one bipole with 1600 MW ±500 kV continuous rating, meeting (N-1) reliability criteria. IPP STS had a very unique short-time overload rating allowing one pole to run at 2.3 p.u. current for few seconds before ramping down to operate continuously at 1.5 p.u. current (1200 MW power) should one pole trip [1]. To achieve this large overload on one pole all redundant cooling equipment for the transformers and the valves were used. The reactive consumption increased for the overloaded pole, but the full reactive power compensation for the bipole was available for that single pole. Some of this overload capability was used in 1989 when the bipole was up-rated to 1920 MW. To advance California’s environmental policies, in 2005 Los Angeles initiated an aggressive renewable resource development program to reach a 20% renewable portfolio standard (RPS) by 2010 (which was later supplemented with 35% RPS by 2020 and 30% CO2 reduction by 2030). One possible source for additional renewable resources was the wind power potential of southern Utah.
    [Show full text]
  • OO-\EP-\B DATE AUG 0 1 2008 the STATE of CALIFORNIA Reed
    DOCKET OO-\EP-\B DATE AUG 0 1 2008 THE STATE OF CALIFORNIA REeD. AUG 0 4 2008 BEFORE THE : ••t CALIFORNIA ENERGY COMMISSION In the Matter qf: ) ) . Preparation of the ) Docket No. 08-IEP-IB 2008 Integrated Energy Policy Report ) Update and the 2009 Integrated ) Energy Policy Report ) POST WORKSHOP COMMENTS OF THE CALIFORNIA MUNICIPAL UTILITIES ASSOCIATION, IMPERIAL IRRIGATION DISTRICT, LOS ANGELES DEPARTMENT OF WATER AND POWER, AND THE SACRAMENTO MUNICIPAL UTILITY DISTRICT . Pursuant to the Notice of Staff Workshop on Transmission Issues for 33% Renewables by 2020, the California Municipal Utilities Association and certain of its member utilities, the Imperial Irrigation District ("IID"), Los Angeles Department of Water and Power ("LAPWP"), and the Sacramento Municipal Utility District ("SMUD") (collectively "Joint Commentors"), respectfully submit these Post-Workshop Comments on issues regarding transmission infrastructure development to meet renewable energy goals. CMUA is a statewide organization of local public agencies in California that provide water, gas, and electricity service to California consumers. CMUA membership includes 43 electric distribution systems and other public agencies directly involved in the electricity industry. 1 CMUA members, including those listed above, own and operate CMUA electric utility members iilclude the Cities of Alameda, Anaheim, Azusa, Banning, Burbank, Cerritos, Colton, Corona, Glendale, Healdsburg, Lodi, Lompoc, Los Angeles, Needles, Palo Alto, Pasadena, Rancho Cucamonga, Redding, Riverside, Roseville, Santa Clara, and Vernon, as well as the Imperial, Merced, Modesto, Turlock Irrigation Districts, the Northern California Power Agency, Southern California Public Power Authority, Transmission Agency of Northern California, Lassen Municipal Utility District, Power and Water Resources Pooling Authority, Sacramento Municipal Utility District, the Trinity and Truckee Donner Public Utility Districts, the Metropolitan Water District of Southern California, and the City and COlmty of San Francisco, Hetch-Hetchy.
    [Show full text]
  • 2016 State of the Interconnection
    2016 State of the Interconnection RELIABILITY The State of the Interconnection presents the most accurate historical data available at the time of publication. All data are subject to revision in future editions of the report and in other WECC documents. Cover photo credits (clockwise from top left): [Untitled picture of transmission lines at sunset]. Retrieved April 27, 2016 from https:// www.pexels.com/photo/dawn-twilight-dusk-electricity-917/; Seattle City Light (2011). Bn spill 2011 at night. Permission obtained April 14, 2016 from Seattle City Light; Reyner Media (2010). California wind farm [Online image].; Retrieved May 2, 2016 from https://www.flickr.com/ photos/89228431@N06/11080409645; Wu, A. (2010). PV and solar thermal [Online image].; Retrieved April 27, 2016 from https:// en.wikipedia.org/wiki/File:PV_and_solar_thermal.jpg i Introduction The State of the Interconnection, now in its fifth edition, is a snapshot of evolving trends in the Western Interconnection. The report gathers data from a variety of sources to provide a comprehensive summary of information relevant to the reliability of the Bulk Electric System (BES). The State of the Interconnection is published annually by the Western Electricity Coordinating Council (WECC). WECC is the Regional Entity with authority delegated from the North American Electric Reliability Corporation (NERC) to assure the reliability of the BES across the entire Western Interconnection. How to Use This Report The State of the Interconnection is a reference tool. Its design allows the reader to quickly access information about the Western Interconnection. Colored tabs separate the report into five sections, each describing an element of power system reliability.
    [Show full text]