Innovations in Building Energy Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Thermal Simulation Tool for Building and Its Interoperability Through the Building Information Modeling (BIM) Platform
Buildings 2013, 3, 380-398; doi:10.3390/buildings3020380 OPEN ACCESS buildings ISSN 2075-5309 www.mdpi.com/journal/buildings/ Article A Thermal Simulation Tool for Building and Its Interoperability through the Building Information Modeling (BIM) Platform Yudi Nugraha Bahar 1,*, Christian Pere 2, Jérémie Landrieu 2 and Christophe Nicolle 3 1 University of Bourgogne-France, Arts et Metiers ParisTech, LE2I, UMR CNRS 6306, Institut Image, Chalon-sur-Saône, France 2 Arts et Metiers ParisTech, CNRS, LE2I, Institut Image, 2 Rue T. Dumorey 71100 Chalon-sur-Saône, France; E-Mails: [email protected] (C.P.); [email protected] (J.L.) 3 IUT Dijon-Auxerre, University of Bourgogne, Laboratoire LE2I, UMR CNRS 6306, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; or [email protected]; Tel.: +33-602-309-823. Received: 1 March 2013; in revised form: 25 April 2013 / Accepted: 14 May 2013 / Published: 22 May 2013 Abstract: This paper describes potential challenges and opportunities for using thermal simulation tools to optimize building performance. After reviewing current trends in thermal simulation, it outlines major criteria for the evaluation of building thermal simulation tools based on specifications and capabilities in interoperability. Details are discussed including workflow of data exchange of multiple thermal analyses such as the BIM-based application. The present analysis focuses on selected thermal simulation tools that provide functionalities to exchange data with other tools in order to obtain a picture of its basic work principles and to identify selection criteria for generic thermal tools in BIM. -
Reflections on the History and Future of the Open Building Network
Reflections on the History and Future of the Open Building Network September 2015 2 Reflections on the History and Future of the Open Building Network The Origins of the Open Building Network Conferences An informal international network advocating the During the intervening years since the founding of the CIB implementation of what is now called “open building” has W104, we have met 19 times. These meetings, hosted and existed since the early days of the SAR (Stichting Architecten organized by network members and their local supporters, Research in Eindhoven, the Netherlands). Housing for the have taken place in Delft, Brighton (UK), Helsinki, Paris, Millions – John Habraken and the SAR (1960-2000), Bosma, Bilbao, Washington, DC, Boston, Muncie, Indiana (USA), van Hoogstraten, Vos, NAIA, Rotterdam, 2000) helps to tell Tokyo, Taipei, Hong Kong, Beijing, Mexico City, and Durban, this history. After years of such informal contacts, and after South Africa. The ETH / CASE in Zurich agreed to host a an early attempt (SAR INTERNATIONAL) failed to take root in conference in 2015 on The Future of Open Building, and the mid-1980’s, a formal network was successfully discussions are taking place to meet in Korea in 2017. On established in 1996, in a meeting in Tokyo, called CIB W104 occasion, we have met with other CIB Commissions, and Open Building Implementation (www.open-building.org). It members attended some triennial CIB World Congresses. was formed under the auspices of the CIB - the International Council for Research and Innovation in Building and The most recent conferences have expanded beyond the Construction (www.cibworld.nl). -
College of Architecture and Planning Annual Report Academic Year 2008 – 2009
COLLEGE OF ARCHITECTURE AND PLANNING ANNUAL REPORT ACADEMIC YEAR 2008 – 2009 The word is out…. It is a true pleasure to submit this annual report. We have many success stories to report, and we certainly had a lot of fun working on those, but we also had substantial challenges; we all did. In our February issue of e-cap we acknowledged that “every challenge is an opportunity” and that creative minds are particularly well equipped to take advantage of such opportunities. Today we want to celebrate the fact that in spite of financial uncertainty we have been able to continue to move forward in an aggressive quest to take our college to the next level. A fundamental move in that quest has been to build a “dream team” for the college’s departmental leadership. Last fall we welcomed Prof. Mahesh Senagala as our new Chair in the Department of Architecture, this summer we have been blessed with the arrival of Prof. Michael Burayidi as our new Chair in the Department of Urban Planning, and before it gets too cold in January we will be joined by Professor Jody Naderi as our new Chair in the Department of Landscape Architecture. I don’t know of any other college of architecture and planning in the nation with a stronger leadership team. We have adopted the structure of our University’s Strategic Plan and in such a way promote integration and synergy through all our units. We invite you to review this report and share in our excitement and enthusiasm. This is a great time to be at CAP. -
The Emergence of Numerical Weather Prediction: Richardson’S Dream Peter Lynch Frontmatter More Information
Cambridge University Press 978-1-107-41483-9 - The Emergence of Numerical Weather Prediction: Richardson’s Dream Peter Lynch Frontmatter More information THE EMERGENCE OF NUMERICAL WEATHER PREDICTION Richardson’s Dream In the early twentieth century, Lewis Fry Richardson dreamt that scientific weather prediction would one day become a practical reality. The method of computing changes in the state of the atmosphere that he mapped out in great detail is essen- tially the method used today. Before his ideas could bear fruit several advances were needed: better understanding of the dynamics of the atmosphere; stable com- putational algorithms to integrate the equations of motion; regular observations of the free atmosphere; and powerful automatic computer equipment. By 1950, advances on all these fronts were sufficient to permit the first computer weather forecast to be made. Over the ensuing 50 years progress in numerical weather prediction has been dramatic, allowing Richardson’s dream to become a reality. Weather prediction and climate modelling have now reached a high level of sophistication. This book tells the story of Richardson’s trial forecast, and the fulfilment of his dream of practical weather forecasting and climate modelling. It has a complete reconstruction of Richardson’s forecast, and analyses in detail the causes of the fail- ure of this forecast. It also includes a description of current practice, with particular emphasis on the work of the European Centre for Medium-Range Weather Fore- casts. This book will appeal to everyone involved in numerical weather forecasting, from researchers and graduate students to professionals. Peter Lynch is Met Eireann´ Professor of Meteorology at University College Dublin (UCD) and Director of the UCD Meteorology and Climate Centre. -
Technical Implementation and Success Factors for a Global Solar and Wind Atlas Carsten Hoyer-Klick
The Global Atlas for Solar and Wind Energy Carsten Hoyer-Klick Folie 1 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Getting Renewable Energy to Work Technology data and learning Available Resources Resource mapping Socio-economic Which and policy data Framework Economic + Political technologies Technical and are feasible? economical Potentials Setting the right the Setting How can RE Technology contribute to the deployment scenarios Best practices energy system? How to get them into the Strategies for market? Where to start? market development Legislation, incentives Political and financial Instruments RE-Markets Slide 2 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten Hoyer-Klick > IRENA End User Workshop Jan. 13th 2012, Abu Dhabi Project Development for Renewable Energy Systems Pre feasibility Resources Finding suitable (Atlas) sites with high The Atlas should Feasibility resolution maps few few data no no market Project developmentsupport the first steps and economic Engineering evaluations 1200 in potential assessment, ground 1000 satellite 800 Resources 600 W/m² Detailed 400 policy development200 0 13 14 15 16 17 18 day in march, 2001 (time series) and project pre feasibility, engineering with site Engineering specific data with high Construction temporal resolution as input to Commissioning simulation software data and servicesavailable Operation existing existing commerical market Slide 3 CEM/IRENA Global Atlas for Solar and Wind Energy > Carsten -
'The Halfway House'
‘the halfway house’ Temporary housing and production facility for parolees in Pretoria West Gerhard Janse van Rensburg © University of Pretoria The halfway house: Temporary housing and production facility for parolees in Pretoria West by Gerhard Janse van Rensburg SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ARCHITECTURE (PROFESSIONAL) DEPARTMENT OF ARCHITECTURE FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY UNIVERSITY OF PRETORIA Study leader: Marga Viljoen Course coordinator: Jacques Laubscher Mentor: Jacques Laubscher PRETORIA 2011 With thanks to: My loving and supportive parents, The Alcade crowd, The studio crowd, Jacques Laubscher for his commitment and effort, Marga Viljoen for all her support 2 In accordance with Regulation 4(e) of the General Regulations (G.57) for dissertations and theses, I declare that this thesis, which I hereby submit for the degree Master of Architecture (Professional) at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. I further state that no part of my thesis has already been, or is currently being, submitted for any such degree, diploma or other qualification. I further declare that this thesis is substantially my own work. Where reference is made to the works of others, the extent to which that work has been used is indicated and fully acknowledged in the text and list of references. Gerhard Janse van Rensburg 3 Contents _ Abstract 7 01 _ Introduction 8 -
The Role of Nuclear Energy in Mitigating Greenhouse Warming
LA-UR-97-4380 Title: The Role of Nuclear Energy in Mitigating Greenhouse Warming Author(s): R. A. Krakowski Submitted to: http://lib-www.lanl.gov/la-pubs/00412585.pdf Los Alamos NATIONAL LABORATORY Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. Form No. 836 R5 ST 2629 10/91 THE ROLE OF NUCLEAR ENERGY IN MITIGATING GREENHOUSE WARMING R. A. Krakowski Systems Engineering and Integration Group Technology and Safety Assessment Division Los Alamos National Laboratory Los Alamos, New Mexico 87545 ABSTRACT A behavioral, top-down, forced-equilibrium market model of long-term (~2100) global energy-economics interactions* has been modified with a “bottom-up” nuclear energy model and used to construct consistent scenarios describing future impacts -
Computer Simulation Tools to Enhance Undergraduate Power Systems Edu- Cation
Paper ID #9640 Computer Simulation Tools to Enhance Undergraduate Power Systems Edu- cation Dr. Matthew Turner, Purdue University (Statewide Technology) Matthew Turner is an Assistant Professor of Electrical and Computer Engineering Technology at Purdue University in New Albany, IN. Previously with the Conn Center for Renewable Energy Research at the University of Louisville, his research interests include power distribution system modelling, best practices for power systems education, and electric energy and public policy. Dr. Chris Foreman, Purdue University, West Lafayette Chris Foreman (Ph.D. Computer Science and Engineering, University of Louisville, 2008) is a Senior Member of IEEE, the Power and Energy Society, and holds both B.S. (1990) and M.Eng. (1996) degrees in Electrical Engineering, also from the University of Louisville. He is an Assistant Professor in the Department of Electrical and Computer Engineering Technology at Purdue University. He teaches and performs research in renewable energy systems, smart power grids, industrial control systems, and cyber- security. He has over 15 years of power industry experience with companies such as Westinghouse Process Control Division (now Emerson Process Management), Cinergy (now Duke Energy), and Alcoa Inc. Dr. Rajeswari Sundararajan, Purdue University, West Lafayette c American Society for Engineering Education, 2014 Computer Simulation Tools to Enhance Undergraduate Power Systems Education Abstract This paper presents a review of software simulation tools relevant for use in undergraduate electrical power systems education. A study of the software packages is presented with respect to their utility in teaching according to the Cognitive Domain Hierarchy of Bloom's Taxonomy. 1. Introduction In recent years a variety of factors have combined to place increasing pressure on the electric power industry; including increasing electrical energy demand, aging infrastructure, energy independence and security goals, and increasingly stringent environmental regulation. -
1- Validating Simulation Models: a General Framework and Four
-1- Validating Simulation Models: AGeneral Framework and Four Applied Examples Robert E. Marks Australian Graduate School of Management Australian School of Business University of NewSouth Wales SydneyNSW 2052 Australia [email protected] June 18, 2007 ABSTRACT:This paper provides a framework for discussing the empirical validation of simulation models of market phenomena, in particular of agent-based computational economics models. Such validation is difficult, perhaps because of their complexity; moreover, simulations can prove existence, but not in general necessity.The paper highlights the Energy Modeling Forum’sbenchmarking studies as an exemplar for simulators. A market of competing coffee brands is used to discuss the purposes and practices of simulation, including explanation. The paper discusses measures of complexity,and derivesthe functional complexity of an implementation of Schelling’s segregation model. Finally,the paper discusses howcourts might be convinced to trust simulation results, especially in merger policy. Acknowledgments: We thank Rich Burton, Yaneer Bar-Yam, Ian Wilkinson, Shayne Gary, Peter McBurney, Hill Huntington, Leigh Tesfatsion, the participants at the Fourth UCLA LakeArrowhead Conference on Human ComplexSystems, and twoanonymous referees for their comments and assistance. JEL codes: C63, C15 Ke ywords: simulation; validation; agent-based computational economics; antitrust; functional complexity; Schelling; sufficiency; Daubert criteria -2- 1. Introduction The apparent past reluctance of some in the discipline to accept computer simulation models of economic phenomena might stem from their lack of confidence in the behaviour and results exhibited by such models. Even if there are other reasons, better validation of such models would reduce anyskepticism about their results and their usefulness. Leombruni et al. -
'Building' Architects and Use of Open-Source Tools Towards Achievement of Millennium Development Goals
'Building' Architects and Use of Open-source Tools Towards Achievement of Millennium Development Goals. Oku, Onyeibo Chidozie Department of Architecture Faculty of Environmental Sciences Enugu State University of Science and Technology Email: [email protected] ABSTRACT Millennium Development Goals (MDGs) were established by the United Nations to improve the well-being of humans and their habitat. Whether they are the target beneficiaries or amongst the parties administering services for achieving the MDGs, humans must carry out these activities in a physical environment. Hence, the Seventh Goal of the MDG has an indirect and far-reaching relationship with the others because it deals with the sustainable development of the built environment. Architects deliver consultancy services that span the design, documentation and construction supervision of the built environment. This study sought to determine the extent to which these professionals can do this, with respect to the Seventh Millennium Development Goal, using mainly open-source tools. The study draws from literature reviews, end-user feedback or reports, interviews with developers of applicable open-source products, and statistics from a survey, launched in 2011, for capturing how architects use ICT in their businesses. Analysis of popular open-source technologies for the Architecture, Engineering and Construction (AEC) industry show a concentration of resources in favour of the later stages of the Architect's role, rather than the design and contract-drawing stages. Some of the better-implemented tools are either too cryptic for professionals who communicate in graphical terms, or heavily biased towards software engineering practices. The products that promise Building Information Modelling (BIM) capabilities are still at an early developmental stage. -
The Nexus Solutions Tool (NEST): an Open Platform for Optimizing Multi-Scale Energy-Water-Land System Transformations
https://doi.org/10.5194/gmd-2019-134 Preprint. Discussion started: 15 July 2019 c Author(s) 2019. CC BY 4.0 License. The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations Adriano Vinca1,2, Simon Parkinson1,2, Edward Byers1, Peter Burek1, Zarrar Khan3, Volker Krey1,4, Fabio A. Diuana5,1, Yaoping Wang1, Ansir Ilyas6, Alexandre C. Köberle7,5, Iain Staffell8, Stefan Pfenninger9, Abubakr Muhammad6, Andrew Rowe2, Roberto Schaeffer5, Narasimha D. Rao10,1, Yoshihide Wada1,11, Ned Djilali2, and Keywan Riahi1,12 1International Institute for Applied Systems Analysis, Austria 2Institute for Integrated Energy Systems, University of Victoria, Canada 3Joint Global Change Research Institute, Pacific Northwest National Laboratory, United States 4Dept. of Energy & Process Engineering, Norwegian University of Science and Technology, Norway 5Energy Planning Program, Federal University of Rio de Janeiro, Brazil 6Center for Water Informatics & Technology, Lahore University of Management Sciences, Pakistan 7Grantham Institute, Faculty of Natural Sciences, Imperial College London, United Kingdom 8Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, United Kingdom 9 Dept. of Environmental Systems Science, ETH Zurich, Switzerland 10School of Forestry and Environmental Studies, Yale University, United States 11Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands 12Institute for Thermal Engineering, TU Graz, Austria Correspondence: Adriano Vinca ([email protected]) Abstract. The energy-water-land nexus represents a critical leverage future policies must draw upon to reduce trade-offs be- tween sustainable development objectives. Yet, existing long-term planning tools do not provide the scope or level of integration across the nexus to unravel important development constraints. -
Galen D. Newman
GALEN D. NEWMAN Associate Professor, Department of Landscape Architecture and Urban Planning Texas A&M University, 3137 TAMU, Langford A, Office 304 College Station, TX 77843-3137 979-862-4320 (office) 979-862-1784 (fax) [email protected] (email) EDUCATION Doctor of Philosophy in Planning, Design, and the Built Environment, May 2010 College of Architecture, Arts and Humanities Clemson University – Clemson, SC Research Focus: Urbanization, Abandonment and Growth Management, Dissertation: An Exogenous Approach to Circumventing Demolition by Neglect: The Impact of Peripheral Agricultural Preservation on Historic Urbanized Boroughs Advisor: Mickey Lauria Master of Landscape Architecture, May 2006 College of Architecture, Design, and Construction Auburn University – Auburn, AL Concentration Area: Community Design/Human Settlement Master of Community Planning: Urban Design Track, May 2006 College of Architecture, Design, and Construction Auburn University – Auburn, AL Concentration Area: Urban Design and Regional Planning Bachelor of Science in Environmental Design, May 2003 College of Architecture, Design, and Construction Auburn University – Auburn, AL ACADEMIC Associate Professor, Department of Landscape Architecture and Urban Planning, APPOINTMENTS Texas A&M University, August, 2017-Present Associate Department Head, Department of Landscape Architecture and Urban Planning, Texas A&M University, August, 2017-Present Director, Center for Housing and Urban Development (CHUD). Texas A&M University, August, 2018-present Vice President for Research and Creative Scholarship, Council of Educators in Landscape Architecture (CELA), 2018-present Program Coordinator, Bachelor Landscape Architecture (BLA) Program. Department of Landscape Architecture and Urban Planning, Texas A&M University. Aug., 2019- present 1.5.2020 Page | 1 Nicole and Kevin Youngblood Professorship in Residential Land Development, College of Architecture, Texas A&M University.