Response to Request for Information for Commercial Space Transportation Services

Total Page:16

File Type:pdf, Size:1020Kb

Response to Request for Information for Commercial Space Transportation Services ATLS-07-10416 RESPONSE TO REQUEST FOR INFORMATION FOR COMMERCIAL SPACE TRANSPORTATION SERVICES September 2007 TABLE OF CONTENTS EXECUTIVE SUMMARY.......................................................................................................................................................1 OVERVIEW ............................................................................................................................................................................2 1. ISS REQUIREMENTS.................................................................................................................................................5 1.1 CARGO DELIVERY AND RETURN / DISPOSAL CAPABILITY .................................................................5 1.2 RENDEZVOUS, PROXIMITY OPERATIONS AND ON ORBIT ATTACHED OPERATIONS.....................5 1.3 LAUNCH AND ON ORBIT SUPPORT SERVICES ........................................................................................6 2. FUTURE PAYLOAD TO ORBIT REQUIREMENTS .................................................................................................9 3. SPECIFIC NASA-REQUESTED INFORMATION ...................................................................................................12 3.1 COMPANY INFORMATION...........................................................................................................................12 3.2 ISS CARGO / RE-SUPPLY TRANSPORATION SERVICES CAPABILITY...............................................14 3.3 SAFETY, PROGRAMMATIC, AND TECHNICAL RISK ..............................................................................15 3.4 ACQUISITION TERMS AND CONDITIONS .................................................................................................17 EXECUTIVE SUMMARY United Launch Alliance is pleased to provide this response to the Request for Information for Commercial Space Transportation Services. We are committed to work with NASA to ensure our nation’s ability to safely, reliably, and af- fordably service the ISS and deliver critical science payloads. Specifically, we recommend that: • NASA pursue an Acquisition Strategy that includes multi-year procurement of launch services. This will provide the most affordable launch solution for NASA while preserving competition for new entrants. A multi-year pro- curement would allow: - Firm launch service orders to establish a credible business case so private industry can invest and bid af- fordably. - Stability for the industrial base and more favorable pricing. - Flexibility to consider new service providers as they become certified. • NASA procure launch services separately from transfer vehicles and perform the end-to-end service integration in order to provide the best value, reliability, flexibility, insight and control to NASA. Separated Launch Services and Transfer Vehicle contracts will: - Provide NASA with the maximum manifest and integration flexibility between launch vehicles and transfer vehicles to optimize ISS operations. - Allow use of NASA’s proven LV Certification and Mission Assurance practices that have led to 100% launch vehicle success. - Allow use of proven contractual terms and conditions for commercial launch services. Unique terms and conditions for transfer vehicles should be developed independently. - Accommodate certification of emerging launch and transfer vehicle providers and the subsequent contrac- tual on-ramping of the new entrants. - Enable ISS Cargo missions to be combined together with other NASA launches (SMD, TDRS, GOES, etc) for maximum order-quantity discounting. - Maintain NASA expertise in end-to-end integration of ISS Cargo acquisition and delivery services and main- tains critical skills in the Shuttle to Orion transition gap. • NASA's current launch service policies regarding risk mitigation and insight have proven effective and should be retained: - Focus on proven vehicles, launch operations, and mission integration experience has resulted in 100% mis- sion success across all payload classes. - NASA-managed launch services currently exist that are compatible with all existing transfer vehicles (includ- ing ATV, HTV and Progress) as well as all conceptual transfer vehicles currently in design for expendable launch - Complementary systems engineering process and in-line participation of experienced NASA personnel in launch vehicle activities provides the highest level of insight and lowest risk Medium Class Intermediate – Heavy Class Delta II Delta IV Atlas V Delta IV Heavy Figure 1: United Launch Alliance provides flight-proven launch vehicles with demonstrated performance, reliability and schedule assurance 1 OVERVIEW United Launch Alliance (ULA) is pleased to respond to the Request for Information for Commercial Space Transpor- tation Services. This response continues ULA’s commitment to NASA to provide proven, flight certified launch ser- vices of unmatched reliability. ULA was created to provide reliable, cost-efficient spacecraft launch services for the United States Government. The 50 years of Atlas and Delta heritage embodied within ULA includes over 1,270 flights. ULA also represents a combined commercial investment in expendable launch vehicle design, test and development of over $5B within the last decade, along with a similar investment by the U.S. Government. This investment re- sulted in the proven, reliable and versatile families of Atlas and Delta expendable launch vehicles. ULA launch vehi- cles provide the Government and Commercial customers the widest range of configurations and accommodations matching virtually any size of payload to nearly all space deployment requirements. Although ULA is not in a position to provide the full range of capabilities needed to support the end to end ISS re- supply and cargo return service, it is a “Merchant Supplier” and is able to provide launch services directly to NASA or to other entities in support of NASA’s ISS mission. ULA SUPPORTS COMMERCIAL ISS CARGO TRANSPORTATION NEEDS The United States aerospace and launch industrial base has the capability to supply the International Space Station (ISS) following the retirement of the Space Shuttle in 2010. The transition of the ISS Cargo resupply services to the commercial sector is extremely beneficial for the U.S. space industry as it includes all the activities associated with ISS cargo missions including manifesting, packaging, integrating onto a Transfer Vehicle and launch operations. This will provide high technology, good paying jobs to US workers, further U.S. space innovation, and launch vehicle production and assembly. Therefore, ULA supports requirements for U.S. produced ULA offers wide range of proven capabilities launch vehicles that are launched from U.S. launch sites • Proven, technically qualified, low risk launch solutions to be incorporated into the COTS Phase 2 competitive • Established vendor offering schedule and manifest flexibility RFP. The use of domestic launch for ISS transportation • NASA certified Atlas and Delta launch vehicles services should be in accordance with current U.S. Space • 100% mission success for NASA launch services Transportation Policy and NASA ELV Policy Directives. • Flexible payload accommodations for launch service customers This will serve to sustain and maintain the U.S. launch • Extensive experience with a broad range of commercial and industrial base and enable further economics of scale and government contract arrangements cost savings for not only launch vehicle Prime contractors, • Classified as a U.S. Commercial launch provider but also for critical suppliers of the launch and aerospace • Compatible with existing and planned transfer vehicles industry. • ULA member companies have significant ISS expertise Figure 2: ULA Launch Vehicles offer a broad range of capabilities to meet NASA mission needs 2 The Commercial Space Launch Act provides the framework for NASA to procure commercial launch services. While honoring the basic agreements to the ISS partners to supply the already agreed-upon launches of ATV and HTV, further reliance on foreign launch providers is not needed. While a domestic capability for ISS Cargo end-to-end ser- vices does not currently exist, existing domestic launch capability does exist that can successfully integrate and de- liver any ISS Transfer Vehicle (domestic or foreign supplied) to perform the full range of ISS Cargo missions. ULA stands ready to offer three launch vehicles families (Delta II, Delta IV and Atlas V) that are not only available, but that have achieved NASA flight certification to perform this critical mission. ULA RECOMMENDS SOLUTIONS FOR FUTURE SPACE TRANSPORTATION NEEDS A Defined Business Case for Investment with Preservation of Competition There are significant economies of scale to be achieved through larger economic order quantities. ULA therefore suggests that the procurement approach for NASA future launch requirements should balance the need to preserve and protect competition with the aggregation of firm requirements so competitors are able to substantiate a solid business plan and deliver an affordably priced service. At a minimum, NASA should consider combining annual launch procurements for science and ISS support missions into a single buy for each provider while reserving a lim- ited set of missions for potential future competition to protect for the scenario that new launch vehicle suppliers emerge. The subset of missions can be assigned as Contract options and ordered in the case that no new suppliers
Recommended publications
  • Space Transportation Association Roundtable "An Engineering Assessment of the Way-Forward in Human Spaceflight” September 9, 2010 Rayburn Building
    Space Transportation Association Roundtable "An Engineering Assessment of the Way-Forward in Human Spaceflight” September 9, 2010 Rayburn Building Thank you, Rich, for the opportunity to get together on this important topic with this group. Please let me begin with a disclaimer. While I am the Executive Director of the American Institute of Aeronautics and Astronautics, by no means do I speak for the Institute. We have some 36,000 student and professional members – including all four of us on the panel. Our volunteer leadership establishes our policy positions, and to be candid, it is an extremely difficult process to get consensus on almost any subject. With a topic as filled with options and differing views as what we are talking about this morning, we consider our role to be to provide opportunities to debate issues and bring out technically sound perspectives rather than advocate positions. So, I’m afraid I will have to use the standard disclaimer that the views expressed are my own. 1 Over the past few years Mike and I have discussed various aspects of the space exploration portfolio. On some we have agreed, on some we have agreed to disagree. Mike will be on the AIAA election Ballot in a few months to run for the same position he had to resign when he was confirmed as Administrator of NASA – President‐Elect of AIAA. I think it is both a characteristic and strength of AIAA that the senior staff person and the person who was a month away from being my boss, and may be again, can engage in debate on issues and agree to disagree.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Using Energia (Arduino)
    Using Energia (Arduino) Introduction This chapter of the MSP430 workshop explores Energia, the Arduino port for the Texas Instruments Launchpad kits. After a quick definition and history of Arduino and Energia, we provide a quick introduction to Wiring – the language/library used by Arduino & Energia. Most of the learning comes from using the Launchpad board along with the Energia IDE to light LED’s, read switches and communicate with your PC via the serial connection. Learning Objectives, Requirements, Prereq’s Prerequisites & Objectives Prerequisites Basic knowledge of C language Basic understanding of using a C library and header files This chapter doesn’t explain clock, interrupt, and GPIO features in detail, this is left to the other chapters in the MSP430 workshop Requirements - Tools and Software Hardware Windows (XP, 7, 8) PC with available USB port MSP430F5529 Launchpad Software Already installed, if you Energia Download have installed CCSv5.x Launchpad drivers (Optional) MSP430ware / Driverlib Objectives Define ‘Arduino’ and describe what is was created for Define ‘Energia’ and explain what it is ‘forked’ from Install Energia, open and run included example sketches Use serial communication between the board & PC Add an external interrupt to an Energia sketch Modify CPU registers from an Energia sketch MSP430 Workshop - Using Energia (Arduino) 8 - 1 What is Arduino Chapter Topics Using Energia (Arduino) ............................................................................................................
    [Show full text]
  • International Partnerships and the Future of Space Exploration
    QwikConnect GLENAIR n APRIL 2015 n VOLUME 19 n NUMBER 2 SPACE GRADE NASA ESA, JAXA SCREENED SPECIAL FEATURE ESA/Glenair Interconnect Part Number Reference Guide International Partnerships and the Future of Space Exploration QwikConnect The United Launch Alliance Atlas V rocket with the Landsat Data Continuity Mission (LDCM) International Partnerships ULA Delta II lifts off carrying spacecraft onboard. NASA’s NPP spacecraft and The LDCM mission is a Ariane 5 launch of the XMM X-ray spectroscopy five small CubeSat research collaboration between mission. ESA’s Ariane 1 to 4 launched and the Future of Space Exploration satellites, including M-Cubed, NASA and the U.S. half of the world’s commercial and JPL’s COVE Earth science Geological Survey to satellites. The advanced technology experiment. monitor the Earth’s Ariane 5 is one of the It has now been some four years since the American Space Shuttle program Photo: NASA/ULA landscapes from space. most reliable and completed its final voyage. The four-person crew for the 135th and last mission of the Photo: NASA affordable launchers grand Reusable Launch Vehicle (RLV) program was the smallest of any shuttle mission in the world. since STS-6 in April 1983. But its primary cargo, a Multi-Purpose Logistics Module Photo: NASA (MPLM), was as important as any Atlantis (or any of the other four, low-earth orbiter shuttles) ever carried. Named “Raffaello”—after Raffaello Sanzio, an Italian painter and architect of the Renaissance—the MPLM was the second of three built by Thales International Launch Vehicle Programs Orbital Alenia to serve as “moving vans,” carrying equipment, experiments and supplies to Sciences The top line for expendable launch capabilities in North and from the International Space Station (ISS).
    [Show full text]
  • The Delta Launch Vehicle- Past, Present, and Future
    The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM The Delta Launch Vehicle- Past, Present, and Future J. K. Ganoung Manager Spacecraft Integration, McDonnell Douglas Astronautics Co. H. Eaton Delta Launch Program, McDonnell Douglas Astronautics Co. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ganoung, J. K. and Eaton, H., "The Delta Launch Vehicle- Past, Present, and Future" (1981). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-6/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE DELTA LAUNCH VEHICLE - PAST, PRESENT AND FUTURE J. K. Ganoung, Manager H. Eaton, Jr., Director Spacecraft Integration Delta Launch Program McDonnell Douglas Astronautics Co. McDonnell Douglas Astronautics Co. INTRODUCTION an "interim space launch vehicle." The THOR was to be modified for use as the first stage, the The Delta launch vehicle is a medium class Vanguard second stage propulsion system, was used expendable booster managed by the NASA Goddard as the Delta second stage and the Vanguard solid Space Flight Center and used by the U.S. rocket motor became Delta's third stage. Government, private industry and foreign coun­ Following the eighteen month development program tries to launch scientific, meteorological, and failure to launch its first payload into or­ applications and communications satellites.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Space Security Index
    SPACE SECURITY 2011 www.spacesecurity.org SPACE 2011SECURITY SPACESECURITY.ORG iii FOR PDF version use this Library and Archives Canada Cataloguing in Publications Data Space Security 2011 ISBN : 978-1-895722-87-1 ISBN : 978-1-895722-87-1 © 2011 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: The International Space Station is featured in this photograph taken by an STS-130 crew member on space shuttle Endeavour after the station and shuttle began their post-undocking relative separation on 19 February 2010. Image credit: NASA. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2011 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] Governance Group Gérard Brachet Institute de l’Air et de l’Espace Peter Hays Eisenhower Center for Space and Defense Studies Dr. Ram Jakhu Institute of Air and Space Law, McGill University William Marshall NASA – Ames Research Center Paul Meyer The Simons Foundation John Siebert Project Ploughshares Dana Smith Foreign A airs and International Trade Canada Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University Dr. Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 10 Acknowledgements PAGE 11 Executive Summary PAGE 27 Chapter 1 – The Space Environment: this indicator examines the security and sustainability of the space environment with an emphasis on space debris, the potential threats posed by near-Earth objects, and the allocation of scarce space resources.
    [Show full text]
  • Apollo Rocket Propulsion Development
    REMEMBERING THE GIANTS APOLLO ROCKET PROPULSION DEVELOPMENT Editors: Steven C. Fisher Shamim A. Rahman John C. Stennis Space Center The NASA History Series National Aeronautics and Space Administration NASA History Division Office of External Relations Washington, DC December 2009 NASA SP-2009-4545 Library of Congress Cataloging-in-Publication Data Remembering the Giants: Apollo Rocket Propulsion Development / editors, Steven C. Fisher, Shamim A. Rahman. p. cm. -- (The NASA history series) Papers from a lecture series held April 25, 2006 at the John C. Stennis Space Center. Includes bibliographical references. 1. Saturn Project (U.S.)--Congresses. 2. Saturn launch vehicles--Congresses. 3. Project Apollo (U.S.)--Congresses. 4. Rocketry--Research--United States--History--20th century-- Congresses. I. Fisher, Steven C., 1949- II. Rahman, Shamim A., 1963- TL781.5.S3R46 2009 629.47’52--dc22 2009054178 Table of Contents Foreword ...............................................................................................................................7 Acknowledgments .................................................................................................................9 Welcome Remarks Richard Gilbrech ..........................................................................................................11 Steve Fisher ...................................................................................................................13 Chapter One - Robert Biggs, Rocketdyne - F-1 Saturn V First Stage Engine .......................15
    [Show full text]
  • Access to the Outer Solar System
    Interstellar Probe Study Webinar Series Access to the Outer Solar System Presenters • Michael Paul • Program Manager, Interstellar Probe Study, Johns Hopkins APL • Robert Stough • Payload Utilization Manager for NASA’s SLS Rocket, NASA Marshall Space Flight Center 12:05 PM EDT Thursday, 9 July 2020 Interstellar Probe Study Website http://interstellarprobe.jhuapl.edu NOW: The Heliosphere and the Local Interstellar Medium Our Habitable Astrosphere Sol G2V Main Sequence Star 24 km/s Habitable Mira BZ Camelopardalis LL Orionis IRC+10216 Zeta Ophiuchi Interstellar Probe Study 9 July 2020 2 Voyager – The Accidental Interstellar Explorers Uncovering a New Regime of Space Physics Global Topology Cosmic Ray Shielding Unexpected Field Direction Force Balance Not Understood Required Hydrogen Wall Measured (Voyager) Interstellar Probe Study 9 July 2020 3 Opportunities Across Disciplines Modest Cross-Divisional Contributions with High Return Extra-Galactic Background Light Dwarf Planets and KBOs Early galaxy and star formation Solar system formation Today Arrokoth Big Bang Pluto 13.7 Gya First Stars & Galaxies Circum-Solar Dust Disk ~13Gya Imprint of solar system evolution Sol 4.6 Ga HL-Tau 1 Ma! Poppe+2019 Interstellar Probe Study 9 July 2020 4 Earth-Jupiter-Saturn Sequences • Point Solutions indicated per year (capped at C3 = 312.15km2/s2) C3 Speed Dest. 2037 2 2 Year Date (km /s ) CA_J (rJ) CA_S (rS) (AU/yr) (Lon, Lat) 2036 17 Sept 182.66 1.05 2.0 5.954 (247,0) 2038 2037 15 Oct 312.15 1.05 2.0 7.985 (230,0) 2038 14 Nov 312.15 1.05 2.0 7.563 (241,0.1) 2036 2039 2039 15 Nov 274.65 1.05 2.0 5.055 (256,0.3) Interstellar Probe Study 9 July 2020 5 SPACE LAUNCH SYSTEM INTERSTELLAR PROBE Robert Stough SLS Spacecraft/Payload Integration & Evolution (SPIE) July 9, 2020 0760 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft.
    [Show full text]
  • Re-Usable Launch and Payload Delivery System MDDP 2012/3
    Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 Re-usable Launch and Payload Delivery System MDDP Group 2 James Dobberson Robert Taylor Matthew Chapman Timothy West Mukudzei Muchengeti William Wou Group 2 Re-usable Launch and Payload Delivery System MDDP 2012/3 1. Contents 1. Contents ..................................................................................................................................... i 2. Executive Summary .................................................................................................................. ii 3. Introduction .............................................................................................................................. 1 4. Down Selection and Integration Methodology ......................................................................... 2 5. Presentation of System Concept and Operations ...................................................................... 5 6. System Investment Plan ......................................................................................................... 20 7. Numerical Analysis and Statement of Feasibility .................................................................. 23 8. Conclusions and Future Work ................................................................................................ 29 9. Launch Philosophy ................................................................................................................. 31 10. Propulsion ..............................................................................................................................
    [Show full text]
  • A Status Report Lockheed Launch Vehicle
    I A STATUS REPORT LOCKHEED LAUNCH VEHICLE I for the 7th ANNUAL AIM-UTAH STATE UNIVERSITY I CONFERENCE ON SMALL SATEWTES D.E. Davis, J.W. AngelP, A.J. MaeLaren2 I Lockheed Missiles & Spaee Co.,lne Abstract: This paper discusses a new collocated product development team family of small and medium space launch with the mandate to use our engineering, vehicles being developed by Lockheed manufacturing, and flight test I Missiles & Space Company, Inc. The experience, but - and an important but development program will culminate in - to be innovative in our approaches. a demonstration launch in November For example we elected to use, as much I 1994. The paper gives a brief as possible, existing hardware; to use background and gives the program status aluminum structure rather than as of the date of this paper. composites - although Lockheed builds Supporting graphics are included. much composite structure; and to I simplify the way we do business. Background: We have streamlined our Lockheed Missiles & Space Co, paperwork system. The product I Inc. has been studying small space development team has informal reviews launch vehicles since 1987. The - informal in the sense that their are no original approach then was to use dry-runs, and hand drawn graphics are I surplus or excess ballistic missile acceptable. The technical caliber of assets, primarily the 1st and 2nd stages the presentations is as professional as if from the Poseidon C-3 missile as the it were our traditional government basis, replacing the weapon system customer instead of just ourselves. I guidance and control with state of the art Rather than tell our prospective technology, and adding a 3rd stage with subcontractors how they should design a Star 48 solid rocket motor.
    [Show full text]
  • A Brazilian Space Launch System for the Small Satellite Market
    aerospace Article A Brazilian Space Launch System for the Small Satellite Market Pedro L. K. da Cás 1 , Carlos A. G. Veras 2,* , Olexiy Shynkarenko 1 and Rodrigo Leonardi 3 1 Chemical Propulsion Laboratory, University of Brasília, Brasília 70910-900, DF, Brazil; [email protected] (P.L.K.d.C.); [email protected] (O.S.) 2 Mechanical Engineering Department, University of Brasília, Brasília 70910-900, DF, Brazil 3 Directorate of Satellites, Applications and Development, Brazilian Space Agency, Brasília 70610-200, DF, Brazil; [email protected] * Correspondence: [email protected] Received: 8 July 2019; Accepted: 8 October 2019; Published: 12 November 2019 Abstract: At present, most small satellites are delivered as hosted payloads on large launch vehicles. Considering the current technological development, constellations of small satellites can provide a broad range of services operating at designated orbits. To achieve that, small satellite customers are seeking cost-effective launch services for dedicated missions. This paper deals with performance and cost assessments of a set of launch vehicle concepts based on a solid propellant rocket engine (S-50) under development by the Institute of Aeronautics and Space (Brazil) with support from the Brazilian Space Agency. Cost estimation analysis, based on the TRANSCOST model, was carried out taking into account the costs of launch system development, vehicle fabrication, direct and indirect operation cost. A cost-competitive expendable launch system was identified by using three S-50 solid rocket motors for the first stage, one S-50 engine for the second stage and a flight-proven cluster of pressure-fed liquid engines for the third stage.
    [Show full text]