The Origins of Birds

Total Page:16

File Type:pdf, Size:1020Kb

The Origins of Birds The Origins of Birds Introduction Have you ever really looked at a bird’s feet? Most birds have clawed toes and scales covering their feet. Birds also lay eggs in nests. These three traits are found in reptiles as well. However, birds have many other traits, such as feathers and warm-bloodedness, that are not found in modern reptiles. One of the most famous fossils ever found is Archaeopteryx, a small animal with clawed toes, scaly legs, teeth, and feathered wings. Archaeopteryx was found in rocks dating from the Jurassic Period, 150 million years ago. Many scientists classify Archaeopteryx as a bird. Other scientists point out that, if you took away the feathers, this fossil would look just like Deinonychus, a small theropod dinosaur. Scientists agree that Archaeopteryx was not able to fly, partly because it had a flat sternum (breastbone). Birds have a keeled sternum to which flight muscles are attached. Yet Archaeopteryx clearly had feathers. Was this fossil a dinosaur or a bird? This is only one of the many questions paleontologists struggle with when they study the evolution of birds. One of the first people to make a connection between dinosaurs and birds was Thomas Huxley, a contemporary of Charles Darwin in the 1800s. In 1916, a Danish doctor named Heilmann wrote a book, titled The Origin of Birds, in which he listed the similarities between the skeletons of theropod dinosaurs and those of modern birds. Later fossil discoveries made these similarities more striking. In the 1960s, an American named John Ostrom found 22 features in theropods and birds that could not be found in any other animal groups. However, new fossils of birds and birdlike dinosaurs are being discovered every year. Some of these fossils are changing perceptions of the origins of birds. Did birds evolve from theropods or another group of dinosaurs? Or did birds and dinosaurs evolve from a common ancestor much earlier in geologic time? Is Archaeopteryx the first bird? When did feathers evolve and how? Which came first, feathers or flight? These are some of the questions you will explore in this WebQuest. Task Your job in this WebQuest is to form an opinion as to the origins of birds. You will have to find out what evidence supports the theory that birds descended from theropod dinosaurs. You will have to identify the similarities among birds and other groups of animals. You will also learn about new fossils that provide additional information about the evolution of birds. You will prepare a table in which you compare and contrast several fossils that may, or may not, be links in the evolutionary history of birds. Finally, you will use the information from your Internet research and the questions you have answered to write a letter to the editor of a paleontology magazine. In your letter, you will present your opinion to the question: are birds really dinosaurs? Process Use the resources listed below to help you complete your research. Keep in mind that not all Web sites are written specifically for students. Some of what you read might be challenging. Look for information that will be useful in completing this WebQuest. Answer the following questions to help with your project. 1. What are some features of dinosaurs that have lead scientists to theorize that birds evolved from dinosaurs? 2. Why are bones often studied when trying to determine the origins of birds? 3. What are some differences between birds and dinosaurs? 4. If birds are not descendants of dinosaurs, what have scientists proposed they may have descended from? 5. Were all dinosaurs with feathers able to fly? Once you have answered the questions with information gathered from the Internet, you will prepare your letter to the editor answering the question: are birds really dinosaurs? Your goal is to convince the readers of the magazine to agree with you. Keep your audience in mind. The readers of the paleontology magazine are other paleontologists, so you will have to support your opinion with lots of scientific evidence. Resources Look at the Web sites given here to find the information that will enable you to make an informed decision about the origin of birds. Dinosaurs Grow Up http://www.sciencenewsforkids.org/articles/20031126/Feature1.asp The Origin and Early Evolution of Birds http://www.geologyrocks.co.uk/tutorials/origin_and_early_evolution_birds Origin and Evolution http://www.thewildclassroom.com/biodiversity/birds/aviantopics/originandevolution.html Archaeopteryx: An Early Bird http://www.ucmp.berkeley.edu/diapsids/birds/archaeopteryx.html Aves: Fossil Record http://www.ucmp.berkeley.edu/diapsids/birds/birdfr.html Are Birds Really Dinosaurs? http://www.ucmp.berkeley.edu/diapsids/avians.html Dinosaurs and Birds: The Story. http://www.abc.net.au/science/slab/dinobird/story.htm Fossils from China Link Birds with Dinosaurs http://www.nationalgeographic.com/society/ngo/events/98/dinosaurs/index.html Scientists: Fossils prove that birds evolved from dinosaurs. http://archives.cnn.com/2002/TECH/science/03/06/feathered.dinosaur/index.html Feathers, scutes and the origin of birds http://www.dinosauria.com/jdp/archie/scutes.htm Evaluation Read this rubric to determine how you will be scored in this WebQuest. Criteria Points 1 2 3 4 Task The task was It appears that The task was The task was not completed. some effort was completed as completed with made to assigned, but great attention complete the some of the to detail and task, but major information was thorough ideas are faulty. documentation. missing. Process The process The research All the steps of It is clear that was not was complete, the process much effort followed. but the table were followed went into the and letter could and the table project. The have been was good. table contains better several fossils organized. and facts. Letter Letter was not Letter was well Letter was well Letter was completed, or it researched but thought out and organized and appeared that lacked some included arguments little effort went key features arguments that were well into the project. needed for were clearly supported. It is accomplishing supported by evident that the task. research. much research went into the project. Conclusion In the process of completing this WebQuest, you’ve become informed about the evidence linking birds with dinosaurs and about new fossil discoveries that challenge the theory that birds evolved from theropods. You have developed critical thinking skills and you have explored the many different facts that relate to the question of the origins of birds. You have read information to complete a table about bird and birdlike fossils and formed an educated opinion as to the origins of birds. You also presented and supported your opinion with scientific evidence. .
Recommended publications
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Alan Feduccia's Riddle of the Feathered Dragons: What Reptiles
    Leigh Evolution: Education and Outreach 2014, 7:9 http://www.evolution-outreach.com/content/7/1/9 BOOK REVIEW Open Access Alan Feduccia’s Riddle of the Feathered Dragons: what reptiles gave rise to birds? Egbert Giles Leigh Jr Riddle of the Feathered Dragons: Hidden Birds of China, properly. This is a great pity, for his story is wonderful: by Alan Feduccia. New Haven, CT: Yale University Press, his birds would have made a far better focus for this 2012. Pp. x + 358. H/b $55.00 book than the dispute. This book’s author is at home in the paleontology, So, what is this dispute that spoiled the book? The anatomy, physiology, and behavior of birds. Who could scientific argument is easily summarized. It started be more qualified to write on their origin and evolution? when a paleontologist from Yale University, John Ostrom, This book is unusually, indeed wonderfully, well and unearthed a 75-kg bipedal theropod dinosaur, Deinonychus, clearly illustrated: its producers cannot be praised too buried 110 million years ago in Montana. Deinonychus highly. It is well worth the while of anyone interested in stood a meter tall, and its tail was 1.5 m long. It was active: bird evolution to read it. Although it offers no answers Ostrom thought that both it and Archaeopteryx,which to ‘where birds came from’, it has God’s plenty of fascin- lived 40 million years earlier, were warm-blooded. Deinony- ating, revealing detail, knit together in powerful criticism chus bore many skeletal resemblances to Archaeopteryx, of prevailing views of bird evolution.
    [Show full text]
  • ORIGIN and EVOLUTION of BIRDS Dr. Ramesh Pathak B.Sc. (Hons.) –II
    ORIGIN AND EVOLUTION OF BIRDS Dr. Ramesh Pathak B.Sc. (hons.) –II Prof. Parker has shown a number of peculiarities between birds and repiles,so,he said “birds are transformed and glorified reptiles”. Huxley has established a very close relationship by saying birds are “feathered reptiles”. THEORIES OF ORIGIN OF BIRDS A. Cursorial theory : This theory was championed by Baron Nopsa who maintained that the birds evolved from cursorial bipedal dinosaurs. In attempt to move faster during running to pull themselves a bit faster they moved and beat their arms. In such condition, due to continuous use of arms as propellers brought constant increase in the length and breadth of scales present on them. As the scales lengthened ,the pressure against the air caused their edges frayed leading to scales changing into feathers. But this theory was rejected because scales and feathers are fundamentally different structures arising from different layers of skin. B.Tetrapteryx theory :It was proposed by Beebe and Gregorg. According to this theory the ancestors of birds were arboreal reptiles who used to jump from branch to branch and in doing so the scales were transformed into feathers by fraying of the edges. After developing feathers on all the four limbs (Tetrapteryx stage), they used only the anterior wings and the unused posterior wings were lost. This theory was also discarded because there is no evidence that birds had ever four wings. C. Gliding thery : It is based on the idea of Beebe and Georg.It was proposed by Heilmann but does not recognize the tetrapteryx stage.
    [Show full text]
  • Print BB May 2005
    Weather and bird migration Norman Elkins Richard Johnson ABSTRACT Bird migration in and through Britain and Ireland shows great variation, both seasonally and annually. Much depends on atmospheric conditions, which can equally hinder and assist migration, both on a broad scale (the distribution, extent, intensity and movement of pressure patterns), and at a local level (temporal and spatial changes in wind, visibility, cloud and precipitation).All the parameters of bird migration, including timing, routes, speed and duration of migration, are affected, and modified, by a number of meteorological factors, probably the most influential being wind speed and direction.This paper reviews the influence that weather has on bird migration in Britain and Ireland, and discusses examples of the major types of migration. A number of unusual or exceptional migration events are discussed and illustrated with appropriate weather charts. Introduction long-distance expeditions traversing half the Migration is one topic that never fails to appeal planet, such as those by Arctic Terns Sterna par- to the whole spectrum of those with an interest adisaea and Barn Swallows Hirundo rustica,to in birds, from the inveterate ‘twitcher’ to the local movements in response to the temporary general public. Bird migration, defined simply freezing of freshwater bodies. Differences in as regular movements from one area to another, migration strategy and behaviour result in generally occurs in response to the availability some species undertaking nocturnal migration, of food resources and encompasses an enor- while others move mainly during daylight mous variety of methods. These range from hours. These differences operate not only 238 © British Birds 98 • May 2005 • 238-256 126.
    [Show full text]
  • Feathered Dinosaurs and the Origin of Flight
    Feathered Dinosaurs and the Origin of Flight Exhibition Organized and Circulated by: The Dinosaur Museum, Utah The Fossil Administration Office, Liaoning, China Beipiao City Paleontological Research Center, Liaoning, China THE PREHISTORIC WORLD OF LIAONING The fossils of Liaoning represent a complex ecosystem creating a more complete picture of this particular age of dinosaurs than ever before. Life of the Early Cretaceous, 120 million years ago, was far more than a world of dinosaurs. The fossils include a remarkable variety of plants, crustaceans, insects, fish, amphibians, lizards, crocodiles, aquatic reptiles, flying reptiles, as well as birds that could fly and others which were flightless. FEATHERS BEFORE BIRDS Included are graphics and photos which show developmental stages of feathers. The fossil of the flying reptile, Pterorhynchus is preserved with details of what pterosaurs looked like which have never been seen before. The body is covered with down-like feathers which resemble those also found on the dinosaur, Sinosauropteryx. Because feathers are now known to exist on animals other than birds, this discovery changes the definition of what a bird is. Pterorhynchus Sinosauropteryx FLYING DROMAEOSAURS AND THE MISTAKEN IDENTITY Dromaeosaurs have been thought to be ground-dwelling dinosaurs that represented ancestral stages of how birds evolved. Fossils in this exhibit show that they have been misinterpreted as dinosaurs when they are actually birds. Feather impressions reveal that they had flight feathers on the wings and a second set on the hind legs. Even without the feathers preserved, the avian characteristics of the skeleton demonstrate that these dromaeosaurs are birds. This discovery means that the larger dromaeosaurs, like Deinonychus and Velociraptor of “Jurassic Park” fame, were really feathered and are secondarily flightless birds.
    [Show full text]
  • Cranial Osteology of Beipiaosaurus Inexpectus
    第57卷 第2期 古 脊 椎 动 物 学 报 pp. 117–132 figs. 1–3 2019年4月 VERTEBRATA PALASIATICA DOI: 10.19615/j.cnki.1000-3118.190115 Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria) LIAO Chun-Chi1,2,3 XU Xing1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 University of Chinese Academy of Sciences Beijing 100049) Abstract Beipiaosaurus inexpectus, a key taxon for understanding the early evolution of therizinosaurians, has not been fully described since it was briefly reported on by Xu, Tang and Wang in 1999. Here we present a detailed description of the cranial anatomy of the holotype of this theropod dinosaur. B. inexpectus is unique in some of its cranial features such as the postorbital process of the frontal is large and its abrupt transition from the orbital rim, a long and sharp anterior process of the parietal, the elongate ventral ramus of the squamosal process of parietal, and external mandibular fenestra deep dorsoventrally and extremely posteriorly located. A number of plesiomorphic cranial features (such as relatively large dentary and less downturned degree of dentary symphysis) suggest that B. inexpectus is an early-branching Therizinosaurian, as proposed by previous studies. New information derived from our study is not only important for our understanding of the cranial anatomy of B. inexpectus but also significant to the study of the evolution of Therizinosauria.
    [Show full text]
  • Paravian Phylogeny and the Dinosaur-Bird Transition: an Overview
    feart-06-00252 February 11, 2019 Time: 17:42 # 1 REVIEW published: 12 February 2019 doi: 10.3389/feart.2018.00252 Paravian Phylogeny and the Dinosaur-Bird Transition: An Overview Federico L. Agnolin1,2,3*, Matias J. Motta1,3, Federico Brissón Egli1,3, Gastón Lo Coco1,3 and Fernando E. Novas1,3 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina, 2 Fundación de Historia Natural Félix de Azara, Universidad Maimónides, Buenos Aires, Argentina, 3 Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Recent years witnessed the discovery of a great diversity of early birds as well as closely related non-avian theropods, which modified previous conceptions about the origin of birds and their flight. We here present a review of the taxonomic composition and main anatomical characteristics of those theropod families closely related with early birds, with the aim of analyzing and discussing the main competing hypotheses pertaining to avian origins. We reject the postulated troodontid affinities of anchiornithines, and the Edited by: dromaeosaurid affinities of microraptorians and unenlagiids, and instead place these Corwin Sullivan, University of Alberta, Canada groups as successive sister taxa to Avialae. Aiming to evaluate previous phylogenetic Reviewed by: analyses, we recoded unenlagiids in the traditional TWiG data matrix, which resulted Thomas Alexander Dececchi, in a large polytomy at the base of Pennaraptora. This indicates that the TWiG University of Pittsburgh, United States phylogenetic scheme needs a deep revision. Regarding character evolution, we found Spencer G. Lucas, New Mexico Museum of Natural that: (1) the presence of an ossified sternum goes hand in hand with that of ossified History & Science, United States uncinate processes; (2) the presence of foldable forelimbs in basal archosaurs indicates *Correspondence: widespread distribution of this trait among reptiles, contradicting previous proposals Federico L.
    [Show full text]
  • The Origin of Birds
    The Origin of Birds Birds have many unusual synapomorphies among modern animals: [ Synapomorphies (shared derived characters), representing new specializations evolved in the most recent common ancestor of the ingroup] • Feathers • Warm-blooded (also in mammals) • Specialized lungs & air-sacs • Hollow bones • Toothless beaks • Large brain Technical name for birds is Aves, and “avian” means “of or concerning birds”. • Cervicals very different from dorsals, allowing neck to fold into “S”-shape • Backwards-pointing pubis • Synsacrum (sacrum fused to pelves; pelvic bones • Fibula reduced to proximal splint fused together) • Astragalus & calcaneum fused to tibia • Proximal caudals very mobile • Hinge-like ankle joint • Pygostyle (distal caudals all fused together) • Furcula - (the wishbone) • Tarsometatarsus (distal tarsals fused to • Forelimb very long, has become wing metatarsals; all metatarsals fused together) • Carpometacarpus (semilunate carpal block fused • Main pedal digits II-IV to metacarpals; all metacarpals fused together) • Pedal digit I reversed, placed at bottom of • Three fingers, but digits all reduced so no unguals tarsometatarsus 1 Compare modern birds to their closest relatives, crocodilians • Difficult to find relatives using only modern animals (turtles have modified necks and toothless beaks, but otherwise very • different; bats fly and are warm-blooded, but are clearly mammals; etc.) • With discovery of fossils, other potential relations: pterosaurs had big brains, “S”- shaped neck, hinge-like foot, but wings are VERY different. • In 1859, Darwin published the Origin; some used birds as a counter-example against evolution, as there were apparently known transitional forms between birds and other vertebrates. In 1860, a feather (identical to modern birds' feathers) was found in the Solnhofen Lithographic Limestone of Bavaria, Germany: a Late Jurassic formation.
    [Show full text]
  • On the Origin and Evolution of Nest Building by Passerine Birds’
    T H E C 0 N D 0 R r : : ,‘ “; i‘ . .. \ :i A JOURNAL OF AVIAN BIOLOGY ,I : Volume 99 Number 2 ’ I _ pg$$ij ,- The Condor 99~253-270 D The Cooper Ornithological Society 1997 ON THE ORIGIN AND EVOLUTION OF NEST BUILDING BY PASSERINE BIRDS’ NICHOLAS E. COLLIAS Departmentof Biology, Universityof California, Los Angeles, CA 90024-1606 Abstract. The object of this review is to relate nest-buildingbehavior to the origin and early evolution of passerinebirds (Order Passeriformes).I present evidence for the hypoth- esis that the combinationof small body size and the ability to place a constructednest where the bird chooses,helped make possiblea vast amountof adaptiveradiation. A great diversity of potential habitats especially accessibleto small birds was created in the late Tertiary by global climatic changes and by the continuing great evolutionary expansion of flowering plants and insects.Cavity or hole nests(in ground or tree), open-cupnests (outside of holes), and domed nests (with a constructedroof) were all present very early in evolution of the Passeriformes,as indicated by the presenceof all three of these basic nest types among the most primitive families of living passerinebirds. Secondary specializationsof these basic nest types are illustratedin the largest and most successfulfamilies of suboscinebirds. Nest site and nest form and structureoften help characterizethe genus, as is exemplified in the suboscinesby the ovenbirds(Furnariidae), a large family that builds among the most diverse nests of any family of birds. The domed nest is much more common among passerinesthan in non-passerines,and it is especially frequent among the very smallestpasserine birds the world over.
    [Show full text]
  • Raptors in Action 1 Suggested Pre-Visit Activities
    PROGRAM OVERVIEW TOPIC: Small theropods commonly known as “raptors.” THEME: Explore the adaptations that made raptors unique and successful, like claws, intelligence, vision, speed, and hollow bones. PROGRAM DESCRIPTION: Razor-sharp teeth and sickle-like claws are just a few of the characteristics that have made raptors famous. Working in groups, students will build a working model of a raptor leg and then bring it to life while competing in a relay race that simulates the hunting techniques of these carnivorous animals. AUDIENCE: Grades 3–6 CURRICULUM CONNECTIONS: Grade 3 Science: Building with a Variety of Materials Grade 3–6 Math: Patterns and Relations Grade 4 Science: Building Devices and Vehicles that Move Grade 6 Science: Evidence and Investigation PROGRAM ObJECTIVES: 1. Students will understand the adaptations that contributed to the success of small theropods. 2. Students will explore the function of the muscles used in vertebrate movement and the mechanics of how a raptor leg works. 3. Students will understand the function of the raptorial claw. 4. Students will discover connections between small theropod dinosaurs and birds. SUGGESTED PRE-VISIT ACTIVITIES UNDERstANDING CLADIstICS Animals and plants are often referred to as part of a family or group. For example, the dog is part of the canine family (along with wolves, coyotes, foxes, etc.). Scientists group living things together based on relationships to gain insight into where they came from. This helps us identify common ancestors of different organisms. This method of grouping is called “cladistics.” Cladistics is a system that uses branches like a family tree to show how organisms are related to one another.
    [Show full text]
  • Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
    J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These.
    [Show full text]