Age/Stage Aalenian 107–113 Aeronian 57–62 Albian 117–125

Total Page:16

File Type:pdf, Size:1020Kb

Age/Stage Aalenian 107–113 Aeronian 57–62 Albian 117–125 Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information Index Age/Stage Capitanian 85–91 Aalenian 107–113 Carnian 7, 95–103 Aeronian 57–62 Cenomanian 117–125 Albian 117–125 Changhsingian 85–91 Anisian 7, 95–103 Chattian 129–133, 134 Aptian 117–125 Coniacian 7, 117–125 Aquitanian 139–145 Danian 129–133, 134 Artinskian 85–91 Dapingian 47–54 Asselian 85–91 Darriwilian 47–54 Bajocian 107–113 Drumian 7, 37–41, 42, 44 Barremian 117–125 Eifelian 65–71 Bartonian 129–133, 134 Emsian 65–71 Bashkirian 73–80, 81 Famennian 65–71 Bathonian 107–113 Floian 47–54 Berriasian 117–125 Fortunian 37–41, 42, 44 Burdigalian 139–145 Frasnian 65–71 Calabrian 144, 149–156 Gelasian 139–145, 149–156 Callovian 107–113 Givetian 65–71 Cambrian Stage/Age 2 7, 39, 42, 44 Gorstian 57–62 Cambrian Stage/Age 3 7, 39, 42, 44 Guzhangian 7, 37–41, 42, 44 Cambrian Stage/Age 4 7, 39, 42, 44 Gzhelian 7, 73–80, 81 Cambrian Stage/Age 5 7, 39, 42, 44 Hauterivian 7, 117–125 Cambrian Stage/Age 9 7, 39, 42, 44 Hettangian 107–113 Cambrian Stage/Age 10 7, 39, 42, 44 Hirnantian 47–54 Campanian 117–125 Homerian 57–62 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information Index 171 Induan 95–103 Tithonian 107–113 Ionian (Middle Pleistocene) 144, 149–156 Toarcian 107–113 Kasimovian 7, 73–80, 81 Tortonian 139–145 Katian 47–54 Tournaisian 73–80, 81 Kimmeridgian 7, 107–113 Tremadocian 47–54 Kungurian 85–91 Turonian 117–125 Ladinian 95–103 Valanginian 117–125 Langhian 139–145 Visean 73–80, 81 Late Pleistocene (Tarantian) 144, 149–156 Wordian 85–91 Lochkovian 65–71 Wuchiapingian 85–91 Ludfordian 57–62 Ypresian 129–133, 134 Lutetian 129–133, 134 Zanclean 139–145 Maastrichtian 117–125 Anoxic episodes Messinian 139–145 Cretaceous 120, 122 Middle Pleistocene (Ionian) 144, 149–156 Devonian 68, 69 Moscovian 73–80, 81 Astronomical tuning (Neogene) 5, 143–145, 156 Norian 95–103 Olenekian 7, 95–103 Biostratigraphy Oxfordian 107–113 Ammonoids 67, 68, 75–77, 78, 88, 90, 96–98, 100, Paibian 7, 37–41, 42, 44 110, 112, 118, 122 Piacenzian 139–145, 154, 155 Archaeocyaths 40, 42 Pliensbachian 107–113 Belemnoids 118 Pragian 65–71 Bivalves 96–98, 118 Priabonian 129–133, 134 Calcareous Nannofossils 110, 112, 118, 122, Rhaetian 97, 100 131–132, 134, 141, 144 Rhuddanian 57–62 Calpionellids 118, 122 Roadian 85–91 Chitinozoa 50, 52, 61 Rupelian 129–133, 134 Conodonts 47, 50, 52, 61, 67, 68, 75–77, 78, 88, Sakmarian 85–91 90, 96–98, 100 Sandbian 47–54 Dinoflagellates 112, 118, 131–132, 141 Santonian 117–125 Dinosaurs 96–98, 112, 118 Selandian 7, 129–133, 134 Foraminifers 75–77, 78, 118, 122, 131–132, 134, Serpukhovian 7, 73–80, 81 141, 144 Serravallian 7, 139–145 Fusulinids 75–77, 88, 90 Sheinwoodian 57–62 Graptolites 47, 50, 52, 60, 61 Sinemurian 107–113 Land plants 60, 67, 75–77, 80 Tarantian (Late Pleistocene) 144, 149–156 Mammals 118, 131–132, 134, 141, Telychian 57–62 144, 153–156 Thanetian 129–133, 134 Ostracods 68 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information 172 Index Biostratigraphy (cont.) Llandovery 57–62 Pollen-spores 61, 75–77, 96–98, Lopingian 85–91 153–156 Ludlow 57–62 Radiolarians 112, 118, 131–132, 141 Middle Devonian 65–71 Small Shelly Fossils 38, 40, 42 Middle Jurassic 107–113 Trilobites 40, 42, 52 Middle Mississippian 73–80, 81 Middle Ordovician 47–54 Cycle stratigraphy 5 Middle Pennsylvanian 73–80, 81 Carboniferous 74–75, 78 Middle Triassic 95–103 Cretaceous 120–121 Miocene 139–145 Neogene 143–145 Oligocene 129–133, 134 Paleogene 132 Paleocene 129–133, 134 Triassic 98 Pleistocene 139–145, 149–156 Pliocene 139–145, 154, 155 Eon Pridoli 57–62 Archean 24, 26 Terreneuvian 37–41, 42, 44 Proterozoic 24, 26 Wenlock 57–62 Epoch Era Cambrian Epoch/Series 2 40, 42, 44 Cenozoic 129–133 Cambrian Epoch/Series 3 40, 42, 44 Eoarchean 25, 27–28 Cisuralian 85–91 Hadean 25, 26–27 Early Cretaceous 117–125 Mesoarchean 25 Early Devonian 65–71 Mesoproterozoic 25 Early Jurassic 107–113 Neoarchean 25 Early Mississippian 73–80, 81 Neoproterozoic 25 Early Ordovician 47–54 Paleoarchean 25 Early Pennsylvanian 73–80, 81 Paleoproterozoic 25 Early Triassic 95–103 Eocene 129–133, 134 Geon Concept 30 Furongian 37–41, 42, 44 Glacial intervals Guadalupian 85–91 Carboniferous 74–75 Holocene 7, 139–145, 149–156 Ordovician 50–52 Late Cretaceous 117–125 Global Boundary Stratotype Section and Point Late Devonian 65–71 (GSSP) 2–4, 32, 39, 49, 59, 65, 67, 87, Late Jurassic 107–113 97, 109, 119, 131, Late Mississippian 73–80, 81 142, 150 Late Ordovician 47–54 Late Pennsylvanian 73–80, 81 Impact event - end-Cretaceous 130 Late Triassic 95–103 International Commission on Stratigraphy 1, 2 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information Index 173 Lunar (Moon) stratigraphy 14–16 Devonian 65–71 Copernican Period 13, 14–16 Ectasian 25, 26 Eratosthenian Period 13, 14–16 Ediacaran 7, 25, 26, 31, 32, 33 Imbrian Period 13, 14–16 Jurassic 107–113 Nectarian Period 13, 14–16 Neogene 139–145 pre-Nectarian period 13, 14–16 Ordovician 47–54 Orosirian 25, 26 Magnetic stratigraphy Paleogene 129–133, 134 Carboniferous 78 Permian 85–91 Cretaceous 118–120, 122 Quaternary 149–156 Jurassic 110, 112 Rhyacian 25, 26 Neogene 141, 144 Siderian 25, 26 Paleogene 132, 134 Silurian 57–62 Permian 88, 90 Statherian 25, 26 Quaternary 153–156 Stenian 25, 26 Triassic 98, 100 Tonian 25, 26 Mars stratigraphy 13, 16–20 Triassic 95–103 Amazonian Period 13, 16–20 Precambrian 23 Hesperian Period 13, 16–20 Noachian Period 13, 16–20 Radioisotopic dating 5, 8, 90, 99–103, 121–125, pre-Noachian period 13, 16–20 132–133, 156 Mass extinction – Ordovician 50–52 Cretaceous 121–125 Mercury stratigraphy 13, 20 Paleogene 132–133 Calorian Period 13, 20 Permian 90 Kuiperian Period 13, 20 Quaternary 156 Mansurian Period 13, 20 Triassic 99–103 pre-Tolstojan period 13, 20 Regional Subdivisions Tolstojan Period 13, 20 Abereiddian 53 Agdzian 44 Orbital-climate (Milankovitch) cycles Aikuanian 81 5, 74–75, 98, 120–121, 132, Aleksinian 81 143–145 Alportian 81 Amgan 44 Period Arcadian 44 Calymmian 25, 26 Arenig 53 Cambrian 37–41, 42, 44 Arnsbergian 81 Carboniferous 73–80, 81 Arundian 81 Cretaceous 117–125 Asbian 81 Cryogenian 25, 26, 31–32 Aseri 53 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information 174 Index Regional Subdivisions (cont.) Cincinnatian 53 Ashgill 53 Cordubian 44 Asturian 81 Courceyan 81 Atdabanian 44 Dalaan 81 Atokan 81 Daldynian 44 Aurelucian 53 Darriwilian 53 Autunian 81, 91 Darriwillian 53 Banian 44 Datsonian 44, 53 Barruelian 81 Dawanian 53 Bendigonian 53 Delmaran 44 Biarmian 91 Desmoinesian 81 Bilingen 53 Dewuan 81 Blackhillsian 53 Dinantian 81 Bobrikian 81 Dorashamian 91 Bolindian 53 Dorogomilovian 81 Bolorian 91 Duckmantian 81 Bolsovian 81 Duyunian 44 Boomerangian 44 Dyeran 44 Botomian 44 Dzhulfian 91 Branchian 44 Eastonian 53 Brigantian 81 Edenian 53 Burrellian 53 Feixianguanian 91 Caesaraugustian 44 Fennian 53 Cantabrian 81 Gamachian 53 Caradoc 53 Gelaohea 81 Castlemainian 53 Gisbornian 53 Cathedralian 91 Gorbiyachinian 44 Cautleyan 53 Gumerovian 81 Chadian 81 Guzhangian 44 Chatauquan 81 Haljala 53 Chatfieldian 53 Harju 53 Cheneyan 53 Hastarian 81 Cheremshankian 81 Hessian 91 Cherepetian 81 Hirnantian 53 Chesterian 81 Holkerian 81 Chewtonian 53 Huashibanian 81 Chientangkiangian 53 Hunneberg 53 Chokierian 81 Ibexian 53 Chuanshanian 91 Ichangian 53 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G. Ogg, Gabi Ogg and Felix M. Gradstein Index More information Index 175 Idamean 44 Malevkian 81 Issendalian 44 Mapingian 81, 91 Iverian 44 Marjuman 44 Ivorian 81 Marsdenian 81 Jinningian 44 Mayan 44 Jiusian 81 Maysvillian 53 Juuru 53 Medinan 53 Karakubian 81 Meishuchuan 44 Kashirian 81 Melekessian 81 Kazanian 91 Melekhovian 81 Keila 53 Meramecian 81 Keiloran 53 Merionethian 44 Khamovnikian 81 Midian 91 Khantaian 44 Migneintian 53 Kinderhookian 81 Mikhailovian 81 Kinderscoutian 81 Mindyallan 44 Kizelian 81 Missourian 81 Kosvian 81 Mohawkian 53 Krasnopolyanian 81 Moliniacian 81 Krevyakinian 81 Montezuman 44 Kubergandian 91 Moridunian 53 Kuhfengian 91 Morrowan 81 Kukruse 53 Murgabain 91 Kulyumbean 44 Myachkovian 81 Kunda 53 Nabala 53 Laibinian 91 Namurian 81 Lancefieldian 53 Nangaoan 44 Langsettian 81 Nealian 91 Languedocian 44 Neichianshanian 53 Lasnamagi 53 Nemakit 44 Lengwuan 91 Niuchehean 44 Lenoxian 91 Noginskian 81 Leonardian 91 Oandu 53 Livian 81 Ochoan 91 Llandeilian 53 Oeland 53 Llanvirn 53 Ordian 44 Longlinian 91 Orenburgian 81, 91 Lousuan 81 Osagean 81 Luodianian 91 Paibian (Waergangian) 44 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89849-2 - The Concise: Geologic Time Scale James G.
Recommended publications
  • Lunar Impact Crater Identification and Age Estimation with Chang’E
    ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Exploring the Bombardment History of the Moon
    EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique.
    [Show full text]
  • New Permian Fauna from Tropical Gondwana
    ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2019/05
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2019/05 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.773 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Cenozoic Chattian Mesozoic Ludlow 27.82 Gorstian
    [Show full text]
  • Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition
    Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • 405 01.Ps, Page 1-22 @ Normalize ( 405 01.Qxd )
    Geological Society of America Special Paper 405 2006 The record of impact processes on the early Earth: A review of the first 2.5 billion years Christian Koeberl† Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ABSTRACT Collisions and impact processes have been important throughout the history of the solar system, including that of the Earth. Small bodies in the early solar system, the planetesimals, grew through collisions, ultimately forming the planets. The Earth started growing ca. 4.56 Ga in this way. Its early history was dominated by violent impacts and collisions, of which we only have circumstantial evidence. The Earth was still growing and had reached ~70%–80% of its present mass when at ca. 4.5 Ga a Mars- sized protoplanet collided with Earth, leading to the formation of the moon—at least according to the currently most popular hypothesis of lunar origin. After its forma- tion, the moon was subjected to intense post-accretionary bombardment between ca. 4.5 and 3.9 Ga. In addition, there is convincing evidence that the Moon experienced an interval of intense bombardment with a maximum at ca. 3.85 ± 0.05 Ga; subsequent mare plains as old as 3.7 or 3.8 Ga are preserved. It is evident that if a late heavy bom- bardment occurred on the Moon, the Earth must have been subjected to an impact flux at least as intense as that recorded on the Moon. The consequences for the Earth must have been devastating, although the exact consequences are the subject of debate (total remelting of the crust versus minimal effects on possibly emerging life forms).
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]