Triboelectric Effects on Polyethylene Methane Drainage Pipelines

Total Page:16

File Type:pdf, Size:1020Kb

Triboelectric Effects on Polyethylene Methane Drainage Pipelines Bureau of Mines Report of Investigations/l986 Tri boelectric Effects on Polyethylene Methane Drainage Pipelines By A. A. Campoli, J. Cervik, and R. L. King UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9017 Tri boelectric Effects on Polyethylene Methane Drainage Pipelines By A. A. Campoli, J. Cervik, and R. L. King UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES Robert C. Horton, Director Library of Congress Cataloging in Publication Data: Campoli, A, A, (Alan A,) Triboelectric effects on polyethylene methane drainage pipelines. (Report of investigations ; 9017) Bibliography: p. 13- 14. Supt. of Docs. no.: 1 28.21: 9017. 1. Coalbed methane drainage. 2. Gas-Pipe lines. 3. Polyethy- lene. 4. Mine dusts. 5. Electric charge. 1. Lervik, Joseph. 11. King, Roger I*. 111. Title. IV. Series: Keport of investigations (United States. Bureau of Mines) ; 9017. TN23,U43 [TN844,5] 622s [622'.334] 86-600003 j h CONTENTS Acknowledgments ................................................................ Static electricity and gas-piping system ...................................... Laboratory equipment ........................................................... Electrostatic test procedures .................................................. ~aborator~results ............................................................. ~ieldtests .................................................................... summary and conclusions ........................................................ ILLUSTRATIONS Pitot tube being used to measure gas-stream velocity ...................... Relative humidity and temperature being measured with psychrometers ....... Humidity chamber .......................................................... Rock-dust chamber ......................................................... Multirange electrostatic voltmeter ........................................ General configuration of probe ............................................ Averaging data for three electrostatic tests.............................. Model of capacitance of measurement system ................................ Comparison of pipe data................................................... Effect of velocity variation.............................................. Effect of exposure-time variation......................................... Effect of dust-size variation............................................. Comparison of Pittsburgh and Coalburg Coalbeds ............................ Configuration for elbow test.............................................. Results of elbow test..................................................... Effect of humidity variations ............................................. Results of grounding evaluation........................................... Results of rock-dusting test .............................................. Real-time aerosol monitor ................................................. Single-range electrostatic voltmeter ...................................... TABLES Effect of wall thickness on reduction of internal charge using wet-rag technique ................................................................ Coal analysis ............................................................. Particle-size distribution of Pittsburgh Coalbed samples .................. Rock dust analysis ........................................................ Dust contamination data for methane drainage pipelines .................... Results of real-time evaluation of methane drainage pipelines ............. UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT centimeter lb pound weight degree Celsius lbf/in2 pound force per square inch angular degree m meter degree Fahrenheit Pm micrometer foot mg/m3 milligram per cubic meter foot per minute min minute cubic foot per day mL milliliter cubic foot per minute mm millimeter gram MMF t mill-ion cubic feet gram per minute PlFlft3/d million cubic feet per day horsepower m3 cubic meter inch m3/s cubic meter per second kilogram PCt percent kilo\.olt rad radian kilopascal v volt kilowatt I TRIBOELECTRIC EFFECTS ON POLYETHYLENE METHANE DRAINAGE PIPELINES I By A. A. Campoli,' J. ~ervik,~and R. L. in^^ ABSTRACT The Bureau of Mines performed laboratory experiments to evaluate the triboelectric effect of particulate-laden gas streams on polyethylene pipe at various velocity, humidity, dust-size, and dust-load conditions. Charges in excess of 10 kV were produced on the outside and inside surfaces of laboratory pipe samples, when exposed to 40 pct relative hu- midity (RH) gas stream containing coal dust. However, no charges were produced in laboratory tests that duplicated the over 75 pct RH and dust-free gas streams found in working underground pipelines. Bare cop- per wire, which is wound around the polyethylene pipe in a 1-ft (31-cm) spacing and grounded, eliminated the charge on the outside surface of the pipe, but not on the inside of the pipe surface, inin in^ engineer. 2~upervisorygeophysicist. 3~esearchsupervisor. I Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA. INTRODUCTION The Bureau of Mines estimates that of the underground pipeline. Both the as much as 766 trillion cubic feet Bureau (5) and the Mine Safety and Health ( 7.12~10 ' Om3) of coalbed gas, predomi- ~dministration(MSHA) , U. S . Department of nantly methane, is contained in the coal- Labor (6), outlined procedures for the beds of the United States (1).4 This gas safe operation of underground methane is both a natural resource and a hin- drainage pipelines. These reports should drance to mining. Methane drainage sys- be consulted for a general overview of tems have been employed in most major pipeline protection requirements. coal regions of the United States to re- The Bureau study (5)- provided the basis move gas from the coalbed prior to mining for the pipeline material selection. and/or capture the coalbed gas for fuel. Polyethylene pipe best meets the design Methane drainage systems employ hori- criterion because of its superior resist- zontal, vertical, and cross-measure bore- ance to corrosion and impact forces. It holes. Vertical borehole systems (2) also is attractive to mine operators be- consist of holes drilled from the surface cause it is lightweight, easy to install, into the gas-bearing coal strata. The and significantly cheaper than metal boreholes are cased with metal pipe, piping. which provides the conduit for the flow In an attempt to negate any hazard of gas from the gas-bearing strata to produced by the triboelectrification of the surface. Horizontal (3) and cross- polyethylene pipe, MSHA recommends that a measure (4) systeos require the drilling grounded bare copper wire be spirally of borehoies into the coalbed or associ- wound around all polyethylene piping. ated strata from underground locations. The recommendation was incorporated in The boreholes are cnnnected to an under- many of the methane drainage systems now ground pipeline that carries the gas to in place across the United States. The the surface. objectives of this study were to obtain a Methane, which is piped through mine better understanding of the triboelectri- passageways in quantities sufficient to fication process as it relates to the un- contaminate large areas of the mine, jus- derground polyethylene methane drainage tifies caution and concern in the design, pipeline and to evaluate the recommended installation, protection, and maintenance grounding safety procedure. ACKNOWLEDGMENTS The authors wish to thank Donald Duvall pipe manufacture and static charge test- of Plexco Pipe, John Merideth of Phillips ing, respectively. Drisco Pipe, and Joseph Uhler of the The efforts of John Stevenson of Jim Equitable Gas Co. for the pipe samples Walter Resources Inc., Dave Fitzpatrick they provided for laboratory testing. of Beckley Mining Co., and Dan Weaver of Jack Workman of Workman Developments the BethEnergy Mines Inc. were instrumen- and Robert Reif, formerly of the Battelle tal in the performance of methane drain- Memorial Institute, donated much appreci- age pipeline evaluations in the field. ated technical assistance on polyethylene STATIC ELECTRICITY AND GAS-PIPING SYSTEMS To the average person the words, "stat- walking across a carpeted floor, noise in ic electricity," mean the shock experi- a radio receiver, or the tendency for enced when touching- a doorknob after clothes to cling or stick tightly. Near- ly everyone recognizes that these phenom- 4~nderlinednumbers in parentheses re- ena are more intense when weather is dry. fer to items in the list of references at In most situations, static electricity is the end of this report. simply an annoyance. The term "electricity" is derived from hole" with a tool to squeeze off the the ancient Greek word "electron" meaning plastic pipe. "amber," because it was with this sub- In the preceding example, charges were stance that the phenomenon of electri- generated by the extremely high velocity fication was first observed. For cen- gas flow through a rupture. Charges also turies, the term meant only what is now occur at lower velocities by the addition called static electricity, the property of a particulate matter (9). Whether exhibited by some substances after being generated by rupture leaks or dust-laden rubbed with material like silk or wool gas flows, the static charges are the re- of being able to attract or repel light- sult of triboelectrification. Gas mole- weight objects. Mechanization produced cules and particulates vigorously rub the
Recommended publications
  • A Hybrid Energy Cell for Self-Powered Water Splitting†
    Energy & Environmental Science View Article Online COMMUNICATION View Journal | View Issue A hybrid energy cell for self-powered water splitting† a a a a a a Cite this: Energy Environ. Sci., 2013, 6, Ya Yang, Hulin Zhang, Zong-Hong Lin, Yan Liu, Jun Chen, Ziyin Lin, a a ab 2429 Yu Sheng Zhou, Ching Ping Wong and Zhong Lin Wang* Received 30th April 2013 Accepted 30th May 2013 DOI: 10.1039/c3ee41485j www.rsc.org/ees Production of hydrogen (H2) by splitting water using the electrolysis effect is a potential source of clean and renewable energy. However, Broader context it usually requires an external power source to drive the oxidation or We fabricated a hybrid energy cell that consists of a triboelectric nano- reduction reactions of H2O molecules, which largely limits the generator, a thermoelectric cell, and a solar cell, which can be used to development of this technology. Here, we fabricated a hybrid energy simultaneously or individually harvest the mechanical, thermal, and solar cell that is an integration of a triboelectric nanogenerator, a ther- energies. Instead of using an external power source, the hybrid energy cell can be directly used for self-powered water splitting to generate hydrogen. moelectric cell, and a solar cell, which can be used to simultaneously/ The volume of the produced H2 has a linear relationship with the splitting À À individually harvest mechanical, thermal, and/or solar energies. The time at a production speed of 4 Â 10 4 mL s 1. Moreover, the produced power output of the hybrid energy cell can be directly used for energies can be stored in a Li-ion battery for water splitting and other uses.
    [Show full text]
  • Printer Tech Tips—Cause & Effects of Static Electricity in Paper
    Printer Tech Tips Cause & Effects of Static Electricity in Paper Problem The paper has developed a static electrical charge causing an abnormal sheet-to- sheet or sheet-to-material attraction which is difficult to separate. This condition may result in feeder trip-offs, print voids from surface contamination, ink offset, Sappi Printer Technical Service or poor sheet jog in the delivery. 877 SappiHelp (727 7443) Description Static electricity is defined as a non-moving, non-flowing electrical charge or in simple terms, electricity at rest. Static electricity becomes visible and dynamic during the brief moment it sparks a discharge and for that instant it’s no longer at rest. Lightning is the result of static discharge as is the shock you receive just before contacting a grounded object during unusually dry weather. Matter is composed of atoms, which in turn are composed of protons, neutrons, and electrons. The number of protons and neutrons, which make up the atoms nucleus, determine the type of material. Electrons orbit the nucleus and balance the electrical charge of the protons. When both negative and positive are equal, the charge of the balanced atom is neutral. If electrons are removed or added to this configuration, the overall charge becomes either negative or positive resulting in an unbalanced atom. Materials with high conductivity, such as steel, are called conductors and maintain neutrality because their electrons can move freely from atom to atom to balance any applied charges. Therefore, conductors can dissipate static when properly grounded. Non-conductive materials, or insulators such as plastic and wood, have the opposite property as their electrons can not move freely to maintain balance.
    [Show full text]
  • High Performance Triboelectric Nanogenerator and Its Applications
    HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS A Dissertation Presented to The Academic Faculty by Changsheng Wu In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in the SCHOOL OF MATERIALS SCIENCE AND ENGINEERING Georgia Institute of Technology AUGUST 2019 COPYRIGHT © 2019 BY CHANGSHENG WU HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS Approved by: Dr. Zhong Lin Wang, Advisor Dr. C. P. Wong School of Materials Science and School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Meilin Liu Dr. Younan Xia School of Materials Science and Department of Biomedical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. David L. McDowell School of Materials Science and Engineering Georgia Institute of Technology Date Approved: [April 25, 2019] To my family and friends ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratidue to my advisor Prof. Zhong Lin Wang for his continuous support and invaluable guidance in my research. As an exceptional researcher, he is my role model for his thorough knowledge in physics and nanotechnology, indefatigable diligence, and overwhelming passion for scientific innovation. It is my great fortune and honor in having him as my advisor and learning from him in the past four years. I would also like to thank the rest of my committee members, Prof. Liu, Prof. McDowell, Prof. Wong, and Prof. Xia for their insightful advice on my doctoral research and dissertation. My sincere thanks also go to my fellow lab mates for their strong support and help. In particular, I would not be able to start my research so smoothly without the mentorship of Dr.
    [Show full text]
  • Triboelectric Nanogenerators for Energy Harvesting in Ocean: a Review on Application and Hybridization
    energies Review Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization Ali Matin Nazar 1, King-James Idala Egbe 1 , Azam Abdollahi 2 and Mohammad Amin Hariri-Ardebili 3,4,* 1 Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China; [email protected] (A.M.N.); [email protected] (K.-J.I.E.) 2 Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan 45845, Iran; [email protected] 3 Department of Civil Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA 4 College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA * Correspondence: [email protected]; Tel.: +1-303-990-2451 Abstract: With recent advancements in technology, energy storage for gadgets and sensors has become a challenging task. Among several alternatives, the triboelectric nanogenerators (TENG) have been recognized as one of the most reliable methods to cure conventional battery innovation’s inadequacies. A TENG transfers mechanical energy from the surrounding environment into power. Natural energy resources can empower TENGs to create a clean and conveyed energy network, which can finally facilitate the development of different remote gadgets. In this review paper, TENGs targeting various environmental energy resources are systematically summarized. First, a brief introduction is given to the ocean waves’ principles, as well as the conventional energy harvesting Citation: Matin Nazar, A.; Idala devices. Next, different TENG systems are discussed in details. Furthermore, hybridization of Egbe, K.-J.; Abdollahi, A.; TENGs with other energy innovations such as solar cells, electromagnetic generators, piezoelectric Hariri-Ardebili, M.A.
    [Show full text]
  • Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
    UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives .
    [Show full text]
  • Materials That Cause Static Electricity
    Materials that Cause Static Electricity http://www.school-for-champions.com/science/static_materials.htm Some materials cause or create more static electricity than others. Since static electricity is the collection of electrically charged particles on the surface of a material, various materials have a tendency of either giving up electrons and becoming positive (+) in charge or attracting electrons and becoming negative (−) in charge. The Triboelectric Series is a list of materials, showing which have a greater tendency to become positive (+) and which have a greater tendency to become negative (−). The list is a handy tool to determine which combinations of materials create the most static electricity. Questions you may have include: What are materials in the Triboelectric Series? What are the best combinations of materials? What are acceptable combinations? Triboelectric Series Common materials are listed according how well they create static electricity when rubbed with another material, as well as what charge the material will possess. Become positive in charge The following materials will tend to give up electrons when brought in contact with other materials. They are listed from those with the greatest tendency to give electrons to those that barely give up electrons. Materials that gain a positive (+) electrical charge (or tend to give up electrons) Greatest tendency to giving up electrons and becoming highly positive (+) in Dry human skin charge Leather Rabbit fur Fur is often used to create static electricity Glass The glass on your TV screen gets charged and collects dust Human hair "Flyaway hair" is a good example of having a moderate positive (+) charge Nylon Wool Lead A surprise that lead would collect as much static electricity as cat fur Cat fur Silk Aluminum Gives up some electrons Paper Neutral There are very few materials that do not tend to readily attract or give up electrons when brought in contact or rubbed with other materials.
    [Show full text]
  • When You Pull a Wool Sweater Over Your Head, You Might Look Like This
    NAME__________________ 6. Who discovered that lightning was a form of Science SOL 4.3 – Electricity electricity? www.solpass.org a. Thomas Edison b. Benjamin Franklin When you pull a wool sweater quickly c. Michael Faraday over your head, you might look like this. When Electric current powers many things in our homes. your feet rub the carpet before you touch a metal Current electricity is the flow of electrons through a doorknob you might get a shock or see a spark. conductor. Most home appliances need current electricity Why? Static electricity. Static electricity is the running through an electrical circuit in order to work. An open circuit is a circuit with a break in it that will result of electrons being pulled from not allow the flow of electrons. A closed circuit allows the one surface to another when two objects flow of electrons. rub together. This can happen if you take off a sweater too fast or when you 7. A(n) ______ will allow the flow of electricity. scuff your feet on the carpet. Your feet pick up extra electrons a. open circuit from the carpet and become negatively charged. Those electrons jump off your finger as a spark when your finger comes close to a b. closed circuit metal object like a doorknob. 8. The diagram shows a(n) 1. Which of the following creates static electricity? a. closed a. Taking a bath circuit b. Plugging a power cord into the wall outlet. b. open c. Rubbing feet on the carpet. circuit 2. What might cause foam 9.
    [Show full text]
  • Self-Powered Multifunctional Motion Sensor Enabled by Magnetic
    Article Cite This: ACS Nano XXXX, XXX, XXX−XXX www.acsnano.org Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator † ‡ ⊥ † ⊥ † ⊥ † † † † Zhiyi Wu, , , Wenbo Ding, , Yejing Dai, , Kai Dong, Changsheng Wu, Lei Zhang, Zhiming Lin, † † § Jia Cheng, and Zhong Lin Wang*, , † School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States ‡ Engineering Research Center for Mechanical Testing Technology and Equipment of Ministry of Education, Chongqing University of Technology, Chongqing 400054, China § Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China *S Supporting Information ABSTRACT: With the fast development of the Internet of Things, the requirements of system miniaturization and integration have accelerated research on multifunctional sensors. Based on the triboelectric nanogenerator, a self-powered multifunctional motion sensor (MFMS) is proposed in this work, which is capable of detecting the motion parameters, including direction, speed, and acceleration of linear and rotary motions, simultaneously. The MFMS consists of a triboelectric nanogenerator (TENG) module, a magnetic regulation module, and an acrylic shell. The TENG module is formed by placing a free-standing magnetic disk (MD) on a polytetrafluorethylene (PTFE) plate with six copper electrodes. The movement of the MFMS causes the MD to slide on the PTFE plate and hence excites the electrodes to produce a voltage output. The carefully designed six copper electrodes (an inner circle electrode, an outer circle electrode, and four arc electrodes between them) can distinguish eight directions of movement with the acceleration and determine the rotational speed and direction as well. Besides, the magnetic regulation module is applied here by fixing a magnetic cylinder (MC) in the shell, right under the center of the PTFE plate.
    [Show full text]
  • Chapter 7 Electricity Lesson 2 What Are Static and Current Electricity?
    Chapter 7 Electricity Lesson 2 What Are Static and Current Electricity? Static Electricity • Most objects have no charge= the atoms are neutral. • They have equal numbers of protons and electrons. • When objects rub against another, electrons move from the atoms of one to atoms of the other object. • The numbers of protons and electrons in the atoms are no longer equal: they are either positively or negatively charged. • The buildup of charges on an object is called static electricity. • Opposite charges attract each other. • Charged objects can also attract neutral objects. • When items of clothing rub together in a dryer, they can pick up a static charge. • Because some items are positive and some are negative, they stick together. • When objects with opposite charges get close, electrons sometimes jump from the negative object to the positive object. • This evens out the charges, and the objects become neutral. • The shocks you can feel are called static discharge. • The crackling noises you hear are the sounds of the sparks. • Lightning is also a static discharge. • Where does the charge come from? • Scientists HYPOTHESIZE that collisions between water droplets in a cloud cause the drops to become charged. • Negative charges collect at the bottom of the cloud. • Positive charges collect at the top of the cloud. • When electrons jump from one cloud to another, or from a cloud to the ground, you see lightning. • The lightning heats the air, causing it to expand. • As cooler air rushes in to fill the empty space, you hear thunder. • Earth can absorb lightning’s powerful stream of electrons without being damaged.
    [Show full text]
  • Explosive Safety with Regards to Electrostatic Discharge Francis Martinez
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 7-12-2014 Explosive Safety with Regards to Electrostatic Discharge Francis Martinez Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Martinez, Francis. "Explosive Safety with Regards to Electrostatic Discharge." (2014). https://digitalrepository.unm.edu/ece_etds/ 172 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Francis J. Martinez Candidate Electrical and Computer Engineering Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Christos Christodoulou , Chairperson Dr. Mark Gilmore Dr. Youssef Tawk i EXPLOSIVE SAFETY WITH REGARDS TO ELECTROSTATIC DISCHARGE by FRANCIS J. MARTINEZ B.S. ELECTRICAL ENGINEERING NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY 2001 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering The University of New Mexico Albuquerque, New Mexico May 2014 ii Dedication To my beautiful and amazing wife, Alicia, and our perfect daughter, Isabella Alessandra and to our unborn child who we are excited to meet and the one that we never got to meet. This was done out of love for all of you. iii Acknowledgements Approximately 6 years ago, I met Dr. Christos Christodoulou on a collaborative project we were working on. He invited me to explore getting my Master’s in EE and he told me to call him whenever I decided to do it.
    [Show full text]
  • Computational Study of Triboelectric Generator Design
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2020 Computational Study of Triboelectric Generator Design Giovanni Barbosa Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects COMPUTATIONAL STUDY OF TRIBOELECTRIC GENERATOR DESIGN By Giovannia Barbosa An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors In The Department of Physical Sciences Faculty of Arts and Sciences Rhode Island College 2020 2 Abstract: As the world population increases and technology becomes accessible to more people, there is an increased demand for energy. Researchers are seeking innovative forms of harvesting sustainable energy with minimal environmental impact. The triboelectric effect is a form of contact electrification in which a charge is generated after two materials are separated. In 2012, the triboelectric nanogenerator (TENG) emerged as a new flexible power source which can extract energy from small ambient movements. In this study, we use a software tool known as COMSOL to conduct Finite Element Analysis of Triboelectric Generators (TEGs). One aspect we study is the enhancement of TEG efficiency by the inclusion of high dielectric constant (high-k) materials. We show that the orientation of inclusions matter: high-k dielectric inclusions with a vertical orientation display greater overall TEG performance in comparison to those with a horizontal alignment. A design where a piezoelectric material is included in the triboelectric polymer is also explored. Although
    [Show full text]
  • Phenomena, Driving Questions and Storyline Fields and Interactions
    with oneanother. Phenomenon: FIELDS AND INTERACTIONS AND FIELDS PHENOMENA, DRIVING QUESTIONS AND STORYLINE AND QUESTIONS DRIVING PHENOMENA, Storyline/Flow Driving Guiding Phenomenon Activities PE (How an activity leads to Questions Questions subsequent activities) Gravity, How do What approaches can 1, 2 ETS1-1 Engineers solve all sorts of problems. Objectscanbeobserved whentheyarenotincontact tointeractwithotherobjectseven magnetism, engineers solve be used to solve a ETS1-2 For every problem to be solved, there are electricity, and problems related problem? (Activity 1) ETS1-3 different tools and scientifc concepts that electromagnetism to gravity? can be used to help design solutions. One ETS1-4 are used in scientifc concept used in many design designed systems. solutions is gravity. Gravity can be used when engineering a transportation system on the Moon. How do engineers NASA’s Apollo missions are an example of use a design process a practical application of gravity. Engineers to solve problems? accounted for gravity in their designs of (Activity 2) spacecraft that brought astronauts to the Moon. By making use of the engineering design process and understanding the criteria and constraints of the design task, NASA astronauts were able to reach, and return from, the Moon. When an object What How is energy 3, 4 PS3-2 When designing solutions to transportation is released in the determines transferred with a PS2-4 problems, the amount of energy stored in the air, it falls to the the strength of transporter set in system is important to consider. By changing ground. gravitational motion by gravity? a transporter’s mass or height, the energy FIELDS FIELDS AND INTERACTIONS forces? (Activity 3) stored in the system changes.
    [Show full text]