Chapter 7 Electricity Lesson 2 What Are Static and Current Electricity?

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Electricity Lesson 2 What Are Static and Current Electricity? Chapter 7 Electricity Lesson 2 What Are Static and Current Electricity? Static Electricity • Most objects have no charge= the atoms are neutral. • They have equal numbers of protons and electrons. • When objects rub against another, electrons move from the atoms of one to atoms of the other object. • The numbers of protons and electrons in the atoms are no longer equal: they are either positively or negatively charged. • The buildup of charges on an object is called static electricity. • Opposite charges attract each other. • Charged objects can also attract neutral objects. • When items of clothing rub together in a dryer, they can pick up a static charge. • Because some items are positive and some are negative, they stick together. • When objects with opposite charges get close, electrons sometimes jump from the negative object to the positive object. • This evens out the charges, and the objects become neutral. • The shocks you can feel are called static discharge. • The crackling noises you hear are the sounds of the sparks. • Lightning is also a static discharge. • Where does the charge come from? • Scientists HYPOTHESIZE that collisions between water droplets in a cloud cause the drops to become charged. • Negative charges collect at the bottom of the cloud. • Positive charges collect at the top of the cloud. • When electrons jump from one cloud to another, or from a cloud to the ground, you see lightning. • The lightning heats the air, causing it to expand. • As cooler air rushes in to fill the empty space, you hear thunder. • Earth can absorb lightning’s powerful stream of electrons without being damaged. • But lightning that strikes a tree or a house can start a fire. • If lightning strikes a beach, it can melt grains of sand into pieces of glass! Static Electricity CAUSE AND EFFECT What causes an object to build up a static charge? • ___________________________________________________________ ___________________________________________________________ Current Electricity • Static electricity is a kind of potential energy. • Energy is stored when electrons move from one object to another and a static charge builds up. • The potential energy can change to kinetic energy. • This is what happens when electrons move in a static discharge. • The kinetic energy of a static discharge can change to other forms of energy: heat, light, and sound. • Because a static discharge is a short burst of kinetic energy, it isn’t very useful as an energy source. • For electricity to be a useful source of energy, it must be a steady flow of charges. • If electrons have a path to follow, they will move in a steady flow instead of building up a static charge. • This flow of charges is called an electric current. • Electric Current is the steady flow of negative charges. • Electricity that flows in this way is a kind of kinetic energy called current electricity. • To keep the charges flowing, a constant supply of electrons is needed. • Cells supply the flow of charges to flashlights and other small devices. • Energy stations produce a much larger flow of charges to supply electric current to whole cities. • Electrical pressure is measured in volts. • The rate at which electric current flows is measured in amps. • There are many more amps in power lines than you need to operate the appliances in your home. • The combination of volts and amps can be dangerous, which is why many objects that use electricity have warning labels. • The amount of electrical energy a device uses each second is measured in watts. • Electric energy companies bill people for the amount of electricity they use. • A watt is a very small unit, so electrical use is measured in kilowatts. • One kilowatt is equal to 1,000 watts. • Current Electricity CAUSE AND EFFECT What causes an electric current to keep moving? • ___________________________________________________________ ___________________________________________________________ __________________________________ Conductors and Insulators • Electricity moves more easily through some kinds of matter than others. • A material through which electricity moves well is a conductor. • Most metals are conductors. • The electrons of metals are held loosely by the atoms. • This makes it easy for the electrons to move between atoms, causing current to flow. • Copper is a very good conductor. • It’s used for most electrical wiring in homes. • The inside of the cord you use to plug in a lamp is made of copper wire. • If you look at a lamp cord, you won’t see the copper wire. • The copper is covered with a layer of plastic. • Plastic doesn’t conduct electricity well. • Its electrons are not free to move between atoms. A material that conducts electricity poorly is an insulator. • Wood, glass, and rubber are also insulators. • Insulators are important because they protect you from the electric current in the wire. • If the layer of plastic on a wire peels off or cracks, the wire should be replaced. • If you touch a bare wire that is conducting current, the current will flow through you and could hurt you. • Also, wires get warm when they carry electricity. • A bare wire that touches paper or cloth could start a fire. • Conductors and Insulators CAUSE AND EFFECT What causes a metal to be a good conductor? • ___________________________________________________________ _____________________________________________________ .
Recommended publications
  • Printer Tech Tips—Cause & Effects of Static Electricity in Paper
    Printer Tech Tips Cause & Effects of Static Electricity in Paper Problem The paper has developed a static electrical charge causing an abnormal sheet-to- sheet or sheet-to-material attraction which is difficult to separate. This condition may result in feeder trip-offs, print voids from surface contamination, ink offset, Sappi Printer Technical Service or poor sheet jog in the delivery. 877 SappiHelp (727 7443) Description Static electricity is defined as a non-moving, non-flowing electrical charge or in simple terms, electricity at rest. Static electricity becomes visible and dynamic during the brief moment it sparks a discharge and for that instant it’s no longer at rest. Lightning is the result of static discharge as is the shock you receive just before contacting a grounded object during unusually dry weather. Matter is composed of atoms, which in turn are composed of protons, neutrons, and electrons. The number of protons and neutrons, which make up the atoms nucleus, determine the type of material. Electrons orbit the nucleus and balance the electrical charge of the protons. When both negative and positive are equal, the charge of the balanced atom is neutral. If electrons are removed or added to this configuration, the overall charge becomes either negative or positive resulting in an unbalanced atom. Materials with high conductivity, such as steel, are called conductors and maintain neutrality because their electrons can move freely from atom to atom to balance any applied charges. Therefore, conductors can dissipate static when properly grounded. Non-conductive materials, or insulators such as plastic and wood, have the opposite property as their electrons can not move freely to maintain balance.
    [Show full text]
  • Estimation of the Dissipation Rate of Turbulent Kinetic Energy: a Review
    Chemical Engineering Science 229 (2021) 116133 Contents lists available at ScienceDirect Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces Review Estimation of the dissipation rate of turbulent kinetic energy: A review ⇑ Guichao Wang a, , Fan Yang a,KeWua, Yongfeng Ma b, Cheng Peng c, Tianshu Liu d, ⇑ Lian-Ping Wang b,c, a SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China b Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China c Department of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716-3140, USA d Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008, USA highlights Estimate of turbulent dissipation rate is reviewed. Experimental works are summarized in highlight of spatial/temporal resolution. Data processing methods are compared. Future directions in estimating turbulent dissipation rate are discussed. article info abstract Article history: A comprehensive literature review on the estimation of the dissipation rate of turbulent kinetic energy is Received 8 July 2020 presented to assess the current state of knowledge available in this area. Experimental techniques (hot Received in revised form 27 August 2020 wires, LDV, PIV and PTV) reported on the measurements of turbulent dissipation rate have been critically Accepted 8 September 2020 analyzed with respect to the velocity processing methods. Traditional hot wires and LDV are both a point- Available online 12 September 2020 based measurement technique with high temporal resolution and Taylor’s frozen hypothesis is generally required to transfer temporal velocity fluctuations into spatial velocity fluctuations in turbulent flows.
    [Show full text]
  • Turbulence Kinetic Energy Budgets and Dissipation Rates in Disturbed Stable Boundary Layers
    4.9 TURBULENCE KINETIC ENERGY BUDGETS AND DISSIPATION RATES IN DISTURBED STABLE BOUNDARY LAYERS Julie K. Lundquist*1, Mark Piper2, and Branko Kosovi1 1Atmospheric Science Division Lawrence Livermore National Laboratory, Livermore, CA, 94550 2Program in Atmospheric and Oceanic Science, University of Colorado at Boulder 1. INTRODUCTION situated in gently rolling farmland in eastern Kansas, with a homogeneous fetch to the An important parameter in the numerical northwest. The ASTER facility, operated by the simulation of atmospheric boundary layers is the National Center for Atmospheric Research (NCAR) dissipation length scale, lε. It is especially Atmospheric Technology Division, was deployed to important in weakly to moderately stable collect turbulence data. The ASTER sonic conditions, in which a tenuous balance between anemometers were used to compute turbulence shear production of turbulence, buoyant statistics for the three velocity components and destruction of turbulence, and turbulent dissipation used to estimate dissipation rate. is maintained. In large-scale models, the A dry Arctic cold front passed the dissipation rate is often parameterized using a MICROFRONTS site at approximately 0237 UTC diagnostic equation based on the production of (2037 LST) 20 March 1995, two hours after local turbulent kinetic energy (TKE) and an estimate of sunset at 1839 LST. Time series spanning the the dissipation length scale. Proper period 0000-0600 UTC are shown in Figure 1.The parameterization of the dissipation length scale 6-hr time period was chosen because it allows from experimental data requires accurate time for the front to completely pass the estimation of the rate of dissipation of TKE from instrumented tower, with time on either side to experimental data.
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Measuring Electricity Voltage Current Voltage Current
    Measuring Electricity Electricity makes our lives easier, but it can seem like a mysterious force. Measuring electricity is confusing because we cannot see it. We are familiar with terms such as watt, volt, and amp, but we do not have a clear understanding of these terms. We buy a 60-watt lightbulb, a tool that needs 120 volts, or a vacuum cleaner that uses 8.8 amps, and dont think about what those units mean. Using the flow of water as an analogy can make Voltage electricity easier to understand. The flow of electrons in a circuit is similar to water flowing through a hose. If you could look into a hose at a given point, you would see a certain amount of water passing that point each second. The amount of water depends on how much pressure is being applied how hard the water is being pushed. It also depends on the diameter of the hose. The harder the pressure and the larger the diameter of the hose, the more water passes each second. The flow of electrons through a wire depends on the electrical pressure pushing the electrons and on the Current cross-sectional area of the wire. The flow of electrons can be compared to the flow of Voltage water. The water current is the number of molecules flowing past a fixed point; electrical current is the The pressure that pushes electrons in a circuit is number of electrons flowing past a fixed point. called voltage. Using the water analogy, if a tank of Electrical current (I) is defined as electrons flowing water were suspended one meter above the ground between two points having a difference in voltage.
    [Show full text]
  • Middle School Physical Science: Kinetic Energy and Potential Energy
    MIDDLE SCHOOL PHYSICAL SCIENCE: KINETIC ENERGY AND POTENTIAL ENERGY Standards Bundle Standards are listed within the bundle. Bundles are created with potential instructional use in mind, based upon potential for related phenomena that can be used throughout a unit. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.] MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.] MS-PS3-5. Engage in argument from evidence to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
    [Show full text]
  • Electricity Production by Fuel
    EN27 Electricity production by fuel Key message Fossil fuels and nuclear energy continue to dominate the fuel mix for electricity production despite their risk of environmental impact. This impact was reduced during the 1990s with relatively clean natural gas becoming the main choice of fuel for new plants, at the expense of oil, in particular. Production from coal and lignite has increased slightly in recent years but its share of electricity produced has been constant since 2000 as overall production increases. The steep increase in overall electricity production has also counteracted some of the environmental benefits from fuel switching. Rationale The trend in electricity production by fuel provides a broad indication of the impacts associated with electricity production. The type and extent of the related environmental pressures depends upon the type and amount of fuels used for electricity generation as well as the use of abatement technologies. Fig. 1: Gross electricity production by fuel, EU-25 5,000 4,500 4,000 Other fuels 3,500 Renewables 1.4% 3,000 13.7% Nuclear 2,500 TWh Natural and derived 31.0% gas 2,000 Coal and lignite 1,500 19.9% Oil 1,000 29.5% 500 4.5% 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2010 2020 2030 Data Source: Eurostat (Historic data), Primes Energy Model (European Commission 2006) for projections. Note: Data shown are for gross electricity production and include electricity production from both public and auto-producers. Renewables includes electricity produced from hydro (excluding pumping), biomass, municipal waste, geothermal, wind and solar PV.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
    UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives .
    [Show full text]
  • Clean Electricity Payment Program a Budget-Based Alternative to a Federal Clean Electricity Standard
    Clean Electricity Payment Program A budget-based alternative to a federal Clean Electricity Standard August 2021 Clean energy legislation this year is critical to jumpstart investments in the full set of clean energy solutions required to meet ambitious climate goals. One approach used widely at the state level—a Clean Energy Standard—requires electricity suppliers to use clean energy to meet a growing share of the electricity delivered to their customers. Senator Tina Smith (D-MN) is promoting an alternative approach, the Clean Electricity Payment Program, that relies on incentives to scale-up clean energy investments. What is the Clean Electricity Payment Program (CEPP)? The CEPP is a budget-based alternative to a traditional Clean Electricity Standard (CES) that is designed for passage via the Budget Reconciliation process. It works by providing federal investments and financial incentives to suppliers that deliver electricity directly to retail consumers to supply more clean electricity each year. It is not a regulatory mechanism and does not create a binding mandate. What are the goals of the program? The CEPP is part of an overall package of incentives in the climate portion of the proposed reconciliation package that collectively aims to achieve an 80% nationwide average clean electricity goal by 2030. The CEPP does not require each electricity supplier to achieve this goal. Recognizing that each supplier has a different starting point, the CEPP provides incentives for all suppliers to increase their total clean electricity share each year at an equitable pace. Electricity suppliers that start below the national average are not expected to catch up, and those already meeting very high shares are assigned a smaller annual increase.
    [Show full text]
  • F = BIL (F=Force, B=Magnetic Field, I=Current, L=Length of Conductor)
    Magnetism Joanna Radov Vocab: -Armature- is the power producing part of a motor -Domain- is a region in which the magnetic field of atoms are grouped together and aligned -Electric Motor- converts electrical energy into mechanical energy -Electromagnet- is a type of magnet whose magnetic field is produced by an electric current -First Right-Hand Rule (delete) -Fixed Magnet- is an object made from a magnetic material and creates a persistent magnetic field -Galvanometer- type of ammeter- detects and measures electric current -Magnetic Field- is a field of force produced by moving electric charges, by electric fields that vary in time, and by the 'intrinsic' magnetic field of elementary particles associated with the spin of the particle. -Magnetic Flux- is a measure of the amount of magnetic B field passing through a given surface -Polarized- when a magnet is permanently charged -Second Hand-Right Rule- (delete) -Solenoid- is a coil wound into a tightly packed helix -Third Right-Hand Rule- (delete) Major Points: -Similar magnetic poles repel each other, whereas opposite poles attract each other -Magnets exert a force on current-carrying wires -An electric charge produces an electric field in the region of space around the charge and that this field exerts a force on other electric charges placed in the field -The source of a magnetic field is moving charge, and the effect of a magnetic field is to exert a force on other moving charge placed in the field -The magnetic field is a vector quantity -We denote the magnetic field by the symbol B and represent it graphically by field lines -These lines are drawn ⊥ to their entry and exit points -They travel from N to S -If a stationary test charge is placed in a magnetic field, then the charge experiences no force.
    [Show full text]
  • Materials That Cause Static Electricity
    Materials that Cause Static Electricity http://www.school-for-champions.com/science/static_materials.htm Some materials cause or create more static electricity than others. Since static electricity is the collection of electrically charged particles on the surface of a material, various materials have a tendency of either giving up electrons and becoming positive (+) in charge or attracting electrons and becoming negative (−) in charge. The Triboelectric Series is a list of materials, showing which have a greater tendency to become positive (+) and which have a greater tendency to become negative (−). The list is a handy tool to determine which combinations of materials create the most static electricity. Questions you may have include: What are materials in the Triboelectric Series? What are the best combinations of materials? What are acceptable combinations? Triboelectric Series Common materials are listed according how well they create static electricity when rubbed with another material, as well as what charge the material will possess. Become positive in charge The following materials will tend to give up electrons when brought in contact with other materials. They are listed from those with the greatest tendency to give electrons to those that barely give up electrons. Materials that gain a positive (+) electrical charge (or tend to give up electrons) Greatest tendency to giving up electrons and becoming highly positive (+) in Dry human skin charge Leather Rabbit fur Fur is often used to create static electricity Glass The glass on your TV screen gets charged and collects dust Human hair "Flyaway hair" is a good example of having a moderate positive (+) charge Nylon Wool Lead A surprise that lead would collect as much static electricity as cat fur Cat fur Silk Aluminum Gives up some electrons Paper Neutral There are very few materials that do not tend to readily attract or give up electrons when brought in contact or rubbed with other materials.
    [Show full text]