And High Heat Flux (HHF) Issues-For —.,Concepts,,.---- (AF&) ---- ,..;,...,“*P,., , ., !; +...,.,2+
Total Page:16
File Type:pdf, Size:1020Kb
————-- — .-j LA-10635-MS CIC-14REPORTCOLLECTION I ..: REPRODUCTION !.,, ! I c. 3 COPY ~*.&@$:J>~a Los Alamos Nallonal Laboratory IS operated by the Unwersl!y of Cal! forma for the Unlteci Stales Department of Energy under contract W-74 Cr5-ENG.36. .. , ... -.,. TechnicalAssessment of Critical Plasma-Materials Interaction (PM..) and High Heat Flux (HHF) Issues-for —.,Concepts,,.---- (AF&) ---- ,..;,...,“*P,., , ., !; +...,.,2+.. .— .. ..-... ..!7...---. .—- -r1-.<-..=+:...-r. - m.. : -!=,w. ”.., , : ;!, ~ i , , ,. .! ..’ . E . -.... .=-.-. >...— , .,. = . .. -. .,. ..--. ”--- .. .. --- -. .!.- ... ,. J LosAlamosNationalLaboratory LosAhmimLosAlamos,NewMexico87545 An Atlirmative Action/EqualOpportunity Employer PreparedbyMabelMarquez,GroupCTR-2 DISCLAIMER TIsisrepnrewaspreparedas an accountofworkspnnsoredbyan agencyof the United StatesGovernment. Neitherthe United StatesGovernment noranyagency thereof,noranyoftheiremployces, makesany warranty,expmssor implied,orassumesany Iw1 liabilityorrespnnsibility fortheaccuracy, completeness, or usefcdnessofanyinformation,apparatus, product,orprocessdisclosed, orrepreserrtsthat its usewould not infringeprivatelyownedrights.Referencehereinto anyspecitlccommercialproduct,process,or service bytrade name,trademark,manufacturer,orotherwisc, doeanot necessarilyconstituteor implyits endowment, recommendation,or favoringbythe United StatesGovemmentorany agencythereof.The viewsand opinionsofauthors expressedhereindo not necessarilystate or reflectthoseofthe United States Govemmerstorany agencythereo~ LA-10635-MS uc-2of Issued: March 1986 Technical Assessment of Critical Plasma-Materials Interaction(PMI) and High Heat Flux (HHF) Issues for Alternative FusionConcepts (AFCS) James N. Downing — 1 LosAlamosNationalLaboratory lb~~k)mo~LosAlamos,NewMexic.875.S PREFACE This documentwas preparedin supportof sections in the MagneticFusionEnergyPlasmaInteractiveand High Heat Flux Components,Volume I Technical Assessment of the Critical Issues and ProblemAreasin the PlasmaMaterials InteractionField (UCLA/PPG-765,Vol. 1, January1984),and Volume II TechnicalAssessmentof the CriticalIssuesand ProblemAreas in High Heat Flux Materials and Component Development(PPG-815,UCLA-ENG-84-25,June 1984). iv GLOSSARYOF FREQUENTLYUSEDABBREVIATIONSAND ACRONYMS 1. AFC (AFCS) AlternativeFusionConcept(s) 2. ARE Aspect-Ratio-Enhancement 3. CCTX CollisionlessCompactToroidExperiment 4. CRFPR CompactRFP Reactor 5. CT (CTS) CompactToroid(s) 6. CTOR Compact-ToroidFusionReactor 7. DEMO DemonstrationReactor 8. EBT Elmo BumpyTorus 9. EBTR EBT Reactor 10. ECRH ElectronCyclotronResonanceHeating 11. ETR EngineeringTest Reactor 12. exo-FPC Externalto FPC 13. FPC FusionPowerCore 14. FRC (FRCS) Field-ReversedConfiguration(s) 15. FW/B/S(FWBS) FirstWall/Blanket/Shield 16. FY FiscalYear 170 HHF High Heat Flux 18. HPD High PowerDensity 19. ICRH Ion CyclotronResonanceHeating 20. ICRF Ion CyclotronResonanceFrequency 21. LH LowerHybrid 22. LPD Low PowerDensity 23. MFE MagneticFusionEnergy 24. MSR ModularStellaratorReactor 25. MWt MegawattThermal 26. NBI NeutralBeam Injector 27. NBT NagoyaBumpyTorus 28. OH OhmicHeating 29. OHTE OhmicallyHeatedToroidalExperiment 30. ORNL Oak RidgeNationalLaboratory 31. PMI Plasma–MaterialInteraction 32. RF RadioFrequency 33. RFP Reversed-FieldPinch 34. RFPR Reversed-FieldPinchReactor 35. SOL Scrape-offLayer 36. Starfire A TokamakReactorReferencePointDesign 37. S/T/H Stellarator/Torsatron/Heliotron 38. TF ToroidalField TECHNICALASSESSMENTOF CRITICALPLASMA-MATERIALSINTERACTION(PMI) AND HIGH HEAT FLUX (HHF)ISSUESFOR ALTERNATIVEFUSIONCONCEPTS(AFCS) by JamesN. Downing ABSTRACT A number of approachesto fusionenergyare being pursuedas alternativefusionconcepts(AFCS). The goal of thesesystemsis to providea more desirablemethodof producingfusionenergythan the mainlineprograms. Some of the AFCS have both a Low PowerDensity(LPD)option and a High PowerDensity (HPD) option. A summary of representativeAFC programsand theirassociatedPMI and HHF issuesis followedby the technicalassessmentof the critical issues. These requirementsare discussed relativeto the mainlineand/orHPD components.The HPD options are contrasted with a tabulationof the characteristicsof components for the Reversed-Field Pinch (RFP),which is representativeof the HPD concept. I. INTRODUCTIONTO ALTERNATIVEFUSIONCONCEPTS The developmentof magneticfusionenergy(MFE)is beingpursuedvia two mainlineprograms,the tokamakand the tandemmirror. At a considerablylower level of effort, a numberof less developedapproachesare beingpursuedas alternativefusionconcepts(AFCS). Theseapproachesmay eventuallylead to a simpler, less expensive,or more desirablemethodof producingfusionenergy. Althoughthereare many conceptswhichbelongto theAFC category,a realistic groupingof the most prominentconceptsis as follows: o ELMO or NagoyaBumpyTorus (EBT/NBT) t Stellarator/Torsatron/Heliotron(S/T/H) t ReversedFieldPinches(RFP),OHTE,High FieldTokamak o Compact Toroids (CTS) IField-ReversedConfigurations (FRCS) and Spheromaks] Some of the above concepts have both a ‘conventionalNor low power density(LPD)designpointand a ‘compactu or high powerdensity(HpD) design point. These ‘compact”systemsare characterizedby a fusionpowercore (FPC) of reducedsize/masswith systempowerdensitiesapproachingthatof a light water fission reactor (- 19.8MWt/m3). Toroidal confinementsystemsthat couldcontributeto the ‘compact!?reactoroptionare as follows: + CompactRFP Reactor(CRFPR) + OHTE Reactor t High-FieldTokamakReactor(Riggatron,HFCTR) t Heliacs(CompactS/T/H) t Compacttoroids(FRCSor spheromaks) The ‘conventional”powerdensityAFC systemshave systempower densities of $ 0.50 (MWt/m3)l which are comparable to the tokamakreferencepoint reactordesign,Starfire(0.30MWt/m3)l,and utilize superconductingcoils. The HPD toroidal fusion options are classifiedas plasmatoroidsusing resistivecoils to providehigh densityconfinement.Thesedevices are true alternateconceptsbecausetheyrepresentan end productthat is significantly differentfrom the mainlineapproaches.Threesystemsthathave been studied as power reactors are the Riggatron,Z–J the OHTE8-9and the CRFPR.1°-i3$* These devicesrely on ohmicheating(OH) to achieveignition, with the high field tokamak,to varyingdegrees,also requiringcompressionalor RF heating. The fusionpowercore (FPC)for thesesystemshas a smallervolume,mass, and cost than the conventionalapproaches.This reducedsize/massFPC allowsthe potentialfor nblock~installationand MahIte13aIICf2.The developmentof some of these HPD systems requires only the extensionof existingtechnologies insteadof the developmentof new technologiessuch as superconductingcoils and auxiliary heating techniques;therefore,theyhave the potentialfor a rapid,minimum-costdevelopment. *InformationprovidedbyR.A. Krakowski,Los AlamosNationalLaboratory Group CTR-12. II. SUMMARYOF ENGINEERINGAND TECHNOLOGYRESEARCHAND DEVELOPMENTNEEDS FOR AFCS RELATEDTO PMI An assessmentof the futureengineeringdevelopmentneedsof alternative fusionconcepts(AFC)has been presentedto the FutureEngineeringDevelopment Needs for Magnetic Fusion Workshop (August3-4, 1982).1 The engineering problems of the AFCS were contrastedwith similarproblemswhichhave been assessedfor the conventionaltokamakapproachto fusionenergy. A. ConventionalAFCS With the possibleexceptionof the lessdevelopedCT concepts,the future engineering requirementsfor the LPD AFCS appearedto be similar(or somewhat more demandingas in the case of S/T/H)to the requirementsof the mainline tokamakprogram. The ‘long–pulsedconventionalRFP may presentan equivalent, if not somewhateasierand more rapid,engineeringpath to fusion power than an equivalentlylong pulsedtokamak,if both systemsoperatewith nominally the same plasmatransportat fusionconditions.~l The futureengineeringneedsof both the mainline and conventionalAFC approachesare summarizedbelow:l o Plasmaengineering(auxiliaryand/orstartupheating,impurity/ash/fuel control,currentdriveversuslong-pulsedoperation). o First–wall/limitersystems (transient thermal effects, sputtering, radiation effects, tritium permeation/retention/recycle,end-of-life mechanism(s)and lifetime,maximumoperating temperatureand overall plantefficiency). 4 Blanket/shield (materialscompatibility,radiation damage, solid- breederpropertiesversusliquid-metalbreedercontainment). e Magnets (thermomechanical/electromechanicalproperties, radiation effects to conductorsand insulators,reliability,maximumfieldsand hybridmagnets,size/modularity). + Remotemaintenance(betterdefinitionof maintenancescheme and down- time, need for less massivemodules,quantifyrelativemeritsof block versuspatchmaintenanceFPC reliabilityanalysis). 3 B. HPD Systemsl ,82,14,15 In many areas HPD systems require the same or similar engineering developmentsas the conventionalapproaches;however,the followingchangesin systemparametersare directlyrelatedto HPD operational $ Increasedplasmapowerdensity(72 MWt/m3,82.4 MWt/m3,and 460 MWt/m3 for the CRFPR,OHTE,and Riggatronrespectively). Increased first-wallneutron current(19.5MW/m2 for CRFPRand OH~E, and 68.0 MW/m2 for the Riggatron). t Increased surface heat flux (4-5MWt/mz for CRFPR and OHTE and 20-50MWt/m2for the Riggatron). b Increased peak (~100MWt/m3) and average(-50MWt/m3)powerdensity withina tritiumbreedingblanket. Increasedradiationand heat fluxesat the resistive magnet coils in systemsdesignedto operateonlywith a thinHPD blanketplacedbetween the coil and the plasma. A summary of compact reactor technologyrequirementsis given in Table 1.17 These changesdo not, however,lead to more severeproblemsfor