LA-UR-8”-J020°

TITLE: A RZL’IEW OF A1.’f’Ek?JATIl’E CO SC KPTS FI~!l F!AC SET1(: Fl:SIf)N

AUTHOR(S): R. A. Kri~kowskl, R. 1,. hflllt’r iln(l R. 1.. tlil~~l~+’n

SUBMllTED TO: 4~11ANST1’p[~sillylt,~.tIn}; (JII t]]e Ttrhnrrl[)Kv l~f Contr[)llcd !fuclmr l:IISiIIn KIIIK of l’rus~!il, PA (ocLOl)Cr ]4’+-]7, 1980)

—— — IMICLAIMIU———

By 8ceptana of this arllclo, the publlshcr rcco~nimt that tfw U.S. Oowrnmnt rmdm anoncrnclusiw, rovalty. frw Ilanw 10 publish or r@produa the publlt~d form of thiscontribu. tkn, Or 10 OllOW othcft to do SO, for U.S. Goverrwwnt pur. fmsm,

Tho LoI Almas SciwIIlfic Labormow mqutbtithatth~pub. Ihfmr idantlfi this wtlclcm work pcrfornwd unriw tfw ● m. pICCS Of t~ U.S. Mpanmnt of Enargy,

(!ss%LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos, New Mexico 87545 An AfflrrnatfveAction/Equal Opportunity

Porm No, &la R3 8t. No. 2820 12/70 ...... ----- ...... ,, ,, ● * . Rohcrt A. Kr.lkowski, RJ)II.11,1 L. Hiller and Ran(iv 1.. Ikgrnsori Los AJacrns .%lentlflr !,ahor.~tory, l!nlvrrxlry of C~llternla LnM AlamoK, NM H75A5 ,, —. -...... - .,. . . .- . . -.

All:’ wtli momL certdlnly Cvl)lvc am Innig)li’ ‘ of t ho ~rld”s quest :or EIANIIVIIc , dcvrlopa from expvrlment, thvory ●nd ayntemn with the tandem mirrnr serving an a primary studies. backup Cone.?pt in the US fus loll prukfrnm, ● wide Il:c awnrmlry of the AFC’rI give II cm Tablv I rnng,, of alternative fuu ion cooccpts (Ak L’o) have ha$ treon org.lnittid inLo rhv following c.itogorlo~: bevn an,! nru bring pursurd. ‘this revirw present~ toruid;lt, Cnmpdact torold,{, linrar ayMCemY dnd a nummtry of past and present retictor projections very tient. e systemn. A conq,relturl#ivc Lrvotrnent of of a ~:”rlty of AFC a. Uherrcvcr ponslhlv, each AF’C, evrn tr an extent allnwed by p~qt and qudncitd[ive results aru given. onxulng riystulns studies, itr beyund the acopc of ,.. this rcvivw. Furchcrrrwre, the T!IR is conNldarud ● (------1. INTRODUCTI...... ____OK ● Prt M~Jry ba~-kup LO the T,)k,lln~k nd, ttlereforv, Al thnuRh the strength of the Wncld-widv wi 11 not bc revicwad hvrt.. with tllu rrxcoptlun of fufiion effort reuta with the r;lpld ~Ind Nuccer+Hfui the Surma(. cnnropt, all AFC’S cnn~ldurtid operate adv,lrrce~ [n Tok.lmdk physics, reactor scudluti huve o II the DT fuvl Cyc it!, ~lthnugl) advnncvd-fuel 1 llurnlnfiterl cert~.in pro blvcw anrInrlat4, ti with OpOr.lti O1l uf **.v*ral of t tlv nLh,, r AFl:’a might I*rxe nizc, II)W p[jwur dennltv, milgl]otlcs dnd bc,lm prove ft, o#iblo and attrnrtt v;,. lAtitlv, a~thouxh technoll]~lvfl, mater taIs lint c,4ti,)nri am! rvm, )to muro cnmprvhons lvo pnprru un mNrMI 1>t rlI{! AFC’S muin Lort,lncv, nnd the ,lttenddll L uni’vrtalnitlcs of glvvll in Tnblv 1 (l. c., KHTlt, FN?I, Tfi,\(:T, l.inu~t econvraics and rell~hiltt The$c rt~Nult M, CTOR) C$(III he Iutlrl.t in thrso prorcedinfis, t IIV . . . therefore, havu pronq) tad n c.11 . ful re-ox,lminnt i,)n aak~ nf L.l)rnplrtt. ness these A}(, a attr alrtc of the i)tlyqic# requirements and gcnvro. [Ipproavli includvd in this rt!view. ,, r.akvn hy tukiimnk reactur dcNigncr M ‘1 btrll IIrI p rudv n t evnitl,lt inn of thr potential of Ivrirl 11. TOROIIIAI. sysr~w understood, 4rlcernativc cunf inrrnrnt ap- Thv toroi~~l”~~~F~; -n, tnllklrlzt,d in T,ihlt, I arv proache*l-l O. T,ihlc I giVI?U a r6,1)r,,u4,!lt(ntivc. C1.l NWifi IiIi am HtVady Hta t!,, long puls{ld (11) M-loo” crnss-srctlon of al Lrrndtivu fus lull Conrvptn s) o: pulst,d (- i a). A mampling i rum earh (A FC’S) thut in (IIILSwrcy or annthvr hnv($ htlt,rl or c~tt~~rrry is }]ivvn in this w(’~’iiun. are bctng conrcidurcd for Lhv prO1!u(.t ion of ●lect rlrd] powv r, cl, rmik, al protvr4* h(, itt nnd/Or —A, —.Stv,{l}ly-jit JfI~ ~orol:lnl .Svqtom;i...... fiYHilc nuttvr ial. tkpo IIdinx 1111 t))!, (.nnflnvr-mnt Th 1! !;tt, ll,lr:l tor, T[)r\,ltr[)tt la truittvd a~ -I nchrmo cnrlqidervd, nyrttvnw *tudivx of AW’H ran~;v gutwrir cnocopc; thv [,t{TK, Term.1, an(i Surmnc are f rum nimplo pllyqic~ analyr41, M, btinrd on doarr ihod tcol)ar.ttoly. bW~U1l-] ikv criteria, to dvtail,,d cr)n[~cpttlll 1 d@q18nN, Wi ttl fPw Vxrop!. 1(1 I1!I mnnt ruar( nr i. StI~l i,tr<4tor/’~or4altrtBtl”...... tl,, at4,. t,)r.4... . nl P mt(ldlo!q of altvrnnf !VC cl)tl(, t,p L# 1,111 Into tho StOll~ti,llI)-r ‘rt,l)ru*,.ll t,* UIIP {)1 tIlk, cr4rlit,~t lemu. fnrmiilixvd pttrl uf thi~ rcportr tan, For thlr4 •a)~nl,t 1(! cnnf i nvma*nt Cntlt$l!ptn t v reroivt, rentrnn a qllant[tnttv~ itltvrl,ot~)~trisotl” find rnnkfng attvnti(m57-!19 arI 4 (:ornlnurcidl pcurr rtractur. 10 nnt. ~ldvl~ahlv iit thlh tim(,. Tlo Intt, nt hvro$ Unliko t’ll! Tnk.tmak, 1110 non-a xirn~mvt ri(: lnntrali. 14 to de~(’ribe brivlly thu I’IINIIntlal $tvilardtor’ .ICIIIVVIIH vqu[lihril!rn in a toroidAi QlomrllL* of ~nrh At’f;. !’ur thomv eon(:vptt4 wh,, rv ~t$(jm($try hy ctrtt,rn(llly ind,irit)~ a ruint ional renctor par84metcrn aro uiwun, tht ~t~VNIIIV14 Hhm Ild tran~l form in tlw cunrining maj~nvtic fiuldm; be V1OWIIIINq typical; th{, r(,{lctor i~mbodlm,ltlt iind idwllly, nn rtxi.11 cu;rvnt~ ntu,(i h Nupportud by the nrrnorltatod rrpcriat ini p.lramot(, rrn fnr d fiivatl 111.s turuidnl pl(l~mtt column, nn in r~,~ul ro(i in II Tok.tmak, ltlthuu~h Ilnt ( 1 very rCCuilLiy all .1 —. —.-—-...... !$toilllrlltor vxpl, rim,+nt~ ut iiiza(i Much currqnta Work porlutmo,l under thv mIspi,:e~ t)f thl! l). sO for ohmir lIIIlt LitlN. IIIQ firnt SLtrliarut!)r rauct,)r Ihpnrtment of ftnor~, {ieMlgnaJ~*’ltJ pr(jpornvd tho Unt! of ●.tparatv tt]rt~ldill ,Ind hvlii!ai coil Not II Chat Wttrv et)mhinu(i to f,)lm “ril:llr v-8” find racotrauk CUllftgUrflt iO~lM, ,.. I

I ,, 1

. . -. --,------..-.-!. ... .-...... ,, “-”’TABLE I “- ““”” - “’”” “-”-” or ------‘ SI.?I.MARYOF ALTERNATIVE CIJNCk.PTS FOR !tti\GNt:TIC FUSI~Xi

_~STITUTIUX(”) - ——REF. I. TOROIDAI. A. STEADY-STATE ● ...... -PPPL/CULttX4 11,12 ● Torwatron MI T/UWI SC/ PPPL/JAPAN 13,14 * (!? BTR) - – ‘. – ‘- ‘- ‘- - ORNL/NASA --- -- 15;18 ● Toroidal Bfcusp (Term.lc) “ (LBL/LASL) 19-21 ,. ● Surface Mngnctlc Confi,]ement (SurmaL)’ “ UCLA 22,23 B. LONG PULSED , ● Reversed-Field Pinch (R FPR) . ...+. .._. .— LASL/CULILLY/PADOVA 24,25 . ● Otlnticol !y-ll{tited Torus (ONTL) ‘ ~ CAC 26 . Ohmlcally-f!ofited l’okam~!{ (Riggatrun) INESCO 27 . -–----–-co ~uLsF:D -—------...... _— . ._____ ...... _ ‘~.“-——’---o ‘Theta-Pinch (RTIW------—–-:– ------( LAsL) ‘--—’––-—-—-’--?8 ... ——_— ● High-Beta St~llar~tor (l{BS) (l~P CAiCHING) 29 ,1; 1 ● Belt-Shuped Screw ?inch (BSPR) JUTPMSS 30 ,.. 11. COMPACT TOROIl) A. STATIONARY /.0 ● PPP1. 31,32 ‘.!. ,- ● Field-Reversed Mirror (FR.FI) LLL/UILL 33,34 . . 1. ● Triggered-F.econnectcd Adiilbatically- I ‘; Compre~~ed Torus (TRACT) Mshv 35 :)., ● Electron-Layer Field-Reversed Mirror ,... ,.. (Astrorl) I (LLL) 36 ● Slowly-Imploding Liner (Linus) NRL/USSR 37-40 i)j B. TRANSLATING .,, . . . . !.- ‘., ., 1! ● Spheromk “ UILL ‘;:;:’-””: 4!,42 ● F’iuld-Rover~ed Theta Pinch (CTOR) LASL 43 ● Mov{ng-Ring Field licvcr~t.rl Mirror ‘( (MKFRN) 1. ● Ion-Ring Compres~or ,,,’ 111. LtNF:,\R A. STKAOY STA1’t .,.,. :., ..., ,.-,,,:;,., ● Tandem Mirror (TN}!) LLL/USSN/UWISC 46 s Multlple-Mirror Solenoid (UCtl/USSR/ktSNW) ‘~ ’”’47,48 Bo PULSED c Linvor Tlleto PlnclI (LTW) (LASL) 49 ● Lust,r-llc,it,td Solonoid (LI{S) (MSNW) ,!, 5(I ● Eluctron-!io,)rn Ilciltud Solonold (E HIIS) (P I/ussl{) 51 Iv. VEKY DENSI; (FAST- PULSEU, LINK,\ i{) SYSTENS ● Ftrst-[mplofilng Liner (Fl,lt) (LAsL) 52 ● Ik>n!lo I’liltim{l Fr)c(l H (I)IJF) 5J ● Wall-Co nfln~, d $ilu{:k-llt, ~ltucl Ku,lctot’ (SIIR) P [/(;oLu 54 ● iron~(! %-l)luch (DZPK) LASL/LLl, 55 ● Pa H#lvc, Linrr# (NSNW/USSl{) 56 ——. —

(’l) p,tr*,,,tt,,l*,,M tndlcotu conccpt II for whlcli nuithvr uxpcrimvntltl nor oy~tvnw-studicti tictlvitioo pruHontly vxist.

this truly titv~idy-st;tte dcvtcc ● cI a r,?,lel{,r. ll,fiz~~~ AI LIIOIIj:lI tilt! trwlflnt,ti,: Nurfl~~~iciilly simi~nr tf) those in thv mvrc cwnplvx Stvilorotnr, thr dcnirod m{tl]net lr Koomotry COI) in print! lplr! ho rru~liod by UHIIM only reht lvv ly “f orco-f roe” hcllcill ~ol!~,l] Ev,,,, mur~ r,!~,!,)t~y, elimi,,(,tlo,) of tl,~ hvlicfll C{JIIM in fnv.>r ot toroid,ll CO1l H thlit Illlvr! ttvt$n nut~]orted to II di:ltort ion lIiIII nlluwt. d th~ Tor!tntr’on thv proml~c of higher and mur,+ rl,,lll~tlc nystcm modul,lr 1t y. Spr(!lficillly, i!q>l,~tn,,tltlltl(jll Or d do form~itlol] (twl*t) into II , ------...... ;tnple toroidnl-field coil set6~ O11OWS the name power o(ttput aw the T-1 derii~n l; u ‘-ui~ller Torsatrorr magnvtic ge[mrretry to he produced whilr reactor witli tlighur power density. ●llmlnatlng the helical coil set in favor of .s hi~hly modular device.)k In addition, more ..—2. Elmo—llt~ .Tor,,s.__— React~EftTN). me >ptimally orirnted coil forces ,ind lower stresses EU40 Bumpy Torus (EIiT) concept 1~= Coroldal are anticipated for this modu la r Torsatr,>n arruy of simple m4gn~.tic mirrors. llse procdae of approach. These new advancea have’ renewed a ~teady-st.lte, high-but,] reactor that opcr~tes interest in the redctor extrapol.ltlon of the at or ntwr DT ignitinn cmcrgrs from this Stellar.]cor/Tors,itron cr.rncept, a r~n.liss.]ncc that combination of ‘aitaple ml rrors and toroidal coinc~des with experimental success in heating a geonwtry. II:C cr~~tion of an ‘f-gemrated, ,lw ohmic-current device,6S the latter being a low-density an(i energetic ●lectrrstl rin~ at each prerequisite for eventu~l Steady-st{lte reactor position b~twverr mirror coils Is needed to ,-— . . operation. ‘- atahflizc - the bulk, tnroid,]l plnsrna against . . Qualitative advant,lges ttlat can be invok~rf well-known !nst/lbilities associ.ltod with simple for, Lhe Torsatron reactor concept include: _.. mirror con fin, .at, nt. ,...... — . . ..—. ,.’ , .——..—- —.. -.——- .. . .--— . -_-. — —. ‘he EBT was firs;. . ex.lrnin.. d as a re~ctor —..over . ,.-e Steady-state rnagrwtic field9 and four ye;l rs agn. 115 Int(, rim reviaiono and ,, thermonrsclenr burn. reasserisrwnts have been made during the ,!’! ... .. intervening ye~rs.17-1$ A burnpy-tor,ls ,. ● @erat ton at ignition or high Q for low conflgur~icion thut is stabllizod by energet ic ‘., recirculating power. ‘ electron rln[;s combines a number of unique 1>. features that descritw a fusion reuctnr with the 1- ● at.art-up on existing magf, ctic frslluwinp attractions: steady-state operation in ‘.’, surfaces Wi t}] lredict,ible particle/energy an tgl,itf,d c.r a high-~ ❑rode; a potential for :,- confinement at all times. high-beta operation with the uttendcnc efiicient ,.. utilization of ~gnetic f!e:d ener&y; la rgc 1. ● ,! Impurity and arrh removal by meuns “: u aspect rat 10 to give an open and acce,;tiible ,., magnetic limi Ler and helical POkOtd~ll genmctry; an elgtceering aasembly that 1s ., diverter that occur as a rrntural consequence comprised of .relatlvely simple and Compmct of the magnetic confinement topology. modules; e’t.st$ of maintenance, modular construction nnd n re14ttvely eimple ma neL No mzjor plasma disrupt lorrs ttlat could lead system. Althougl] the uarlit!st EHTR de~igw.~ ! ’17 tn tin intense, local energy dump on ttlc predicted relll Lively large power plants, the first wall or in the blanket j shield/coil. attainment of high —mm~notlc—.— aspect ratios in syste,ms w1:!l lower ~vsicul—.. ~ltipect ratinti through ,! ● No auxiliary positioning or field-shaping the use of iisl)uc t-rtiti[~t> !lll.lllccmctlt (ARE) COilS coils and moder+tte aspect ratio (~ 10), buth indicates that ssraller reac~ors may be possiblu of which ease nwfrrtenancc ,lccess. while simultaneously mairrt.linin~ the above

These advantages remain to be qu.lntlfird iII tlw lhe pr~:]ence nf the high-betu tilectrorr rings context of a comp rehcnsivc retictor study; 1’+ It each mfdpl,inc position is crucltil to thu M}ID incorporating crucial physir$ issllt,s (e.g., stability of tllu bumpy torus; a Simple h!lmpy scaling of br?t~ with nsp~ct ratio and t Ilt, torus (S unst, iblo tu drit’t nnd 11110 ❑odus. required or optimnl rot(]tiorriil tr,l,19furm, Di.im,lgnut [c currentti, howt,vcr, flow in tlw mat; net lC ahenr, and mn$rnetic-veil dc;>tu), hi~ll-hut,! clcctrt)u rirl};s, euclt plnyirlg the roil: en~inccring con$tr~ints (e. g., coil dv.fg,I ,Ind of a “coi 1“ posit [oncd within tht. toroid.11 piasrn,l stresses) amd economics. lit e.lch mirfpl,lnt$ Iou)lt ion, nl ~ resulting Pa ramet rt c studicg of’ an ignttt,d, dcpr~!s$ ton in the ma~nut ic field at the stondy-st~te Torsatron hiivc been .aIlmmilrfzedlq fnr elcr.:r,lrl-rin}; lor. it ion crudtus .1 local region of fixed values of rutdtlon,ll transform ant{ 14.1 -!fe V nvcr,l}:o-i.llr]l!mlm fiuld, giving a Ml{Wfmvorablc rrt=tltron first-wnll currunt l:::pj)= Z#!lo. decrra~v in thu qu,~ntlty # d~/B with incru,, tilng Alc/ltor trunsport scaling (TE ,1,,,.fl pl~sm~l miller rtid ius, Al t Ilotl};h thi# ro~ion of assumed, #nrf for u Tnrs,st run t equ:ll$ thu numhur fivurflMe-minimum fluid does nnl extund to tkc of Ilclicol cunductorq (2! con,l,lctor~ fnr an ccntcrllnu of tit,, ioruldol pl,lsma, .+ stohiiizin~ equlvillcnt Stell,irdtor). Paramctvr* for a cff(~ct Upori thv bulk pi,l:imo Luunded by the specific, interim re~lctor design point htrird 011 Clec,t rr>rl r i UIPJ ncverthciev.j rrsul tn. m c! the mduldr Torwatron (1 ./,. , do formcrl toiotdnl St,ll)i!fty Of tllv tli~h-t)(til t~roitful pidmd has COil# only) nrc di~pl.}yvd in Table Il. mlon~ Witl bu,~rl in fttrrud to be limitrd by a vulue of thu those <>f the t - 2 tlcliutron-C~2 itrd tile I .- 3 buik pia Nmn hrt,l (~lt thu rnl,lpinnrr loc~tiorl) that T-1 Tor#ntron,13 thu Intter twu rrou. or conct!pts approximately equotls the rlcctrrm-rin}l betii. operating with only Ill! lic,ll Coils, Till! hi${h Thc,Nt* ut.)b!i lty-rt!l.ltr:{! bvt{l Ilmita are baaed value of beta dttd the lar~e nmjnr r~idl,)n rtwult upon thv ~lsqmnptioil of rigid rln}pi, ar,.r $ensitivv in a Iargd thrrm,tl olltput for tllr llvlintrt]ll. C to thv n!isumed prt!ssuru prufiit!s hut never tllekti~u reactor. ‘3hI! morltrratn V,IIUII vf beta odopt~d in ai!r

‘1 !— ------...... ----- . . . -. --- . . ------—-?-.-.—.—= ..-.. -—...... ,. ,,, . . . . . ,,. . ,, _,. “--””’--”TABLE II ““-’”-

SUlfFiiRY OF TYPICAL STELLARATOR/TORSATRON FUSION RRACTOR CONCEPTS ,, KYOT062 f,fIT13 “ ~5L’1~ HELIOTRON-C T-l R-3 ‘,. —.—-. ~.~ --——------t=3 - g=2 ,, Minor radius (m-) ———-–—-–—-—;2. 8 —-– -—– 2.3 —-———2.0 Major radius (m) 28. o 29.2 16.2 ,~ Flasma volume (m3 ) . 4330 ! ‘ ‘“ “- >049 1240 1. Oensity (1020 /m3) .0.75 1.33 2.0 ,,: ., Temperature (keV) ‘“. ——---20 -—–—------7. 3 10 .,, L+3wson parameter (1020 s/m3) ‘-1.0 3.0 4.5 ,. ; ; ,.,, Averaged beta 0.035 0.06 -—— ;;.4, ''~lasma "poti6r-density-( ~/m3)"""----:-" !l~5"'---- 1:4- “—3. 2 ,,,,-—. IEnited/driven ‘burn –“— IGN — ICN IGN ‘- ., ,1, ~gnetic field (T) 2.9 5.0 ‘i.3 f~; Pulsed energy (FL3) 0, 0 0 ‘n , ,.. , Burn time (s) . . 9 l:: Off time (s) 0 0 0 ,- ,.. . current (t-f W/mz) 2 1.25 2 ,23 ‘Ilserraal power (NWt) 8500 4300 4000 1:.: Net power (MWe) 2530 1280 1190 !>:. l.; System power density (MWt/m3) 0.s 0.35 0.55 1:- Recirculating power fraction 0.15 0.15 0.15 ;;- ,. Net plant efficiency (nTH = 0.35) 0.30 0.30 0.30 /:,., > ,!,, ,U ltoroidal beta (defined here with respect to the ‘average magnetic field) for a mirror ratio of - 2 would lie in the range 0.13-0.22; these latt~r values are quite acceptable from the viewpoint of system power density and superconducting mgnetic TYPICAL REACTOR PARAMSTEICS FOR TNE ELMO BUMPY ,., ,->, technology. Tows (EBT) FLf.510f4 R5AcT0R corwwrls-la ...... ,, Given an acceptably small level of ,,,’:..:. .1, instability-driven energy/particle losses, the Minor radius (m) 1.0 dominant loss from the toroidal plasma can be Major radius (m)3 :;: .7’!,.? 35 attributed either to diffusive processes or to 690 ;:::::yv;:~8,:Y)) unconfined p:lrtlcle orbits (i.e., particle orbits 1.0 that intersect structur~il walls). The diffusive Temperature (keV) , ,. , 30 loss of particles and energy f rum the Averaged beta 0.2 non-a xisymmetric bumpy torus {.s determined by Pltisma power density (HWt/m3) 5.0 neoclassical processes in which the diffusive Ignited/driven b rn IGN/DRVN(a ‘ step size is influenced significantly by the Magnetic field(b Y (T) 3;5 ❑agnitude and direction of guidiag-center Pulsed energy (W) o particlt~ orbits in a toroldal geometry. The Burn time (s) . polol. dal drift orbits, thnt effectively cancel off time (s) 0 toroidal drtfts normally responsible for rapid Neutron current (NW/m2) 1.2 Class ic.11 losses in any toroldul geometry, arc Thermnl power (MWt) 3100 driven by E x B and VB forces, where tho Net power (MWc) 1100 ambtpolar electric field is prlmarlly radial and System power density (MWt/m3) 5.0 gradient-B dr[fts result from the locol bumpiness ItecirculJting power fr~ctlOn < 0.10 assoclatud with the simple mlrrurs. tklng tt~,is Net plant of ficieucy (~T}[ = 0.3fi) 0.32 neoclasslcnl transport theory, the exprewion relating thu nl E product to the plasma tempuraturc, T, the toroldol major radius, ‘a)EHTR .rangport ucoling shows a propen#:ty for and the m4gnutl~,2::)~~)2, of curvuture, Rc, 7: thermal runaway and hence, n potential neud for proportlon~l to T ‘this scdlln}:, when coupled with the fact thot moat dimennionlesn partmctcrs menwured for EBT experiments, with the exception of the toroldal-platima bctn, arc close co the projected renctor value, Indcud promlsus a tectlnologlc.llly attrnctlvc and economic reactor, —————3. Toroidol BIHcu~_~Torm.lc~.----- Like the typical pnrr/’rt>rtintrut), ae wctl nti a Table .111. . . . _ _. . . the Revcrsud-Field Pinch, the .-. Tormac. ------19-21 . la..—.- ., . . . . .- -.. —.. .__. .

toroidal device that confl~es”pli~m~ Ori combined ‘0.7, -which clearly-remains Ko’be”demonstrdted for polotdal anti toroidal magnetic fields. By thla asaumed steady-staLe device. opening the outer poloidal field regions, fkncrt+lly, nodernte decreaaes in B can be however, the Toroac creates an absolute miniwm-B compensated by modest increaaes in B, which for configuration that is FfHO-stable for large aspect the sample caae given above is already quite ratio and plasma beta. The resulting toroidal small. Increases in sheath thickness, degrade ‘line cusps support plasma on both closed field ‘the - reitctor ‘performance. Arguments can ‘ lines ( i.e. , high-beta, bulk plasma) and open ,mlml~~”,(;y~~~, that Tt can be enhanced byb~ field lines, confinement ‘Of–the latter plasma - n where - n is the bulk plasma ,being enhanced by mir:oring effects in the sheath density, an~ na is the sheath density. Batter region that separatea regions of open and closed theoretical sheath ❑odels are required before ,~field lines. Tie bulk toroidal plasma would be this iseue can be resolved. A clearer f .Surrounded completely by a eheath “-of ‘understanding of the mirror-confined sheath ‘mirror-confined plaama, and the composite physics as well as the startup, achievement and “particle/energy..loss time,.lt, should equal. chat ❑aintenance of the Term.nc fi.?ld/plasma ;! of —.—an ion-ion______collision. . cime, _7 ii, increased by configuration “—represent topics-of fu”tu’re” study. ~Ithe number of sheath in~entorfe- containid in--the ‘On the ‘basis—of “-the “iisaumed ’-parametera”””and bulk plasma. This factor is - r /As, where r is present knowledge, however, the range of point ;! !~a measure of the plasma minor ~adius, and A: ie designs appears promfsing from the viewpoint of ~.t”he aheath thickness; Aa should be no greater acceptable recirculating p~~wer, modest total ;-than a few ion gyroradii, pi. Given that puwer and steady-state (driven) operation for reactors of arnall physical size, low fields and ~:j%$;i:~j(r~:gi~~ -i;i;giv;~;C~;l’&m;~j;j~ ;~~ h% acceptable neutron wall loading. ! been projected .19~1 ! I,j ,. Under the assumption of a steady-state that 4. Surface Magnetically Confined Systeme ~~i,a sustained by neutral-beam injection, with an (Surmac). lhe Surmdc concept22 represents one ,:efficiency of -- 0.7, reactor design curves hsve example of a gene ra 1 class of uultipole I;been computed as a function of key System configurations2g6 in which electrical conductors ,1variables20 ● For example, if the engineering a re arrayed in either a linear or toroidal Q-value, ie selected to be - 4 (recirculating geometry to “ create a surface magnetic p ~we r fraction of 0.25) for Ti = 65 keV, then configuration with low magnetic field (i.e., high rp~ - b NW m and r B - 3.1 T m. Furthermore, if beta) in the buik plasma volume. ‘t%e Surmuc may .4 t.tW/m2, then k .Iw - - 1.0 m, B - 3.1 T, and the operate with cons lderably reduct+d synch rutron net power equals !30A, where ,A -R/rp ia the radiation emanating from the bulk plasma, and, plasma aspect ratio. Hence, for A * 4, systems therefore, thin ccncept IMy be particularly with net powers of 520 t4We are predicted. suitable for confining the higher-temperature Table IV gives Tormac reactor parameters for thla advanced-fuel plasm Y (e.g., p-B~l).66 case.z{’ The optimistic parameters listed for ‘ In ea9ence, Ch(. Surmac forma a “magnetic ,Tormac result in part from the aasumed beta of bottle” by paasing ~ti: ent in alternating directions through appropriately arrayed pairs of conductors. In this way a surface layer of !, TABLE IV rippled magnetic field lines is formed that provides the confinement of a bulk, high-beta TYPICAL REACTOR PARAMETERS FOR T}(E T~)RCIL)AL (0.2-0.4) pl.lsma. The curvature of field Iinca BICUSP (TOR.YAC) FUSION REACTOR CONCEPT~O in Surmuc i. such as to provide pla~ma stab~lity atce inner region of the msgllot ic surface Minot radius (m) 1.0 (i.e., an average mngnt!tlc KCIJ is formed), but M.ajur radiuc (m) 4.(I pla!,m., 1s expected to be rapidly lost frum thti 80 “bad-c~, rvtirwre” regions outside the arruy of :::;: ~v~:;%,:!l; ) 1.3 paired condllctors that creute the surf,]ce Temperature (kcV) 65 magnetic fields. Stable, hi~h-beta plaama has Averaged betn 0.7 been ccnfincd ttxperimcnt.llly tit temperatures in Plasma power density (MW/m3) 22 the range 0.03-0.25 keV22 using a deflagratlon Ignited/driven burn DRVN gun as a pl;!nmn oourco. Stnged heatin~ of ● Magnetic field (T) 3.1 Su rma c rcuctor Utilizllg the p-B1l fuel CVC1O Pulsed energy (YJ) 0 would be accomplished by neutral-bt!urn injuct~on Ilurn time (s) - UP tfJ - 10 kuV fullowt,d by borun ion-beam Off time (9) 0 inject On (IU NeV, 10 ,\) through puluud mngnetic Neutrou current (XW/m2) 4.0 window~6 to t hc opcrat in~ tempertiturc of Thermal power (Mh’t) 173) - 300 kuV, llle Clo!je proximity or Net power (M!Jc) 52(J ma};nrtlccrlly-lcvit~tod uupcrconductlnr nstgnctti to System pnwer deu~lty (MWt/m3) - 1.4 thu plll~ma mny prvclud~! the se of DT or othur Reclrculotlng power fruction 0.25 nt, ut run-rich fuel cycle~, a llmit~tion thdt Net, plnrrt effltl, ~ncy (nTll - 0.40) 0.30 couplrn with the above men? oncd udvilntagea to puint Surnwc towo r,lg tllc burning of advonced —.. . --- fuels. ILilctor studlcs IIOVQ not been axt~n~ ive, .-...... - ...... -, ,,-

5

- .-

. . , .-. — --,---- -—. ------. : ------...... - --- .— ...— .- -— - -— _ ___ but ‘Table V gives a range of typfcal parameters 1. me Nigh-Field f3hnically-lleated projected23 ~~6 for a toroidal dodecapole (g = 6) Reactor (Riggacron). Although in principle a configuration using the P-B1 1 fuel cycle. If the Tokamak, the Ri~trong’27 approach represents a 6-MeV fusion-produce alpha particles can be sufficient change in engineering approach and efficiently contained in this design, ignition “conventional” Tokamak physics to warrant may be possible. The technology required .to ._cor,sideration here as an AFC. ‘Ihe combined use protect the superconducting coils, which of hi2h toroidal current density (8 f4A/m2) and inherently must be located near the plasma, from high toroidal_.field _{-16T20 T) copper coils severe th-rmel loading is anticipated to be positioned near the first wall allows net energy difficult. production in a relatively short burn per:od from a high-beta ohmically-heated system. The >evere ,, ,B. Long-Pulsed Toroidal Systems - ——— .—_. thelmal-mechanical environment in which the . . In terms of power density, relative relatively- inexpensive Fusion Power Core (FPC) simplicity and symbiosis with the basic ❑ ust operate necessarily dictates an engineered confinement schene,-ohclc dissipation of toroidal .ahort —life. ––—The –-plasma —chamber .aod -the plasma –currents .xepreaents .-a._highly desirable -D O-cooled copper magnets would.be.small _ c heating scheme. %0 long-pulsed toroida 1 o? the increased plasma denaity (2-3( 20) JT~Y3~ concepts are described tl,at propose ohmic heating and high beta (’J.15-O.25). The 6-10 tonne FPC as the sole means to obtain an ignited would generate 1-2 Wt, the fusion neutron power thermonuclear plasma for reactor application: the bef ng recovered in a fixed blanket Riggatron (high-field Tokamak) and the located outside the msgnet system. Recovery of Reversed-Field Pinch (RFP). A variation of che joula and neutron heating in the copper coils la R~R has recently been proposed that would use an also an eesential element of the overall power external helical winding to achieve a more balance. The short-lived, disposable FPC would ~controllable rotational trarraform in a operate in clus~ers of 4-6 fusion modules, with reversed-field state; this concePt26 la called two additional stand-by ❑odules and a rapid OHTli (Qhmically-~eated ~oroidal &xperiment), and, “plug-in” capability promising high plant depending upon the selection of key plasma reliability/availability without ~ —.situ remote “parameters and technological constraints for the maintenance. “’, ;T’ .,;:;- ,’; reactor, ONTE would operate in a technology The optimm design window for the Riggacron regime somewhere between the R.iggatrcn and the reactor wa a invea:ig~ted . by means of a RFPR. one-dimensional mode 1 that has been benchmarked with PLT and Alcator TokamaK data. ... lhese burn ...... ,. .’” phys!cs results have been coupled to =terials, TABLE v neutronfca and economics constraint to specity hey engineering requirements. Limiting t+e TYPICAL REACTOR PARAllETERS(a:) FOR THE ~RFACE smallest FPC size on the basis of space required —MAGNETICALLY _mNFINED (SliR.XAC:) FUSION REACTOR by the ohmic-heating transformer and specifying CONCEPT~6 the largest size from ccnsideracions of breeding, magnet thickness and practical limits Minor radius (m) 3X4 on tot,ll power (i.e., 1-2 CMt) leads to major Major radius (m) 9 radii in the range 0.57-0.95 ❑ and sspect ratios kh:;yv;:dy~,:y;) 27U0 of 2.0-2,5. Practical considerations of material 1 stren.gthu, first-wall heat fluxes (20-40MW/m2, Tempcr~ture (keV) 200-300 no divercors) and plaama vnlum access ——versus Averaged beta 0.2 - 0,/, ripple constraints (180 toroidal field coils, Plasma power density (MW/m3) 0.1% ripple, 30% vacuum pmping area) reJults ir Ignitud/tiriven burn (mn~”lgnitc) a well defined parameter apace- for reactor Magnetic field (T) 5 operatiOn.9 Table VI summarizes a apeclfic Pulsed ener~ (M.J) o Riggtitron dasign point. A cost-constrained Burn time (s) a opcr~ting mode cmergea as follows: magnet power off time(s) 0 lM applied for a luw-density ohmically-heated Neutron current /XW/m2) o ignition; gds puffing or pellet inj9rct ion Thermal poucr (MWt) 2000 increoties and austnlns tht plusma density und Net power (MWe) 600 .us ion powor; eimlt(lneouslyl the toroidai and System pow~r tfcnfllty (?fWt/m3) NA polull)ol fields tire reduced to increaae betn and Recircul~ltln$; power fraction 0.15 to redl:ce the tokilmik uufety factor, q, to Net pl.lnt efficieo)cy (~Ttl - 0,35) 0,30 opurtitionill levels; burn control requireu 10-1OU Ha rettponsc frequt!nciw+; the burr would ha ttrminatcd by impurity buildup after -- 30 s, fa)unllke the othur cotlcept!l sutm.arlzod h~rein, the Surmac parmcters are b~lswd ota an advanu~d p-ifll fuwl cycle.

.- ...- . . ----- ..-...... —.._ .. .._ L..-_----- ...... ,.. ...

.. . .- .— -.-—- . .. -.. y...... -- . . . - .- .------r— 7—,7--,---- .. ---- ...... TASLEVI . .’--””--””””-’ TABLE VII

TTPICAL PAiWWTERS FOR THt. RIGGATRON (H IGt{-FIKL12 TYPICAL PARAMETERS FOR THE REVEttSED-FIELD TORANAK) REACTOR CONCEPT9 PINCH REACTOR (RFPK) CONCEPT25

Minor radius (m) 0.34 Minor radius (m) 1.5 Major radius (m) .. ‘0.85 ‘-- Ffajor radius (m) - 12.7 ‘Plasma volume (m3) 2.0 : Plasma volume (m3) 564 --—— . . . . Oensity (1020 /m3) 20-30 -... — . Density (1020/m3) ._ .--—. 20 Temperature (keV) 12-20 ‘ Temperature (keV) 13-20 Averaged beta 0.2 Averaged beta 0.3 Plasma power density ( WJlln3 ) 460 ; Plasma powar density (MW/m3) 4.5 Ignited/driven burn . IGN ..— Ignited/driven burn iCN Magnetic field (T) 16.0 \ Magnetic field (T) 3.0 Pulsed energy (M) 200 Pulsed eneru (M) 14700 . -..-——. ______..—. _____ ..__ —. ~,.~-..— Burn time (s)””” ~—” Burn time (s) Cf f--t !me–(~ ) ‘- ____--.?; ‘-Off- time (s)–——- 5.0 - Neutron current (.XW/m2) 68 Neutron current (FfW/m~) 2.7 Thermal power (!4’Jt) 1325 , Ilermal power (MWt) 3Gdo ‘Net powe~ (MWe) 355 Net power (t-i We) 7>(3 System power density (MWt/m3) 14 System power density (HWt/m3) 0.50 :Recirculatlng power fraction 0.33 Recirculating pwer fraction 0.17 Net plant efficiency (rIW = 0.40) 0.27 Net plant ~fficiency (~TH = 0.30) 0.25 I-J l:: ,-< ,.. characterized by a high Q-value and acceptable 1,. ., 2. Reversed-Field Pinch Reactor (RFPR). llre pwer costs, technological implications of ‘Reversed-Field Pinch (RFiI) is similar to a first-wsll thermal cycle and pulsed fields gives :Tokamak in that a toroidal axisymmetrtc a strong impetus to. examine the potential for ‘configuration is used to confine a plasma with truly steady-state operation. Recent toroidsl :urrent by a cornbinntion of poloidal and suggestions68 for Tokamak rf current drive and toroidal magnetic fields. Using a passive llmiter/diverters shotlld also be applicable to conducting shell, the RFP replaces the q ~ 1-2 the RFPR. Mditionally, the unique phenomenon of Tokamak constraint by -one that requires pitch convection69 may also provide a means to dq/dr f O; the variation of the ~gnetic shear sustain a steiidy-state toroidal current in a RFp should not exhibit a minimum in a region enclosed configuration. “ . .. ., . . :,. :.::,> by a first-wall conducting shell. BY removing the q constraint, the RFP can operate with a (3. Pulsed Toroldal Svat&s’. ‘lhe early quest current density that ia efficient for ignition on the part of fusion reactor designers to attain by ohmic heatir,g, unrestricted aspect ratio, the economic advantages of very high beta higher bet~ and appreciably lower rwlgnctfc fteIds simultaneously with the physics advantages of at the superconducting windings. toroldal confinement led to concepts like the Ikactor prognoses based on these degreee of toroldal theta-pinch reactor (RTPR)28 and the design freedom have been awide by two Lndcpc,ldenc Hi&lI-Beta Stellarator (K HS).5’29 It was generally ctudleszs. Ihe aforementioned RFPR advanti]ges of found that the fast-pulsed nature of the RTPR 1owe r nwgnet costs and the possibility of ohmic (i.e., - 1-2 pa shock heating, 307as adiabatic heating to ignit!on are compensated to some compression, - 0.5 s burn time) resulted in extent by the need fot a passive technological problems that trary outweigh the &lectrically-conducting shell located near the high-bet{i (~ 0.8) advantages for that particular pltisrra ●dge; the impact of thlrn stcll on the system. Ividitlonally, the ~hsenctr of NH12 overall oystcm modularity and thermal efficiency atabllity without fast feedback for the remaf ns to be fully resolved.2q As for muny of particular field configurations tht?n uncle r the lese developed AFC’a, ● n uncurtninty for the experimental investigation indicated other RFP is the poorly underato,.d scnlin~ of ener~ reactor-related problmm for both the RTPii and loss during and after nturtup and the relatvd the NBS, althou~h the latter waa proposed for impuct both may have on achieving lgnltlon by steudy-stnte operation. The most reccut reactor ohmic hanting alone. embodiment of tile high-beta adinb;itically- llrc point-plasma modal uncd to gcnerat~ the comprcssed toruid is the iielt-Shaped Screw Pinch basis for the reactor design given in Tfiblc VII (BSIJR). ~0 Like thu earlier RTPR deuign, the BSPR has hacn @uperceded by a ono-dimensional (raditil) is heated by a fast radial Lmploslon, hut II llHll burn M(mwlntion6~. Agreement hetwuon th~ two toroidal bias ma~netlc field in ~pplferir,] reduce model$ 1S gcro(i, with the onu-d imens f unn 1 the flrull values of betn and thcr~hy to enhance ●imulat tolls prcrilctlng #omewtl#t hi}:hcr (j-valliu~ utahlIitv, After the - 2-US implonlon phasu, the becnuse of lower fieldn mnd toroldol currentm plnun,.t is adiniwttically compres~ed in 0.1 s, an reqwl red for l~nitlon. A2though the Lonl{-pul+ed ignltinn/burn phase would ba su~t.ilncd for - 17 unrefueled de91gn given in Table Vlt le BI and the imr>lnM itJtJ/comp re~si(]t]/ i~nltiot\/burn -..

7 :..

.—.- .-- —--- . - . --- . . . . . -- ~- ...... , . . . . TABLE-IX” “ radisl dimensions are appr~piidtely ‘ch6sen. -the- alpha- p.lrtlcle energy added to the plawn>ld from TYPICAL PARA.YETERS FOR ION-RINC COMPRESSOR the DT burn is sufficient to compensate for the REACTOR CONCKP~5 ❑echanical Iosnes incurred during the liner iaplosion, driving the liner outward and COMPRESSION/ repressurizlnb the helium reservoir. lhe “BUR?i CtfXfBER ‘liquid-metal liner is sufficiently thick (~ 1 m) Deuteron ener~ (MeV) 30/3f.lo at peak compression to sb’eld neutr~nically the ..—-_ Total fast-ion charge (C) 1.5/1.5 – ““-– permne!t--struct ure ‘and liner implosion Major ring radius (G) 10/3 ‘ mechanism. In addition, the liner mite rial (Li Radial ring thicknebs (m) 10/3 or LiPb) functi,>ns as a triti,sn-, “Aial ring length (m) 15/4.3 “ primary heat-tr~nsfer meditna and “recycled” first Temperature (keV) < l/2i3 -–—--wall that -is capable of accommodating severe ‘“Density (1020/m3) 0.1/0.63 ‘ thermal loadings. ‘Fusion p~wer per ring (!4W) .—.- ——0/300 ---‘ - lhe—... NRL grouF proposes two approaches to the .Total–ener~-pe”r ring (?LI) 50/540 Linus concept. l’hc more recent “NRL proposal--uses- ~~l~ifetime (s) —-’ ‘- ‘0;1/5 ‘--”—---tangential ‘injection “to- ”-create=he—rotat ing ‘External magnetic field (T) o.1h/1.4 liquid liner. This approach would operate with dfagnetic field at ring (T) 0.20/0.67 ! two oppositely-directed annular free-pistons and “&i&l current (MA) 10/10 ‘ would avoid the problems anticipated with First-wall radf!js (m) 15/4.5 t high-temperatur~, high-strength rctary seals and “First-wall load. ng (!4W/n2) 0.1/2.3 bearings associated with earlier designs that ‘compression time (S) 0.2-0.5 used radial pistons to drive the Implosfon. ,_Duty cycle 0.8-0.9 Axial pistons would also develop an axial .Rfng energy gain 3 convergence of the liner ma:erial, which would ;L, allow the liner energy co follow the axial -. ,, contraction of a FRC plasmoid that occurs durir.g ‘conducting shell, finite-Larmor-radius radial compression. A compression that is driveti stabilization IBSy be important to the FR.V by a tangential injection also elfninates the ‘stability, and an upper limit OH S is generally need to rotate a large fraction of the reactor taken to be - 10. lhe reactor implications of structure, while simultaneously leading to a more these constraints on S for the FRM approach have spherically-symmetric implosion (reduced exposure been addressed in Ref. 44 and 71. of reactor structure to “water-hammer” pulsed ,. . ., pressure at peak compression) and allouing the —-..B. Slowlv-Imploding Liner Reactor fLinu~)—.— liner to follow more closely an The use of a “dynamic CO1l° to he,lt a FRC by axially-contracting ‘ FRC ‘- plasmoid during strong adiabatic compression has been under study compression with . reduced end-streaming of the as a reactor at NRL37S39, at LASL39 and at the fusion neutr~ns. The LASL par.imeter list gi~en Kurchatov Instituteq O. Table X summarizes in Table X ia based on independent Iodellng36 uf typical reactor parameters along with parameters an alterndti.~e Linus configur.rtion in which a for CTOR and TRACT. The liquid-metal liner is radially-collapsing shell with tangential impl~ded by a mechanical or gas-dyndmic drive injection provides the liner drive. onto a FRC plasmoid, transferring the liner kinetic energy to the plasmoid through magnetic —.c. Tri~cred-Reconnect.-—______ion Adllbatical~ flux compression of the high-bet:l plasn~. The Compressed-.————.-—_Torold (lR,\CT) Keactor Linus renctor promises a high-power density with Like the Linus Content.., the TRACi ‘unique solutions to several technology problems. approach ]~’76 to the utilization of a CT for net This concept envisages the nondestructive and power product ion envi9ngcs the stationary reversible Compressionlr-e-expans [on of a (flOnCransl.JCinN) adiabdtic compression of a quasi-cylindrical liquid-metal (Li or LiPb) liner preformed FRC to lgnfClorr. Table X also gives that is rotat ionally atab[ lized ag.linst typical reactor psrdmeters for this - I-l{z Lzyleigh-Taylor morfcs at pe;,k ~o~re~sion, A batch-burn system. Utilizing a longer burn high-pressure heliun reaersoir (-- 15 F4pa) would period (- 0.5 s) and lower miignetic fields (5.3 serve as the liner energy stor:lgc. The FRC T) than Linus, .s hybrid supercun- pla.smoid can be produced .—in sitll using rotating ducting(dc)/normitl(ac) coil system would provide relativistic electron beam techniqucs7k or formed the required flux compression to achieve ignition externally by a Field-Reversed Theta Pinch in a ,>lasmuid of initial 0.72-M radius. A (FRo P).75 Oepending on the apccific first-wall copper coil cancels and subsequently appro4ch,38~39 the initial state of the plasmoid reverses for a few millisecondti the field req,lfres 0.4-0, 5-kcV temperature, 0.5-T m.ldnettc gcnvr,lted by an exe-blanket superccmductlng coil, field, average beta of -- fl.6-O.8 ,Ind s Iengtli nf during which time a low-temperature plasma is 8-10 ❑ . lhc plasmold 1s compressed on a -- 20as created. m e super conduct frzg flux is timuscale to a final state (15-20 krV, 5(3 T and re-eacoblished in th,~ plasma chmtber in two 6 z 0.6) at which potnt n vigorous tl,crk~n”cle,lr dtages: a f~~t (shock) stdge and a slower burn occur$ during the short (- 0.5-1.0 ms) dwijll (adllb.!tlc comprcssiun) stage. Wring the shuck time at pe.lk compression. Provldod th~t the ph,l!le the plas.mit COIUMN and trapped (reversed) ---- .---— . ... . ,

9 ,-~J J...... TABI.E X

TYPICAL PARAMETERS FOR A NUMBER OF REACTOR CONCEPTS BASED ON THE USE OF FIELD-REVERSED C13NFIGU1-!JiTTOPiSg ,.

Linus(a) T~cT35,76 CTOR43 —.- —— ,. !’ Minor radius (m) 0.08/0.037 0.14 0.31 —.———.—.. .—— .—. M.,jor radius (m) 0.19/0.11 0.36 ‘—- 0.52 ., Length (m) 3.1/10.0 . . .. 1.88 6.0 Plasma volume (m3) 0.35/0.50 1.52 12.0 . . Jensity (1020/m3) 2400/1900 28 10 ,., . —*~,~o-.. . Temperature (keV) 8-40 12-14 ,.. .- Averaged beta 0.55/0.60 “;. ; 0.77 0.8 Plasma.power_density_(14W/m~)..-.___4_O65005OO 560 230 ,:...—,, — . ;; Ig~it-ed!d$ive_n burn DRy~/~G~ —— ICN —-IGN- f., ,.,, 54/60 7 4.2 i i:: ~~~Z~i~n~~~~b$T)’ (MJ) — 1400/1700 570 240 !.: Burn time (s) 0.0004/0.0010 0.5 2.0 :.’; Off time (s) 1.0/0.5 0.5 6.2 . Neutron current (ifW/mz) 305/259 10.0 2.0 “1.. . ,.- Thermal power (MWt) 1790/3350 520 1050 ,- < Net power (MWe) 507/9 o 130 310 ::: 4.1(C I /4.~ ‘,. System power deuity (MWt/m3) 1.70 0.70 ,.. ) (- Reclrculatink power fraction 0.15/0.22 0.19 0.15 !.,. Net plant efficiency (nm) 0.28/O.27(0.33/d.35) 0.25(0.30) 0.30(0.35) j;: i<, !,,,, ‘., ,,---- . ‘a) NRL/LASL parameters ‘, ‘- 7,--; ;.;S ,.! ‘b) Initial liner kinetic energy (mechanical). ““’ ““ ‘- (c) calculated using reactor volume including the gaa reservoir used to drive , ,. the liner. Lf the smaller volume enclosed by the unimploded liner is used as the basis, this parameter would be increased by a factor - 5. .,,’,;::’”>: :., , .- .-- ..->.,. ),, ---- ,,

bias flux are radially compressed; significant pulsed–ener~” tra-nsfer e-fficfe’nc~. Ilrermal and shock heating results. bring the shock heating direct-energy recovery from the burning plasma and subsequent adiabatic compression, rusp coils has not been considered, but should lead to at each end of the 8-m-long plasma chamber may be somewhat reduced recirculating power fractions. needed to reinforce the trapped flux while Te method for heating a FRC plasmoid expanding the foward flux, leading to d delay in proposed by the TRACT approach leada to a the reconnection of field lines. At the time rslat!vely small pil~t plant of ❑oderate cost when the external field induced hy the fast thit MSy operate on the basis of near-term shock-heating power supply reaches a PC.’C value, technology.76 A large commercial plant that t rigKer coils are activated, and field-line distributes the pulsed power supply costs over reconnection occurs. An elongated FRC results, several reactor modules benefita from an economy which r~pidly cmtpresses sxially to achieve an of scale that predicts acceptable direct capital equilibrium configuration, this axial compression costs. ‘IIre advantages of significant heating providing signiftcnnt heating. As the first-wall promised by axial compression (redoced voltage bias coil continues to discharge to zero current, needed to drive a radial shock) and the use of the full superconducting field is retrieved, and the hybrid msgnet approach (reduced magnetic a moderate amount of radial conqsresslonal heatfng energy transfer and joule losses), innovations follows. The resulting - 1.5=-long plasmoid which indeed may be significant, are would attain ignition and burn for 0.5 S, this counterbalanced by problems that have been cycle being repeated every second. identified for other similar systema2g (in-core The TRACT parameters given in Table X apply voltage, pulsed ener~y storage/transfer, therru+l to a prototype reactor that would generate net cycle, etc.). electrlc power in relatively small sizes and flt low cost.76 A fusion energy of 538 MJ is produced D. The co~.ct Toroid Reactor (CTOR) f rum each batch burn. lhe msgnetic energy The CTOR system+ ~ould usc a Field-Reversed required to null and reverse the eupcrconducting Theta Finch (FRoP) to produce external tr the field is 570 NJ. Joule losses incurred in the reactor a FRC plasmoid that is subsequ,,ntly first-wfill copper coil would be amoll because of t ranslattid through a linear burn chamber. This the hybrid magnet approach and transient nature approach differs from bOth the L1 nus and TRACT of the current nulllng. Economic recircul~tlhg systems; the high-voltitge pla$mold sour.~ aud power --fractions are c,ilculated for a 901 compression~l he.itcr ore retaoved -from the ..buru .. - - . . .— -.

,- 10 .—..

‘chamber- ~-ti-”a--~le”as” “l,jstfle “ ‘Gnvfronmen”t .-” ‘-’TO plasma transport as” the” ‘plasmofd ‘den.jity=and minimize the technological requirements imposed injection r

11 r . .. -.- ...... ---, .-, ...... —--—- . . -- . - . TAli LE XI A. t“at.t-Llni,r Re.lr[,]r (F!.it) Tllc Ilhl: 1>t a~flc, ic,llly-drlvvn mcrlliL- TYPICAI. PA RA.YETEKS FOR THE LI!; EAR Tl’}:TA- I[ner* 101 LIIP ,]dl.lb.lclc coq,ro+,l,,n of LIT PI!icll RK.!CTfJK (LTW)’ ~ Cl):/ “!. r tiI’rll pldsn.in to :hernnnblc lt~r cnn,ll c Ic.119 hak been R.E-}:NTRA’:T ESIIP1.IICSt.ij utudlrd by a nmbcr of Invi +Llgat,jrs, e~-.t T~le FLR52 apprc l,!! fol I OK.> th~t Uf [y k.l~ca,(,v . Flr~t-wall rddluu (m) 0.> broupq] ail emplldslzus !abt (10 - 10+ ❑/9), Len~ch (m) 150 ‘ dvqtru(.tlvu I ,Ilosld[ls of c,,’) mecalllc @hells REP radll, s (m) 5.0 ont~ DT pl:*\z.1. nli$ JIIC pr coebines the ?l.I.srn.I vol(lme (m’) 260. chrlr.lcccrl+tlcs of lncr L1.11 , on flnelw, nt and Implosion field (kV/mm) 0.1 he.]clng WICII tile more efflcier]c c=na.r~ cr~ns!er 10-26 assocltrrd Wlttl m.aJne tic n,,pri,n&u L;l; thu 11 Comprctisloli t[nc (~)” 0,03 - “-lnplodl:~ onccb ,r - 0.5 keV, -102tr;_3n1’” D-T pl.1s~.1ll”t, r ll,~rll th,l L is ini Li.l I]y formed in sIL,I or ,!lLernatlv(.1:+ tint(a) 0.4 — —— 0(( tine (.1) 12.4 CIN ICI be lnjocLI,d into cllc Ilner. Aq the liner NcuLron curr~nt (YH/m2) 2.5 i~lodt,s [n 20-.’1U u9, arflabarlc coqres913,, Therul puwcr (Xxt) 36t)b , raises tht> pl.]sma to tharmoltuclear ternpcraturcs, Nec jower (HWC) 1 (.)80 and a vigorouM burn en~ucs for 2-1 Yti. Lhring SysLcm powur density (!lW/m]) 1.1 th,. irnplu~lnn Clld plasma p~ess(re Is con fln?d Rcclrcul.lllng power fr,acclon 0.25 lncrtiillly by the met,?l Ilner and cndpl~lp walls. Net plant eftlclency (n~ _ O.LO) 0.30 An lmbcddud aZilMJtllill Crbignctic field provid.:s r.itil:ll ,II)CI ,Ixlal cht!rm.11 innul.rc ion. Tll e FLU utudlcs h~vc focused prim.arlly 011 the dcvclupmvn[ (“)~tis[,d ,>n tcn tlmu~ croqs-field thcrwl of reullstic plu HmJ/llner ❑odels ond tllu btirn condu,.tlon in REP reglor,s. optimization bacrtid thereon. 5? Orl the 5.1s1s Of Fhy SiLS de~i21, curves derived from th., sc .! Optlmlz.lclons, [II(* lnterlm, ,FLR ,)pur~Lillg poin L directed by o sm,ill rtidlt]H-of-curvnt{lre ..n.ldu lt sumnlrizcd on T;lhle XII has cvolvrd. to a ?lvcund, p,ir.lllr, l pl:lsn;l column, nlc pIaha,l ‘th C Sljor etgl!lc, rr in}; n nd technol, )gv wfcllln cl){. NtP rt, glen m,ut nect. #stirlly be in pro blcrn,i in or-l(, r of pcrcc, ivc, d impnrl.111,.,~ orL,: “r[Jrold.ll” cq(]l llhrl!lm but in J1l likelihood pld$mn prtip~lrot ion; the ecotIomlc!I 01 ,J(,srroyed ,,, wou]d bu ~uhjpcttcl co a norm 10US cro~s-(ield tr,lnsp9r L Ir)s!los, wh[ch for chr propos!, d ucslgn ,, rep, ]rLed in Table XI i+ .9 Sllurled [0 equal ten TABLE ‘II ‘“ tlmL,s C1!l!ISICII VOILIVS. 711e L“rPli re;ictor paramet.cr$ sllown In Table TYPICAI, PA RAMET[KS FoR lHt. FAST LINEN Xl hnvc been dctrrmlneri by n tlmu-dupen,lcnt oxinl REACT(IK (FLR) CONCE1’”r52 burn Cudc. EaLll [II? imploslon and udidb,l tic O.? COcrpreqs lull coils upcr.lcc nt - Om Lcropernturc nlld Inlcl,ll I[nur rd,!l,l~ (m) m rc Iociltpd Uut!lldc r , ~ a riidllls first WU1l lnil ill l{ru,r tll IL L.lll. HW (mm) 3.() nlld O, L-m thick bl,lnkt,[, operutc nc.lr IOU K, and Liner le,l}:tll (m) 0,: rrqulrt, 0.9 GJ and 44 GJ of pulst LI encr~, Xnltlitl ,lzlmuth~l LIL,II (T) 13.1) rrspcctlve l:,; rcvar~lblc rt. c{jvcry of the Inltliil llrwr unuriy (GJ) 0.34 #dlilhi\[lc rompreqslnn enrr~ ut 952 rfficlcncy 1s Llncr Q-vdlue 10.7 Bpcclfli!d. ‘RI(s 0. 4-s burn rvduceu but Joen nut Pure fu.lon yield (GJ) 3.5b ●llmlnntc Lht! prubl,~ms ilwocl.lttd with pulsrd Enl].lnccd fuklu,l yield (G.J) 3,92 t hn rm:i 1 lolldlfl~ of the first-w~ll, envr~- Tm::;;L;;;2$:y; - 15 ,g(!u)() tr.lmsfcr/slor$j8c ,nod lMglltbt *truss. zn T?ZU pruucnt un~. vrLnintlc, n of the Rt:P npprutlch, ttlc Cln!+l! lunicrd/drlvv,l bur!t lGN coupllng of t Ilv lmplofllon prullc.tt[n~ co tllv B;ril timr (H) 2(10)-b ru,lctor core (hl~lt-vultngu ln~ul,ltud bl, inkt!t) und ofr timl: (s) 10.LI thv need fur un cfficicnt energy -tr,tllti fur/n torci~c Thcr,ru,l power 04Wt) 430 ny~tcm ruprvsu!lt lrnport~nt lE*UUM for LIIC LTIJR. Nut power (MWt~) 129 SyHtvm puwcr dclltiity ‘n) (tiWt/m]) 5.8 ~1. VE!4’i I)}:NSE (P ULSEDA LINKA~ SYSTt:NS Rccirculolln~ puwthr o,~5 ——-— ..- —.— —...-— — ... —- ---- fr.lctlon Of thu flv~ fu~t-plllse (- l-IIn burn tlmo) Ncc plncoptn nru desert hod. -. .,, ‘. . . . leads Jnd linr”r;’ bl.ist” cbnt.\lnmcn L; the swltchlng TABLE X111 ‘ “-’ “.”’-’”--’; ?nd Cr., ns!er of ener~ (0.5 (;J, 2U-IU ps); and frcqurnL (lt~-:~ 6) liner find lcmf~ repll.-rm+nc. TY1’1(’/l. REAI:TOK PARA.YET’thS FOR Ttl K Each of tl!es~ lSUUOS 1s briefly ~ddre~srd. Fnur SIH)(X-!l E/\ TKlr, kA1. !.-Cf~SFI::hl) FUSION J!ossihle plasmd prep.lr.lt 1{111 II C11U171C6 are fW\Cn)R cmic~pr$b considered: co-ax l.11 ()%rsh.tll) gun lnjucclon, shock-tube injrct ion, exploding D-T thre. ids, .Ind fornit fun ● —.—.in Qitu pl,isaa by lectron 01 laser bc,lms . 31re destroyed leads strurturc wuld repreurnc the major buc tenable (less Lhnn 3UX uf ●lr,. tricity C,)st) rccyele cost. An lntl!r!e.lvvd lr~ds structure hss been ,1ptimized5? on the b~ul:] of real fsttc recycle cost for the cnnducrnr and for insul,{tor ref.jbrlc~~t ion. Det.tile,’ ~truccwral an~lysos of thd bl,t\L vessel .tnti bl,]st ralcig,+t ion by in[ervt. ning cool~nt spr,iy have beun nwdo. Tht, sc Stud ie!l lndicnte th.i[ nc.lrly aphrricfil vessels of 2.5-3.0 m r~dius {ind 0,2-U.5 ❑ wall thi,-knesti w.)uld pcrfnrm ttdcqunr t,ly under a ten-year f~tlgur cons:r~lll,:. ‘ille rapid energy transfvr tru$~ests the uac of slow (-0.1 n) hot?op,~llr mntorlgcneratortj swi Kch,, cl into n ritor.ib:e !ndu,. tor; the nlor.]go Inductor would be rapidly awltchcd through a tr.lnsfer cnp.lclt.)1 into tht! t Inc-vtir yin}: llncr Induct .anrl,. Reversible recnvery of this energy is not requfr+. d for the design p,ivon In Rcf . 52.

—-.B. .Thr. . . . MI. . C,,nfined--.——- .Shnck41r~ltrd...... ______Sledccor.—_-_,. (Still)- Simll’1. to , !IL* FLK appr,)itch, th@ SI{N I

I technii ,)1 sentiv is not requi rvd. A - 2nl --.c. —---httit-r-lll~d Systm----- ll:ltM U[ ;uniun pow~,r tli~it are und~$~irol)ly ~-10~tl-3DT g,,, in the ann,)l.}r r~gion nrrwll, ‘ilIc DXPN cnnt:t!pt is cluqu~, rrtly uinq) l,!, m ) alutlg With thl~ tll~lrmnll) ,in!IU1. Lillg rvprc80ntlnu nllv of tllc (~{lrllo~t conf im!munt biaq ffCld (3.2 T) WOI.,]d he swept down thv 8C111!IW!I ~ollMld(.rQ,],t31i A l(lr~o ~!l~~ctrical currunt Innul tub(, by tho rtuixuvtic pjstou, 3hc shnck (- 1.5 MA) (II initl.ltc,l ,III)ng n ~ulv-millimvtttr, re[lvcts off the tubu oudw~lll and is nl!tjwud tn lo~or-formt, d curr~,nt Ch’lnnd 1 within a re-oxpnnd tnd fill the mnnulnr chnrnb~r. Aftvr u hij\ll-pre**uru (~ 1 otrn) DT goll. n~t) period t>f f’rcu-exp~nsinrr, shuck re[luctlnn and Ohf,l[l’.l 1 Iy-ho,ltvd ~:(~llst~ltlf-rllLli(lB Cllumenc would diqqlpntiorl of a port tot! of tho inttrrnol bi~l~ prud(lcu 20-40 tilnc,lrtIld ancr}~y inltlally field, a 10-keV plosmu w{,tild ruti,,lt if thvrnu!l do[ivvrcd art mll~nt!t ic field IInd ohm i c conllllct 1011 to the tube wrLllrL iN no morv thnn ItIf) dl[t,lipntlon. sot 11 !lIlolytic and nurrtvricdl timr N Clltssicnl prcdiction!to Tht, dyn

1 ‘1 1.

1.

“1, TAI!:CI. !1 v

4,

11.1 1.1(111)-’” 1.7(11,)’ 5. 1(1- Ill

- )(1(111 h, (),:4 2( 1(1)-” o. I 2.’1 7. ~ A I h 11),4 11.1 1 (1, )1) :: , -.. .

11, ~ll!br, “A - ralamlll. St,ml) ,If III- To,rma. 1 “.1.,,, Rra&[ I & ,)11, el~l ,“ Lu ● Al ● IIIFO s, I., 11111 ia l.s 1), Ial.’rl ro~,l,tt LA-” Yl\-”!h [A,, flu.1, lq~ul.

1(. R. 1, Rlllrr, h. A. Krakhtwbkl ●n.+ i,. t;. rmlllhr, ““7,,1 =4, I,, mlmlll Mraa t,, r lkhl~n Ploi,lt .,”’ Tr,snrn. h-r, Ml, 1. %,, ., 11, 9?.’)* (l V: Q}.

Il. A. Y, UIn M, ●l Al. . “Nl~h-ne14 l’,lllflllcwlll FE I,r IJmrmm II! “!,11! II-,,1- !hlr.~t - A l>ln,.rl~! f,r ● Ib A,fvan. #d ~uwl )u~loul Rrail, Ii,” Pr,la”. fill, 141-A .Inl. ,11! P 1 ● mlna I’1. y.lo ● ●nd t.aplutrl, il.. ! %,, Ir,rr Fuhlmln R*mrar, lb, l:. IAIA-(:h- .M. AA: ~.lulv 1-1o, IYMI1).

A. !;. ~~rhl,k,]wlll alllf 1. ~. kW*I,Mj ‘“tunll all R,..*, I,, r wlrll Pllhl.l. Frll,.,, til l”,” N,,,.1, pun. , Ih, hlq-l,~? (1’);(,),

It. L. lkt Mrnmun ●n,l ft. A. Kri~b,,w. hl, “ 111● I 1. Jbvc.rrnr,l.}1-ld PI Iirll ll~a,t,)r (k}l’h) ctlnte;lln” I.IBH A1.ImNIM SrlriIl I?II. l.mlMII il,~r.., rrp, irt l. A-) Y;l+l!i (AUIIIIM1, IV7%J.

k. lLIuttIx, R. A. Kr.tht,wuki, W. R. $pi.~rm ●nd R. l.. WINI,NMIIU, “nlU Mevrrrii*-Fl-ld PI n.11 1+. R.I.11 for, ” MIcI. lam. and lk191,;tI ((II br pullllqll,,,l, Ivmll).

T. (Ilm.lwd, “(llllt; A hw FII*IISII l:,, !l, ,.l, r,” I’ti”l”hnllldl * .-I,,, I,.,, L1,,I,, Griii.rltl Ali, fll,. 1’). [’,, mIJnv (!LII , JVH(I),

M. U. flutin,ir.1 Jnd M. A. Wlannv, “C,IllL’I-IILU~Il 11,. Iknli:ll 01 Wdul,lr Tllriwtwny T~)h,lm,lk filmw,rlr.ll Fnnl,,n PuwOr P1.lnt ,“ Inlrr. l!it:S[)l, Inr. rrlltlrt (Al~rll 17, l{)l’AJ.

II. A. Kr.ik,~w*kl, k. ‘.. Mlllwr, UIIII K. I ,. Illr):l, nrri)ll, 18,~ ,,. rflc 11, H P,, IIII cull~l.lrrnf 11111 for I Ill, U** I I,roncu TIIo!II-I’1 111.11 Re,lt.t,,r 17. (R I’PN), ” Pr,,r, ?nil ANS Toplcnl Mrvtln A ou tltv Tmthntml, BNv Ill G~nl rfjl 11-11 Nlivl,.,tr FUUII III, 1, “I’I/-l /i I (Svp!,.rnlwr J1-?J, Jil/ll).

H. Kiililm,tnn and W. Kdpp,,mlflrlvr, “1’IIN I 1)11 lh, ill. Il)r t%drdttwrlrntl~’ri III II OIIIIIIIIIIIIUV w bl iI dml Anp,,rt NAll Ul” Pro,’. fIth Kur, bpunrr Cl)!ll . 011 Cf\llcr,Jll,,d FIIMIIIII dnd l’l,IMm,I Ill. ph~IIilqN, MI HIIIW, U:; !W, j, 141-J44 (July 1!) - AIIAJ,IIrr L h, 19/1).

}1. lJu Ntr{1411, @t 11l., “A Ik, drtor Study 1111 thn RF1l-!;liitpWd !i[.”rww Plni, h,” Notherlilthlri Eni,rky hmutirrll 14JundIIlluII ruport K,; h-?? (I)rtoln, r, Is/y), 19. H. N. llun~,ir, Il. P. Furthl h. fk~b,lynMht, M. N. 7k)rIPtIl)lu LlI, and A. H, M. TrJIJd, “I, IIW-AHI}III’I- R, II III Llmf f IJf tho Toruldnl Jtl,,irlilrl lhrI Sphvrnwt k,” Proc. of th~ 71)1 lntt, r. 0)11[ , 011 P 1 frrrmd Phy Mirn n nd

1) ,, ..,, ,:, .! %., .,,, r., . b, .,,, .. fa:li .,!. t, .::: i,.. .,, ,. :{) <.-0..::, .. $,... ,, .* ... ,., ,

,. I . . w. ha, ,.r. ~ .,, ! *. 1 .:..,,, ‘“. ,., . ,; .:...... , .,* .,. ;l m.. , .:. .a. . ● :*. :# ... ?., ,,, . $>,a. n., . kl ! f,, ” . . ,,. ~: ;.,, s.f~,:.a raf. n.!. t, f., , Pft r. . r.. g.t~ II . .. . :., ,S r,, 1.;. 1, %:~ ?...!, ;: 4.. *I*: -J n* *,! ! .. . rr ;.: ;~.,. .’. ‘,. ,1’).. .. ’.. r .*. 4!. ,. ‘*. :. v . . I., .b. ,., .,m

1!, ...... !., , ,. .{.,- 1:1, ,,n .-. .’., .,, !. 1..:.-. . ...\.. ~: !.,.! .,. ,!.4. ,., .,, 9. :.. ,n&? . ~. ! D. 4. II.....*:, .. ‘“ V,. :IJ: .4,, :W. :~. l.,: .;, .:,,,, f.. r . ~,”~. },l. . , :* *:,,. .:a. ,,, . ! }1 -:! b*. .f ..! Wilt. f Me, f ,,,’ :AM?. ..P :fbf. m; Dra, r’:.,” ;. ,4:.:. l.lv. f- r.- la~..!l, r< ICI r: 1 ,”:...’ ,. :C. !:!l :4 !!,.. r-b :. .A- . . .. -v. (l#:*l. . . . . ,%. .

.-::, l.. (,.A,.~r: .,li. ; .,. .,, ::!lh ... .:-w.! . . &.. 4 .,. .- ‘r. ,,j.4. a~. . . .J, h. 1. Il. )::!?, :. :. lb, ., .. . “.. }. ”--1. .,.. ! ... .:,!... ‘1 . ‘-r!, :. w. ‘- ..!... a! A. ,. ‘..11?1, II, , “’l . . . 4 ;!.,,: :- .:,,,. .f II. * B. I. I’1 :., ““trr: la: 41, . . . *; :...... 1”., IIr:!-. i. ill.! Ml I!! ~.. ,. 1,”’ :Abfe . ,,: fl,. M.. ; #, bl .,: }1 .,;- U.. .!J. J w, ;,,,

1.1. !,1 .. .1. l.h..r,~ r, t., r. 1!; :-.. :.1,.’ lir~ ! 1.”” rail!:! $..lb nl..l l..r !.: .. -., (19:4, . r*~. Arf ““i) .,. i ,!,I’F, .

l“.. H. J. UI 1:. nl,,. f,:, A, l,, Ib, !!!..l l>, !.. 1:. 4’9. Ii. N. tl-:, ?lr.., !. ● .1.1 :. ba ...... MFIO, 1$,S,, I, II ,S. ,ll r, II, k. bin-, “7+A :; A Ar.1~.bl* ,,1 !f, r : :,- P:,.; -., rv. . r sad :1 )sl .1,. Voanfdr n.l~r!l %,,, ● ,. J.C, .. f f!. K%, .: ,;, ” f.,. . . }) ..., 1’, T,oro8. rl.r,-. i,” I’fl L . 1’... :4i,.&#- I,hll, f :,, .,. (l’,:’;. c,,, !I, m,,.,, ! :1, f.. .,w. an,.! lltrr.:~ll% l,~r!l, Iv II, ;.. s I 1,.,1, rtil,a.. fa., I’1-nma t’l, v!ill b +1!. f . . ,40 ,Al 11,, !1, ● I #a:. . I,;* !..,:, -, Ial,., r. Ill, rV, J’rlr,, ..t .Ii, ‘.!, .’I1-.’lll ~:~,r.:hrr Rw.. s Inmr ●111, Tr, er-. t: l!arrl~ r.,”’ 1.’ -1.., Iv:’a, . l.l~italr~ L-h. r.i! r. rr, .r: :’, (:.r,, fr-.!,rl, l’1.” $). It, . !;, I:, 1111111 !ll .,, “Anl f VI! l’:,th:J

1’.11 , ●.rm. r. ~.,llf ;1,1,1 Ill tl.1 : 1,.1.!1 %,!1!!.1 1 4/. B. ,.. :.),:.1,1, 1. I;. hr .%:,, ,4, ‘. :. 1,:,1.. .,. :; L’,.11 .,1 I 1.1 I 0., ; :,, Y#. r “ p,, ,,. ,,! tl,l 1,:. al;: !! ..4. !.l!. trl\l!l, “1 1.,..?., , ,1,::!,..,,. :, :1,, 7(s, Illlrl.1 , Kll ..1 ~v (Illlvl.l%l’ ,11 11!,:. H,ll!li,li, !IIFI, II ,v

‘b.jl~lll...l 1’1,:..1. 1 ,1,,!! :l.l. t,,, ,1,, LV, ,’1 ,.lllrl H. 1;. l., ~,111, ‘%111 :1,1., MIrr,l J’1.l.l.l

J’rt,., i, !*Y, ( I ‘am, 8 , (.,111 Itll.lwlll ,“ prm, t . 11f 1 I,r lil~l, -!,. 1,1 Mllmulll!p, }l!l.\-:~, I,h, ,,! .,, [.41. .\; .1... ., :.’!

JH. !. 1, !JIllrr 411 I !{ , 4. yr.l;.,w~~.1, (. I., IV .’ H - A, I,:,, MI 1, Iw:, ,. “kl,, l+, ,c.q..n,.llf !,f Ill,. :illlwl ;-l:, l!l!)llll l,: I I Ilrr (l,l’,l ”;) }ll., l,ll H4. mlr 1181 ‘:,,111 r.;,! ,“ I.,, * A1.l,l!, % 4V. It, A. Kr.!k,,w+kl .IIId H. 1,, !!1 1 Iwr, “!11.1, !1 !iI Ic,llf II 1, l..l’1 ,11.118,1./ rvp,, rt (Ill ht. tr,..l. :6.1 I’1.1111 Pi,mliu 1!11 LIlr I I:li. llf Tlll,!.l- plllll I%tll. il, I ‘Jr.11) . 1’111,11 Iti.,li fl, r (I,; }qlt), ” 1.,,. A1.IIrI, I~ S, I,.,,L II I, LIIIMil,il I,rv rvlltjr! I, A-I” R-; ,*-:,’UI, (l~lsj, )v. l’. 1. ~lr)lil, t,! .I1. , “1(1. VI.W IIf III* !: RI. 1,1 II I,, Impl,, hl,,ii I’t I.,:llIil,” 7 l’), Nr,~,llJnllW,l $11, } . 111111:1,111, P, kl~,., mtl,l 1., Mrlnllflui. r, I’l, yi. 1, , nntt T,, { h,,olr,~v , I’lrntto I{ri,.i*, SY “St, Ifltq !,! [.,tmvr :;, }1,.:,,,1,1 ttlnl,lll calllt,l.~~1 ,“ (l%,)). “ “- Trl, nx , Am,r, Mlrl. S) L’. , ~!, &y-’)l (1’~:11. &ll, t. !!. Arllu&lil,i, V, ‘ Zll(. lltlv, v, v, K. IN I,II), A. V. K(]rrl , H. Kurrrr” , H. >1. ,J. tk Iif(,rd, T. S. T. Y,, un):o B. K,, hvf, v. Krfvoqhr,’v, A. H. m, , rIml A. !4. D. Ihlkln, 1. !imifh, s, J+lt Il!ln, all!l Sml rnt)v, “lllrrmonur I ,,nr Pub r :;t NC I tMI 11,1111.,1 v. JLllluv, “KIvrl r,)n Rb.dlm 11,.,11 in,: ,11 LI ht.jir ON .1 lh.,i~,tor wltll bI Pnrtlnllv hv.11.rrnrlll~ Furrfi)n I)ovlt. rnc” Pr(,i,. Jnt Intpr. TI~I,I,.Al Ilnlllf. Cllnl , rrn ~lrctr~m Bt.,ln I(rnotirk’h ●nd fri-)1 Tri.lltlt,l. , AJhuql.urquu, fW (Noveu!lmr, 19;)) .

52. H. w. Ml Hem, R. A. Krakt)wrikl, ●ntJ 41, II. l,. Miller, “A (hnci,~tti,il [)!. % i,:ll Of 1111* ~il~t Ll nor Mm~t.tor (FIX) for Furnlon I’owr, ” I.IIN Al, ImtIn Sc lt, nt I f lC l.dh~jr,ltijry rel,(lrl LA-7 f~lJfI-tf!i (t%hrt],try, 1919).

It, 1 *,.- ,,.

: -.@ .“ h.”’ **. ‘b .

e“.

66,

f!q,

;l. .

71.

7’. .

71,

?4.

15,

?Lr. ,. ; 7), ~. P: -., ...... ,. ... Qa :*, :1. r.? 1..,7. :%-~’- ., ● i, :,, .,...-...... 1 .,.,. ‘. ●.’. .$,9”.

In. .. t. 4. .:,.1. . . D. b.. r, ‘.. A. ..8 !.. ,’ . :-r. “?. . ●,.:r. t. t,. ., “!*. ,: . Pr i. !: :- ... .tr :- ,..:t: t: .* .’” b!. ,.. Ld ..:. . . .:-. ~””. J9.

, . ‘9. .LIr’ul. :.1. !. --.,, !., r. . ,tr, J. :. t.:.: ..u:. ... . R. ,. %.{. r, .,)1,,.. ~.::, t.. , .:,,: r~, :-1: ,“” kr . “.I t, :A!A . ,.q. ,,, . ).4.3. l’. m. n ● .: 1.,,.,,1 :; -.: %,. ;.. ,1 E.. . blr.. ,l , m.. IAI.I. “.-II,,”-.,!: .* ”,,. ( ,. ,r .,:,., Ii -i’., 1 +..,.

P..

RI.

C. u. ‘br:=a:. , ‘m}lll:, r Iarz r Pa.!: .* S! .,!1 I I:r.! .! -11!,:,!,.,,” 1.4wrc.,lii. L1. rr - re l-lli.lr.ir., r., Irl,,rr “. ::-: ”ii* 119”~ . ~:m

H 1. l:. b, !bl t I .%1.1, lm. {dr;..t II. 3. IL, !!,>.111, H. I+r!:rr, ,11,1 [10 y. allrn~, “A ,., ,1, v;! ,.I; )Ilhl,lll Re. t,r,. r H.l .1,,1 mall t 1,1 lll,:tl-l’ l.l*rJ.l-:,il .>ll:i .:-l’ Illt h,” !~lll 1. }UN. , ,1/, U(,’I-’JI; (Iv;.”).

9s. .

M:,.