Use of Whole Genome Sequence Data to Characterize Mating and Rna

Total Page:16

File Type:pdf, Size:1020Kb

Use of Whole Genome Sequence Data to Characterize Mating and Rna USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA SILENCING GENES IN TILLETIA SPECIES By SEAN WESLEY MCCOTTER A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PLANT PATHOLOGY WASHINGTON STATE UNIVERSITY Department of Plant Pathology DECEMBER 2014 © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WESLEY MCCOTTER find it satisfactory and recommend that it be accepted. Lori M. Carris, Ph.D., Chair Dorrie Main, Ph.D. Patricia Okubara, Ph.D. Lisa A. Castlebury, Ph. D. ii ACKNOWLEDGMENTS The research presented in this thesis could not have been carried out without the expertise and cooperation of others in the scientific community. Significant contributions were made by colleagues here at Washington State University, at the United States Department of Agriculture and at Agriculture and Agri-Food Canada. I would like to start by thanking my committee members Dr. Lori Carris, Dr. Lisa Castlebury, Dr. Pat Okubara and Dr. Dorrie Main, who provided guidance on procedure, feedback on my research as well as contacts and laboratory resources. Dr. André Lévesque of AAFC initially alerted me to the prospect of collaboration with other AAFC Tilletia researchers and placed me in contact with Dr. Sarah Hambleton, whose lab sequenced four out of five strains of Tilletia used in this study (CSSP CRTI 09-462RD). Dr. Prasad Kesanakurti and Jeff Cullis coordinated my access to AAFC’s genome and transcriptome data for these species. Separately, Dr. Guus Bakkeren, also of AAFC, provided technical advice on cloning and sequencing smut fungal mating loci. Dr. Jodi Humann was an invaluable source of technical advice and the key individual responsible for the PacBio+454 hybrid genome assembly. Crucially, Dr. Ping Zheng developed Perl scripts which saved me weeks of work. Mark Wildung and Derek Pouchnik at the WSU Laboratory for Biotechnology and Bioanalysis were responsible for next generation sequencing on both PacBio RS and Roche 454 platforms. Dr. Tobin Peever at WSU graciously allowed me bench space in his laboratory where my lab-mate, Dr. Lydia Tymon, provided a great partner-in- a-pinch for impromptu dance parties and rarely criticized my controversial tastes in music. iii USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA-SILENCING GENES IN TILLETIA SPECIES Abstract by Sean Wesley McCotter, M.S. Washington State University December 2014 Chair: Lori M. Carris Tilletia species (Ustilaginomycotina, Basidiomycota), the bunt fungi, are pathogens of grasses (Poaceae) such as wheat (Triticum aestivum) and ryegrass (Lolium spp.) and represent a molecularly underexplored branch of the fungal tree of life. Most Tilletia species must mate prior to infecting their hosts, highlighting the importance of sex in their life cycles. Mating loci identified in related smut fungi consist of a pheromone precursor, G-protein-coupled pheromone receptor and two divergently transcribed homeodomain transcription factors. The primary objective of this study was to annotate mating and RNA-silencing genes in available genomes of the systemically infecting bunts T. caries and T. contraversa, and non-systemically infecting bunts T. indica and T. walkeri. Phylogenetic comparisons of homeodomain proteins in Tilletia species reveal four clades with more than two mating-type homeodomain proteins present in T. caries and T. controversa. Mating genes identified in each species in single copy include putative pheromone precursors and G-protein-coupled-pheromone-receptors. A high level of protein- sequence homology is seen in comparisons of mating-type genes between T. caries and T. contraversa, as well as between T. walkeri and T. indica, however lower homology is present in iv comparisons between the two groups. Comparisons of RNA-silencing protein copy numbers in T. caries 517 with those of other basidiomycetes reveal an expansion of some RNA-silencing- related gene families in T. caries. Preliminary genome annotation was carried out using AUGUSTUS. Predicted proteins were clustered by similarity. Putative mating and RNA- silencing-related genes were identified in each species by homology to genes previously identified in Ustilaginomycotina. Transcript evidence for all mating-genes identified was obtained from cDNA. This work is the first to identify mating genes in T. caries, T. contraversa, T. indica and, T. walkeri. While it demonstrates conservation of the mating type genes found in Ustilago spp., it also shows that mating-type homeodomain proteins in T. caries and T. controversa are present in multiple copies, rather than just a divergently transcribed pair. This work provides an informative first look into the genomes of these economically and historically important plant pathogens, and highlights unique molecular features of their mating and RNA- silencing mechanisms, which distinguish them from other fungi. v TABLE OF CONTENTS Page ACKNOWLEDGMENTS .......................................................................................................... iii ABSTRACT ................................................................................................................................ iv LIST OF TABLES ........................................................................................................................x LIST OF FIGURES ................................................................................................................... xii CHAPTER ONE 1. INTRODUCTION TO COMMON BUNT .......................................................................1 Common Bunt Biology .....................................................................................................1 Brief History of Common Bunt ........................................................................................2 Common Bunt in Organic Wheat .....................................................................................4 The Phylogenetic Placement of the Bunt Fungi ...............................................................5 2. MATING IN BASIDIOMYCETES ...............................................................................10 Introduction .....................................................................................................................10 The Molecular Basis of Mating in Ustilago maydis and its Close Relatives..................11 The Organization of Tetrapolar Versus Bipolar Mating Loci and the Generation of non- Parental Mating Types by Recombination between Mating Loci ......................14 Multiallelic Mating Systems ...........................................................................................15 Mating in Agaricomycotina: Molecular Basis and Manifestations in phenotype ...........16 Mating in Pucciniomycotina ...........................................................................................20 Cryptic Sex in Basidiomycetes .......................................................................................21 Observations on Mating in Tilletia Species ....................................................................22 vi 3. CHAPTER ONE REFERENCES ...................................................................................26 CHAPTER TWO 1. INTRODUCTION ..........................................................................................................36 2. METHODS .....................................................................................................................39 Strains and Culture Conditions .......................................................................................39 Nucleic Acids Extraction ................................................................................................40 Whole Genome Sequencing ............................................................................................40 cDNA Preparation ...........................................................................................................41 Polymerase Chain Reaction and Sanger Sequencing......................................................41 Genome Annotation and Protein Family Clustering .......................................................42 Annotation of the Mating Loci .......................................................................................43 Phylogenetic Analyses ....................................................................................................44 3. RESULTS .......................................................................................................................44 Homeodomain Proteins ...................................................................................................44 Putative b-East mating type HDPs .....................................................................49 Putative b-West mating type HDPs.....................................................................51 Other HDPs ........................................................................................................56 Putative GPCR (STE3 Orthologs) and Pheromone Precursors ......................................59 Synteny Analyses ............................................................................................................62 4. DISCUSSION .................................................................................................................66
Recommended publications
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Karnal Bunt of Wheat in India and Its Management: a Review Article
    Plant Pathology & Quarantine 7(2): 165–173 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/10 Copyright © Mushroom Research Foundation Karnal bunt of wheat in India and its management: a review Sharma A1*, Sharma P1, Dixit A2 and Tyagi R3 1Department of Zoology, Stani Memorial PG College, Jaipur-302020, India 2Department of Zoology, St. Xavier's College, Nevta, Jaipur-302029, India 3Department of Biotechnology, Suresh Gyan Vihar University, Jaipur-302017, India Sharma A, Sharma P, Dixit A, Tyagi R 2017 – Karnal bunt of wheat in India and its management: a review. Plant Pathology & Quarantine 7(2), 165–173, Doi 10.5943/ppq/7/2/10 Abstract Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the pathogen is a critical step in analysis and its management. The present review highlights a brief outline of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide application etc. for the control of Karnal bunt disease. Keywords – disease – fungicide – pathogen – Tilletia indica – quarantine Introduction Agriculture plays a vital role in the economy and stability of India.
    [Show full text]
  • Diseases Affecting Rice in Louisiana Harry Rascoe Fulton
    Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1908 Diseases affecting rice in Louisiana Harry Rascoe Fulton Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Fulton, Harry Rascoe, "Diseases affecting rice in Louisiana" (1908). LSU Agricultural Experiment Station Reports. 574. http://digitalcommons.lsu.edu/agexp/574 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Louisiana Buiietin No, 105. April, 1908. Agricultural Experiment Station OF THE Louisiana State University and A. & M. College, BATON ROUGE. Diseases Affecting: Rice IN LOUISIANA. H. R. FULTON, M. S. BATON ROUGE: The Daily State Publishing Company^ State Peinthes. 1908. Louisiana State University and A. 6i n College LOUISIANA STATE BOARD OF AGRICULTURE AND IMMIGRATION EX-OFFICIO. Governor NEWTON C. BLANCHARD, President. S. M. ROBERTSON, Vice President of Board of Supervisors. CHAS. SCHULER, Commissioner of Agriculture and Immigration. THOMAS D. BOYD, President State University. W. It. DODSON, Director Experiment Stations. MEMBERS. JOHN DYMOND, Belair, La. LUCIEN SONIAT, Camp Parapet, La. La. J. SHAW JONES, Monroe, La. C. A. TIEBOUT, Roseland, FRED SEIP, Alexandria, La. C. A. CELESTIN, Houma, La. H. C. STRINGFELLOW, Howard, La. STATION STAFF. W. R. DODSON^ A.B., B.S., Director, Baton Rouge. R. E. BLOUIN, M.S., Assistant Director, Audubon Park, New Orleans. J G. LEE, B.S., Assistant Director, Calhoun. S. E.
    [Show full text]
  • PERSOONIAL R Eflections
    Persoonia 23, 2009: 177–208 www.persoonia.org doi:10.3767/003158509X482951 PERSOONIAL R eflections Editorial: Celebrating 50 years of Fungal Biodiversity Research The year 2009 represents the 50th anniversary of Persoonia as the message that without fungi as basal link in the food chain, an international journal of mycology. Since 2008, Persoonia is there will be no biodiversity at all. a full-colour, Open Access journal, and from 2009 onwards, will May the Fungi be with you! also appear in PubMed, which we believe will give our authors even more exposure than that presently achieved via the two Editors-in-Chief: independent online websites, www.IngentaConnect.com, and Prof. dr PW Crous www.persoonia.org. The enclosed free poster depicts the 50 CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT most beautiful fungi published throughout the year. We hope Utrecht, The Netherlands. that the poster acts as further encouragement for students and mycologists to describe and help protect our planet’s fungal Dr ME Noordeloos biodiversity. As 2010 is the international year of biodiversity, we National Herbarium of the Netherlands, Leiden University urge you to prominently display this poster, and help distribute branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. Book Reviews Mu«enko W, Majewski T, Ruszkiewicz- The Cryphonectriaceae include some Michalska M (eds). 2008. A preliminary of the most important tree pathogens checklist of micromycetes in Poland. in the world. Over the years I have Biodiversity of Poland, Vol. 9. Pp. personally helped collect populations 752; soft cover. Price 74 €. W. Szafer of some species in Africa and South Institute of Botany, Polish Academy America, and have witnessed the of Sciences, Lubicz, Kraków, Poland.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Karnal Bunt Disease a Major Threatening to Wheat Crop: a Review
    International Journal of Applied Research 2020; 6(6): 157-160 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Karnal bunt disease a major threatening to wheat Impact Factor: 5.2 IJAR 2020; 6(6): 157-160 crop: A review www.allresearchjournal.com Received: 22-04-2020 Accepted: 24-05-2020 Poonam Kumari, Shivam Maurya, Lokesh Kumar and Snehika Pandia Poonam Kumari Ph.D. Scholars Department of Abstract Plant Pathology, Sri Karan Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat Narendra Agriculture in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The University, Jobner, Jaipur, major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy Rajasthan, India odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne Shivam Maurya Ph.D. Scholars Department of which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the Plant Pathology, Sri Karan pathogen is a critical step in analysis and its management. The present review highlights a brief outline Narendra Agriculture of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide University, Jobner, Jaipur, application etc. for the control of Karnal bunt disease. Rajasthan, India Keywords: Bunt, trimethylamine, bunt ear, teliospore, seed treatment Lokesh Kumar Ph.D. Scholar Department of Introduction Extension Education, Rajasthan College of Karnal bunt of wheat (Triticum aestivum L.), caused by the smut fungus Tilletia indica Mitra Agriculture (MPUAT), (Neovossia indica (Mitra) Mundkur), was first discovered in 1930 at the Botanical Research Udaipur, India Station, Karnal, Haryana, in northwest India (Mitra, M.
    [Show full text]
  • Taxonomy of Neovossia Horrida (Ustilaginales)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1979 Band/Volume: 32 Autor(en)/Author(s): Singh Raghvendra, Whitehead Marvin D., Pavgi M. S. Artikel/Article: Taxonomy of Neovossia horrida (Ustilaginales). 305-308 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Taxonomy of Neovossia horrida (Ustilaginales) R. A. SINGH, M. D. WHTTEHEAD and M. S. PAVGI Faculty of Agriculture, Banaras Hindu University, India. Georgia State University, Atlanta, Georgia, U. S. A. Summary. Morphological, cultural and cytological studies on the smut fungus inciting kernel bunt of rice (Oryza sativa L.) indicate that it should be correctly retained in the genus Neovossia as Neovossia horrida (TAKAHASHI) PADWICK & AZMATUXLAH KHAN. In 1879 KÖRNICKE described the genus Neovossia as having sori generally in ovaries, forming a somewhat dusty spore mass; spores simple, produced singly or in the swollen and special fertile threads (sterigmata of MAGNUS), which permanently invest the spores and taper into elongated hyaline appendages of large size; germination by a short promycelium producing numerous terminall}' clustered linear sporidia, which germinate without conjugation and in nutrient solutions give rise to a mycelium producing secondary sporidia of 2 kinds (ZUNDEL 1953). Neovossia horrida (TAKAHASHI) PADWICK & KHAN, the incitant of kernel bunt of rice, was first described by TAKAHASHI (1896) from Japan as Tilletia horrida TAKAHASHI and independently by ANDERSON (1899) from the United States as Tilletia corona SCIB. It was later transferred to the genus Neovossia KÖRNICKE as N. horrida (TAK.) PADWICK & KHAN (1944). TULLIS & JOHNSON (1952) synonimized it to N.
    [Show full text]
  • Internal Transcribed Spacer Sequence-Based Phylogeny and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Differentiation of Tilletia Walkeri and T
    Mycology Internal Transcribed Spacer Sequence-Based Phylogeny and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Differentiation of Tilletia walkeri and T. indica Laurene Levy, Lisa A. Castlebury, Lori M. Carris, Robert J. Meyer, and Guillermo Pimentel First and fourth authors: USDA-APHIS PPQ National Plant Germplasm Quarantine Center, Beltsville, MD 20705; second author: USDA- ARS Systematic Botany and Mycology Laboratory, Beltsville, MD 20705; and third and fifth authors: Department of Plant Pathology, Washington State University, Pullman 99164. Accepted for publication 1 June 2001. ABSTRACT Levy, L., Castlebury, L. A., Carris, L. M., Meyer, R. J., and Pimentel, bunt fungus, is described. The internal transcribed spacer (ITS) region of G. 2001. Internal transcribed spacer sequence-based phylogeny and the ribosomal DNA repeat unit was amplified and sequenced for isolates polymerase chain reaction-restriction fragment length polymorphism of T. indica, T. walkeri, T. horrida, and a number of other taxa in the differentiation of Tilletia walkeri and T. indica. Phytopathology 91:935- genus Tilletia. A unique restriction digest site in the ITS1 region of T. 940. walkeri was identified that distinguishes it from the other taxa in the genus. Phylogenetic analysis of the taxa based on ITS sequence data re- A polymerase chain reaction-restriction fragment length polymorphism vealed a close relationship between T. indica and T. walkeri, but more assay to distinguish Tilleita walkeri, a rye grass bunt fungus that occurs distant relationships between these two species and other morphologi- in the southeastern United States and Oregon, from T. indica, the Karnal cally similar taxa. Tilletia indica Mitra, the causal agent of Karnal bunt of wheat, PCR test was developed (21).
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Nonsystemic Bunt Fungi—Tilletia Indica and T. Horrida: a Review of History, Systematics, and Biology∗
    ANRV283-PY44-05 ARI 7 February 2006 20:39 V I E E W R S I E N C N A D V A Nonsystemic Bunt Fungi—Tilletia indica and T. horrida: A Review of History, Systematics, and Biology∗ Lori M. Carris,1 Lisa A. Castlebury,2 and Blair J. Goates3 1Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430; email: [email protected] 2USDA ARS Systematic Botany and Mycology Laboratory, Beltsville, Maryland 20705-2350; email: [email protected] 3USDA ARS National Small Grains Germplasm Research Facility, Aberdeen, Idaho 82310; email: [email protected] Annu. Rev. Phytopathol. Key Words 2006. 44:5.1–5.21 Karnal bunt, Neovossia, rice kernel smut, Tilletia walkeri, Tilletiales The Annual Review of Phytopathology is online at phyto.annualreviews.org Abstract doi: 10.1146/ The genus Tilletia is a group of smut fungi that infects grasses either annurev.phyto.44.070505.143402 systemically or locally. Basic differences exist between the systemi- Copyright c 2006 by cally infecting species, such as the common and dwarf bunt fungi, and Annual Reviews. All rights locally infecting species. Tilletia indica, which causes Karnal bunt of reserved wheat, and Tilletia horrida, which causes rice kernel smut, are two ex- 0066-4286/06/0908- amples of locally infecting species on economically important crops. 0001-$20.00 However, even species on noncultivated hosts can become important ∗ The U.S. Government when occurring as contaminants in export grain and seed shipments. has the right to retain a nonexclusive, royalty-free In this review, we focus on T. indica and the morphologically similar license in and to any but distantly related T.
    [Show full text]
  • Lista De Plagas Presentes En Nicaragua 2019
    INSTITUTO DE PROTECCIÓN Y SANIDAD AGROPECUARIA DIRECCIÓN SANIDAD VEGETAL Y SEMILLAS LISTA DE PLAGAS REPORTADAS EN NICARAGUA Versión: 05 El presente trabajo constituye una recopilación de información sobre plagas reportadas en Nicaragua. En el se listan plagas de tipo ácaros, insectos, malezas, nematodos, hongos, bacterias y virus, abarcando su taxonomía, sinonimia y cultivos que afecta. Para la realización de este listado se toman en cuenta resultados de diagnósticos fitosanitarios oficiales, a través de la vigilancia fitosanitaria, muestreo, revisión de literatura y consultas en bases de datos. El IPSA (Instituto de Protección y Sanidad Agropecuaria), pone a disposición la versión V del listado de plagas reportadas en Nicaragua, en cumplimiento a lo establecido en el Capítulo II, numerales 6 y 7 del Artículo 10 de la Ley 291 "Ley Básica de Salud Animal y Sanidad Vegetal y su reglamento; así como lo estipulado en el Nuevo Téxto Revisado de la Convención Internacional de Protección Fitosanitaria (CIPF) en el Artículo VIII, numeral 1a. NOMBRE ACTUAL SINONIMOS CULTIVOS ACAROS Brevipalpus californicus (Banks, 1904) Brevipalpus australis (Tucker) Cítricos, Palma Africana Brevipalpus obovatus Donnadieu Brevipalpus inornatus (Banks) Chile, Chiltoma, Cocotero Tenuipalpus inornatus Banks Tenuipalpus obovatus (Donnadieu) Brevipalpus phoenicis ( Geijskes, 1936) Tenuipalpus phoenicis Geijskes, 1939: 23 Cacao, Cítricos, Papaya Dolichotetranychus floridanus (Banks) Algodón, Papaya, Achiote, Aguacate, Mango, Maíz, Yuca, Piña Eotetranychus lewisi (McGregor)
    [Show full text]