Diagnostic Protocol for Tilletia Indica, the Cause of Karnal Bunt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Disease
report on RPD No. 121 PLANT June 1987 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN STINKING SMUT OR COMMON BUNT OF WHEAT Stinking smut or bunt is caused by three closely related species of fungi, Tilletia foetida, T. caries and T. contraversa. Only Tilletia foetida and T. caries occur in the Midwest. Both fungi have similar life cycles and may even occur together in a plant. Serious losses from these smut fungi have probably occurred since wheat was first cultivated by man. Stinking smut causes reduced wheat yields and grain quality by imparting a foul, fishy odor to the grain–making it unfit for milling. However, smut- infected wheat may be fed to all classes of livestock–including poultry–without ill effects. The two fungi also occasionally infect rye, wild barleys (Hordeum species), goatgrasses (Aegilops spp), wheatgrasses (Agropyron spp), and ryegrasses (Lolium spp). Stinking smut is generally distributed wherever wheat is grown in the world. In the United States it is most severe in the Pacific Northwest. In Illinois, data for 33 consecutive years show an average annual loss of approximately 3 percent caused by stinking smut of wheat. Losses of nearly 50 percent of the wheat heads to stinking smut have occurred in years favorable to infection. The prevalence of stinking smut varies greatly from year to year, depending on soil moisture and temperature conditions at the time the wheat seed is germinating and on whether the seed has been treated with a fungicide before sowing. Common bunt is less frequent and is usually less damaging in spring wheat than in winter wheat. -
Karnal Bunt Tilletia Indica What Is It? Karnal Bunt (Tilletia Indica) Is a Fungus Affecting Grains of Wheat, Durum and Triticale
Fact sheet Karnal bunt Tilletia indica What is it? Karnal bunt (Tilletia indica) is a fungus affecting grains of wheat, durum and triticale. Karnal bunt is not present in Australia. It does occur in the USA, Mexico, India, Afghanistan, Pakistan and parts of Nepal and Iraq. If introduced into Australia, Karnal bunt would be almost impossible to eradicate as its spores can live in the soil for five years or more until conditions favour growth, usually a period of cool, wet weather. An incursion of this fungus could severely disrupt international trade and have a major economic impact on our agricultural industry, as a major exporter of wheat. Karnal bunt is most likely to enter Australia either on diseased grain or as spores on travellers' clothing. To prevent the introduction of this disease to Australia it is important that all seed imports to Australia occur through appropriate quarantine facilities, and that travellers to overseas farms thoroughly wash all clothing on return to Australia. Suspect samples must be reported to Biosecurity SA immediately. Two ears of wheat smutted What does it look like? Source: Ruben Durán, Washington State University, Karnal bunt is not easily detected prior to harvest, since it is usual Bugwood.org for only a few seeds in each head to be affected by the disease. The symptoms of this fungus are most easily seen in harvested grain, and range from pinpoint sized spots to thick black spore masses running the length of the groove in the grain. Usually only part of each grain is affected, although occasionally the whole seed will be blackened with a sooty appearance. -
<I>Tilletia Indica</I>
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Use of Whole Genome Sequence Data to Characterize Mating and Rna
USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA SILENCING GENES IN TILLETIA SPECIES By SEAN WESLEY MCCOTTER A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PLANT PATHOLOGY WASHINGTON STATE UNIVERSITY Department of Plant Pathology DECEMBER 2014 © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WESLEY MCCOTTER find it satisfactory and recommend that it be accepted. Lori M. Carris, Ph.D., Chair Dorrie Main, Ph.D. Patricia Okubara, Ph.D. Lisa A. Castlebury, Ph. D. ii ACKNOWLEDGMENTS The research presented in this thesis could not have been carried out without the expertise and cooperation of others in the scientific community. Significant contributions were made by colleagues here at Washington State University, at the United States Department of Agriculture and at Agriculture and Agri-Food Canada. I would like to start by thanking my committee members Dr. Lori Carris, Dr. Lisa Castlebury, Dr. Pat Okubara and Dr. Dorrie Main, who provided guidance on procedure, feedback on my research as well as contacts and laboratory resources. Dr. André Lévesque of AAFC initially alerted me to the prospect of collaboration with other AAFC Tilletia researchers and placed me in contact with Dr. Sarah Hambleton, whose lab sequenced four out of five strains of Tilletia used in this study (CSSP CRTI 09-462RD). Dr. Prasad Kesanakurti and Jeff Cullis coordinated my access to AAFC’s genome and transcriptome data for these species. -
Organic Seed Health. an Inventory of Issues and a Report on Case Studies
Organic seed health. An inventory of issues and a report on case studies Deliverable number D 2.5 Dissemination level Public Delivery Date 30.11.2020 Status Final Lead beneficiary WR Authors Steven P.C. Groot (WR), Stephanie Klaedtke (ITAB), Monika Messmer (FiBL-CH) and Frederic Rey (ITAB) Organic seed health – an inventory of issues and a report on case studies Document Version Version Date Contributor Summary of Changes 1.0 20.11.2020 Steven P.C. Groot and Stephanie First draft of deliverable Klaedtke 1.0 26.11.2020 Frederic Rey feedback Feedback to deliverable 1.1 30.11.2020 Steven P.C. Groot New version 1.1 20.01.2020 Monika Messmer Final proofread before uploading Table of Content Executive Summary ............................................................................................................................. 4 1. Introduction ........................................................................................................................................ 6 2. Measures to improve seed quality ..................................................................................................... 9 2.1. Seed production conditions ......................................................................................................... 9 2.2. Seed maturity ............................................................................................................................... 9 2.3. The seed microbiome ................................................................................................................. -
Karnal Bunt in Texas Wheat Dr
Texas Agricultural Extension Service The Texas A&M University System Karnal Bunt in Texas Wheat Dr. Travis Miller Historical Information sion that several states in the southeastern U.S. were posi- In the spring of 1996, Karnal bunt (Tilletia indica Mitra) tive for Karnal bunt. This led APHIS to go to the stan- was found in a sample of durum wheat seed in Arizona. dard of finding one or more “bunted” kernels in a 4 pound Subsequent investigation revealed that Karnal bunt had sample as the definitive test for the disease. been distributed in durum wheat planting seed, and that it was widespread in Arizona and New Mexico, and found The USDA-APHIS maintains a comprehensive web site in limited regions in California and Texas. Following this on the disease at: http://www.aphis.usda.gov/karnalbunt/ discovery, movement of wheat and wheat equipment was Refer to this site for more details on the disease including quarantined in the entire state of Arizona, parts of New color photographs. Mexico and California, and in El Paso and Hudspeth counties of Texas. A national survey was initiated over Disease Characteristics the next two years, with samples of wheat being submit- Upon infection, the bunt does not generally affect an en- ted from most of the wheat producing regions of the U.S. tire kernel. Typically, only a portion of a kernel, starting This survey found an infestation in San Saba County in at the embryo end, is blackened or “bunted” and eroded 1997 in hard red winter wheat, which was the first ever with a mass a mass of black spores with the offensive detection in this class of wheat. -
Karnal Bunt of Wheat in India and Its Management: a Review Article
Plant Pathology & Quarantine 7(2): 165–173 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/10 Copyright © Mushroom Research Foundation Karnal bunt of wheat in India and its management: a review Sharma A1*, Sharma P1, Dixit A2 and Tyagi R3 1Department of Zoology, Stani Memorial PG College, Jaipur-302020, India 2Department of Zoology, St. Xavier's College, Nevta, Jaipur-302029, India 3Department of Biotechnology, Suresh Gyan Vihar University, Jaipur-302017, India Sharma A, Sharma P, Dixit A, Tyagi R 2017 – Karnal bunt of wheat in India and its management: a review. Plant Pathology & Quarantine 7(2), 165–173, Doi 10.5943/ppq/7/2/10 Abstract Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the pathogen is a critical step in analysis and its management. The present review highlights a brief outline of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide application etc. for the control of Karnal bunt disease. Keywords – disease – fungicide – pathogen – Tilletia indica – quarantine Introduction Agriculture plays a vital role in the economy and stability of India. -
Diseases Affecting Rice in Louisiana Harry Rascoe Fulton
Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1908 Diseases affecting rice in Louisiana Harry Rascoe Fulton Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Fulton, Harry Rascoe, "Diseases affecting rice in Louisiana" (1908). LSU Agricultural Experiment Station Reports. 574. http://digitalcommons.lsu.edu/agexp/574 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Louisiana Buiietin No, 105. April, 1908. Agricultural Experiment Station OF THE Louisiana State University and A. & M. College, BATON ROUGE. Diseases Affecting: Rice IN LOUISIANA. H. R. FULTON, M. S. BATON ROUGE: The Daily State Publishing Company^ State Peinthes. 1908. Louisiana State University and A. 6i n College LOUISIANA STATE BOARD OF AGRICULTURE AND IMMIGRATION EX-OFFICIO. Governor NEWTON C. BLANCHARD, President. S. M. ROBERTSON, Vice President of Board of Supervisors. CHAS. SCHULER, Commissioner of Agriculture and Immigration. THOMAS D. BOYD, President State University. W. It. DODSON, Director Experiment Stations. MEMBERS. JOHN DYMOND, Belair, La. LUCIEN SONIAT, Camp Parapet, La. La. J. SHAW JONES, Monroe, La. C. A. TIEBOUT, Roseland, FRED SEIP, Alexandria, La. C. A. CELESTIN, Houma, La. H. C. STRINGFELLOW, Howard, La. STATION STAFF. W. R. DODSON^ A.B., B.S., Director, Baton Rouge. R. E. BLOUIN, M.S., Assistant Director, Audubon Park, New Orleans. J G. LEE, B.S., Assistant Director, Calhoun. S. E. -
PERSOONIAL R Eflections
Persoonia 23, 2009: 177–208 www.persoonia.org doi:10.3767/003158509X482951 PERSOONIAL R eflections Editorial: Celebrating 50 years of Fungal Biodiversity Research The year 2009 represents the 50th anniversary of Persoonia as the message that without fungi as basal link in the food chain, an international journal of mycology. Since 2008, Persoonia is there will be no biodiversity at all. a full-colour, Open Access journal, and from 2009 onwards, will May the Fungi be with you! also appear in PubMed, which we believe will give our authors even more exposure than that presently achieved via the two Editors-in-Chief: independent online websites, www.IngentaConnect.com, and Prof. dr PW Crous www.persoonia.org. The enclosed free poster depicts the 50 CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT most beautiful fungi published throughout the year. We hope Utrecht, The Netherlands. that the poster acts as further encouragement for students and mycologists to describe and help protect our planet’s fungal Dr ME Noordeloos biodiversity. As 2010 is the international year of biodiversity, we National Herbarium of the Netherlands, Leiden University urge you to prominently display this poster, and help distribute branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. Book Reviews Mu«enko W, Majewski T, Ruszkiewicz- The Cryphonectriaceae include some Michalska M (eds). 2008. A preliminary of the most important tree pathogens checklist of micromycetes in Poland. in the world. Over the years I have Biodiversity of Poland, Vol. 9. Pp. personally helped collect populations 752; soft cover. Price 74 €. W. Szafer of some species in Africa and South Institute of Botany, Polish Academy America, and have witnessed the of Sciences, Lubicz, Kraków, Poland. -
Minnesota's Top 124 Terrestrial Invasive Plants and Pests
Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings -
Karnal Bunt Disease a Major Threatening to Wheat Crop: a Review
International Journal of Applied Research 2020; 6(6): 157-160 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Karnal bunt disease a major threatening to wheat Impact Factor: 5.2 IJAR 2020; 6(6): 157-160 crop: A review www.allresearchjournal.com Received: 22-04-2020 Accepted: 24-05-2020 Poonam Kumari, Shivam Maurya, Lokesh Kumar and Snehika Pandia Poonam Kumari Ph.D. Scholars Department of Abstract Plant Pathology, Sri Karan Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat Narendra Agriculture in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The University, Jobner, Jaipur, major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy Rajasthan, India odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne Shivam Maurya Ph.D. Scholars Department of which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the Plant Pathology, Sri Karan pathogen is a critical step in analysis and its management. The present review highlights a brief outline Narendra Agriculture of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide University, Jobner, Jaipur, application etc. for the control of Karnal bunt disease. Rajasthan, India Keywords: Bunt, trimethylamine, bunt ear, teliospore, seed treatment Lokesh Kumar Ph.D. Scholar Department of Introduction Extension Education, Rajasthan College of Karnal bunt of wheat (Triticum aestivum L.), caused by the smut fungus Tilletia indica Mitra Agriculture (MPUAT), (Neovossia indica (Mitra) Mundkur), was first discovered in 1930 at the Botanical Research Udaipur, India Station, Karnal, Haryana, in northwest India (Mitra, M.