EC Fifth Framework Project QLK5-1999-01554

Total Page:16

File Type:pdf, Size:1020Kb

EC Fifth Framework Project QLK5-1999-01554 Risks associated with Tilletia indica, the newly-listed EU quarantine pathogen, the cause of Karnal bunt of wheat EC 5. framework project QLK5-1999-01554 Sansford, Claire; Murray, Gordon; Brennan, John; Leth, Vibeke; Porter, John R.; Kelly, Paul; Miglietta, Franco; Riccioni, Luca; Magnus, Håkon; Petrson, Gary Publication date: 2006 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Sansford, C., Murray, G., Brennan, J., Leth, V., Porter, J. R., Kelly, P., Miglietta, F., Riccioni, L., Magnus, H., & Petrson, G. (2006). Risks associated with Tilletia indica, the newly-listed EU quarantine pathogen, the cause of Karnal bunt of wheat: EC 5. framework project QLK5-1999-01554. EC. Deliverable Report DL 6.1 Deliverable Report 6.5 Download date: 25. Sep. 2021 EC Fifth Framework Project QLK5-1999-01554: Risks associated with Tilletia indica, the newly-listed EU quarantine pathogen, the cause of Karnal bunt of wheat Deliverable Report DL 6.1 Report on the risk of entry, establishment and socio-economic loss for Tilletia indica in the European Union AND Deliverable Report 6.5 Determination and report on the most appropriate risk management scheme for Tilletia indica in the EU in relation to the assessed level of risk Date: March 3rd 2006 version with revised section 1.29 dated September 29th 2006 CONTENTS Page LIST OF PARTICIPANTS AND AUTHORS 4 SUMMARY 6 1. INTRODUCTION 8 2. PEST RISK ANALYSIS FOR TILLETIA INDICA 12 3. EXPLOITATION AND DISSEMINATION OF RESULTS 122 4. POLICY RELATED BENEFITS 122 5. REFERENCES 123 6. ACKNOWLEDGEMENTS 137 ANNEXES ANNEX I: Workpackage 6 - Description of Work Plan 138 ANNEX II: Model Contingency Plan (20/07/05) – for Eradication & Containment of Karnal bunt (Tilletia indica) 139 ANNEX III: Draft Regulatory Impact Assessment (RIA) of the possible Management Options for Interceptions and Outbreaks of Tilletia indica – November 2004 151 ANNEX IV: Economic Costs of Scenario 1, ‘Large’ Karnal bunt outbreak, Year 1, managed according to an earlier draft of the model Contingency Plan. 161 ANNEX V: Economic Costs of Scenario 2, ‘Small’ Karnal bunt outbreak, Year 1, managed according to an earlier draft of the model Contingency Plan. 162 ANNEX VI: Components of Costs in Affected Region of Scenario 1, ‘Large’ Karnal bunt outbreak, Years 1 to 10) managed according to an earlier draft of the model Contingency Plan. 163 ANNEX VII: Components of Costs in Affected Region of Scenario 2, ‘Small’ Karnal bunt outbreak, Years 1 to 10) managed according to an earlier draft of the model Contingency Plan. 164 2 LIST OF TABLES Table 1: Eurostat data: Imports (tonnes) of ‘common’ and durum wheat into the former EU 15 from countries where T. indica is known to occur – 2000 to 2003. 23 Table 1a: FAOSTAT data: Imports of wheat (tonnes) into the current EU 25 from countries where T. indica is known to occur – July 2000 to June 2001 (2001) and July 2001 to June 2002 (2002). 24 Table 2: FAS data: Exports of unmilled wheat (tonnes) from the USA to the EU 25, 2000 - 2004 25 Table 3: Wheat and triticale production (area harvested – hectares) in descending order of productivity by EU Member State in 2004. 36 Table 4: Mean maximum daily temperatures (°C) recorded at the heading to flowering (GS 53–71), grain filling (GS 73–77), estimated for heading to grain filling (GS 53–77) and recorded for grain hardening (GS 83–87) stages of wheat development and levels of Karnal bunt (% CI, mean of 3 wheat cultivars) under 5 different situations after inoculation with T. indica (from Kumar et al., 2003). 57 LIST OF FIGURES Figure 1: The PRA area: The European Union Member States – a subset of the EPPO Region. 13 Figure 2: Wheat grain infected with Tilletia indica and free teliospores (USDA, G. Peterson). 27 Figure 3: Unloading imported wheat at a port in northern England. 32 Figure 4: Disease cycle of Karnal bunt (from Nagarajan et al., 1997), reproduced with permission of CABI. 40 Figure 5: Stages of development of wheat over which teliospores must germinate, sporidia infect the head and colonisation of seed begin (GS 37–75). 49 Figure 6: Mean HTI values (1961-1990) for India in March and Great Britain in June (Baker et al., 2000). 50 Figure 7: HTI values for infection of T. aestivum by T. indica and commencement of disease development for the years 1995-2002 for three sowing dates in Europe, where the HTI was calculated to be between 2.2-3.3 during the critical phenology period of the wheat crop. The maximum number of cases (referred to as ‘years’ in the figure) is three sowings x eight years, or 24 cases. 53 Figure 8: HTI values for infection of T. durum by T. indica and commencement of disease development for the years 1995-2002 for three sowing dates in Europe, where the HTI was calculated to be between 2.2-3.3 during the critical phenology period of the wheat crop. The maximum number of cases (referred to as ‘years’ in the figure) is three sowings x eight years, or 24 cases. 54 Figure 9: Mean monthly air temperature (˚C) in Europe in July 60 Figure 10: Locations of four of the five named locations of Karnal bunt outbreaks in 63 irrigated wheat crops in South Africa. 3 LIST OF PARTICIPANTS AND AUTHORS Workpackage Manager: Dr C Sansford, CSL, York, UK List of Participants Partner no. Legal status Key Postal address Telephone no’s, fax no’s and & name contact email addresses 1. Co-ordinator Dr Claire CSL, Sand Hutton, +44 (0) 1904 462225 CSL Sansford North Yorkshire Fax. +44 (0) 1904 462250 UK, YO41 1LZ Email [email protected] 2. Contractor Dr Gordon Wagga Wagga Agricultural +61 2 6938 1879 NSW Murray Institute, Private Bag, Wagga Fax +61 2 6938 1809 Agriculture Wagga, NSW 2650, Australia Email [email protected]. gov.au (Now NSW Sub- Dr John +61 2 6938 1851 Dept. of contractor to Brennan Fax +61 2 6938 1809 Primary Partner 5 Email [email protected]. Industries) gov.au 3. Contractor Dr Vibeke Danish Government Institute of +45 35 28 37 23 DGISP Leth Seed Pathology for Developing Fax +45 35 28 37 01 Countries, Thorvaldsensvej 57, Email [email protected] DK-1871, Frederiksberg C, Denmark 4. Contractor Prof. Dr Department of Agricultural +45 35 28 3377/3575 KVL John R. Sciences, The Royal Veterinary Fax +45 35 28 3574 Porter and Agricultural University, 10 Email [email protected] Agrovej, Taastrup, 2630, Denmark 5. Contractor Dr Paul Teagasc, Rural Economy +353 1 6376050 TEAGASC Kelly Research Centre, 19 Fax +353 1 6688443 Sandymount Avenue, Dublin 4, Email [email protected] Ireland 7. Contractor Dr Franco IBIMET, +39 55 301422 CNR IATA Miglietta P.le delle Cascine, 18, 50144 Fax +39 55 308910 (Now Firenze, Italy Email [email protected]. IBIMET) cnr.it 8. Contractor Dr Luca Istituto Sperimentale per la +39 0682070329 ISPaVe Riccioni1 Patologia Vegetale, Fax +39 0686802296 Via C.G. Bertero, 22 Email [email protected] I-00156 Rome Italy 9. Contractor Dr Håkon The Norwegian Crop Research +47 64949244 NCRI Magnus Institute, Fax +47 64949226 Plant Protection Centre, Email haakon.magnus@@biofors Planteforsk, Fellesbygget k.no N-1432 AAS, Norway 10. Contractor Mr Gary ARS/USDA, FD-WSRU, +301 619 7313 USDA ARS Peterson Fort Detrick, Maryland Fax +301 619 2880 MD21702, USA Email [email protected] ov 1 From 1 January 2004 Dr Luca Riccioni replaced Dr Porta-Puglia as the Key Contact for ISPaVe. Dr Porta-Puglia is now working as a mycologist at the Ministry for Rural Affairs and the Environment, Department of Plant Health, Agricultural Research & Development Centre, Għammieri, Marsa CMR 01, Malta. 4 Authors of report: C. Sansford (CSL), R. Baker (CSL), J. Brennan (NSW Ag.), F. Ewert (ex. KVL), B. Gioli (IBIMET), A. Inman (CSL), P. Kelly (TEAGASC), A. Kinsella (TEAGASC), V. Leth (DGISP), H. Magnus (NCRI), F. Miglietta (IBIMET), G. Murray (NSW Ag.), G. Peterson (USDA), A. Porta- Puglia (ex. ISPaVE), J. Porter (KVL), T. Rafoss (NCRI), L. Riccioni (ISPaVe), F. Thorne (TEAGASC), M. Valvassori (ISPaVe). Project Co-ordinator: Dr Claire Sansford, Plant Health Group, Central Science Laboratory, Department for Environment, Food and Rural Affairs (Defra), Sand Hutton, York, UK, YO41 1LZ. 5 SUMMARY Tilletia indica became listed as a I/AI quarantine pest in the European Commission (EC) Plant Health Directive in 1997 following a Pest Risk Analysis produced by the UK which had been triggered by the first findings of T. indica in wheat crops in the USA. Following international debate as to the risk associated with T. indica a revised Pest Risk Analysis (PRA) for Tilletia indica has been produced using a draft of the European and Mediterranean Plant Protection Organisations (EPPO) PRA scheme. This is the culmination of a 4-year EU Fifth Framework Project (‘Karnal bunt risks’) and reflects the work of 9 Partner Organisations in 7 countries including Australia and the USA. The views expressed within this PRA do not necessarily reflect the views of the European Commission who partly-funded the work or the National Plant Protection Organisations of any of the individual countries either contributing to or cited in the PRA. The risk of entry has been evaluated based upon trade data and data on interceptions of T. indica in the European Union (EU) and this shows that the pathogen has the potential to enter the EU. The risk of establishment has been determined by a range of methods. These include: 1. Experimental work with the pathogen in European field conditions to determine the longevity of teliospores of T.
Recommended publications
  • Karnal Bunt Tilletia Indica What Is It? Karnal Bunt (Tilletia Indica) Is a Fungus Affecting Grains of Wheat, Durum and Triticale
    Fact sheet Karnal bunt Tilletia indica What is it? Karnal bunt (Tilletia indica) is a fungus affecting grains of wheat, durum and triticale. Karnal bunt is not present in Australia. It does occur in the USA, Mexico, India, Afghanistan, Pakistan and parts of Nepal and Iraq. If introduced into Australia, Karnal bunt would be almost impossible to eradicate as its spores can live in the soil for five years or more until conditions favour growth, usually a period of cool, wet weather. An incursion of this fungus could severely disrupt international trade and have a major economic impact on our agricultural industry, as a major exporter of wheat. Karnal bunt is most likely to enter Australia either on diseased grain or as spores on travellers' clothing. To prevent the introduction of this disease to Australia it is important that all seed imports to Australia occur through appropriate quarantine facilities, and that travellers to overseas farms thoroughly wash all clothing on return to Australia. Suspect samples must be reported to Biosecurity SA immediately. Two ears of wheat smutted What does it look like? Source: Ruben Durán, Washington State University, Karnal bunt is not easily detected prior to harvest, since it is usual Bugwood.org for only a few seeds in each head to be affected by the disease. The symptoms of this fungus are most easily seen in harvested grain, and range from pinpoint sized spots to thick black spore masses running the length of the groove in the grain. Usually only part of each grain is affected, although occasionally the whole seed will be blackened with a sooty appearance.
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • Karnal Bunt in Texas Wheat Dr
    Texas Agricultural Extension Service The Texas A&M University System Karnal Bunt in Texas Wheat Dr. Travis Miller Historical Information sion that several states in the southeastern U.S. were posi- In the spring of 1996, Karnal bunt (Tilletia indica Mitra) tive for Karnal bunt. This led APHIS to go to the stan- was found in a sample of durum wheat seed in Arizona. dard of finding one or more “bunted” kernels in a 4 pound Subsequent investigation revealed that Karnal bunt had sample as the definitive test for the disease. been distributed in durum wheat planting seed, and that it was widespread in Arizona and New Mexico, and found The USDA-APHIS maintains a comprehensive web site in limited regions in California and Texas. Following this on the disease at: http://www.aphis.usda.gov/karnalbunt/ discovery, movement of wheat and wheat equipment was Refer to this site for more details on the disease including quarantined in the entire state of Arizona, parts of New color photographs. Mexico and California, and in El Paso and Hudspeth counties of Texas. A national survey was initiated over Disease Characteristics the next two years, with samples of wheat being submit- Upon infection, the bunt does not generally affect an en- ted from most of the wheat producing regions of the U.S. tire kernel. Typically, only a portion of a kernel, starting This survey found an infestation in San Saba County in at the embryo end, is blackened or “bunted” and eroded 1997 in hard red winter wheat, which was the first ever with a mass a mass of black spores with the offensive detection in this class of wheat.
    [Show full text]
  • Karnal Bunt of Wheat in India and Its Management: a Review Article
    Plant Pathology & Quarantine 7(2): 165–173 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/10 Copyright © Mushroom Research Foundation Karnal bunt of wheat in India and its management: a review Sharma A1*, Sharma P1, Dixit A2 and Tyagi R3 1Department of Zoology, Stani Memorial PG College, Jaipur-302020, India 2Department of Zoology, St. Xavier's College, Nevta, Jaipur-302029, India 3Department of Biotechnology, Suresh Gyan Vihar University, Jaipur-302017, India Sharma A, Sharma P, Dixit A, Tyagi R 2017 – Karnal bunt of wheat in India and its management: a review. Plant Pathology & Quarantine 7(2), 165–173, Doi 10.5943/ppq/7/2/10 Abstract Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the pathogen is a critical step in analysis and its management. The present review highlights a brief outline of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide application etc. for the control of Karnal bunt disease. Keywords – disease – fungicide – pathogen – Tilletia indica – quarantine Introduction Agriculture plays a vital role in the economy and stability of India.
    [Show full text]
  • Karnal Bunt Disease a Major Threatening to Wheat Crop: a Review
    International Journal of Applied Research 2020; 6(6): 157-160 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Karnal bunt disease a major threatening to wheat Impact Factor: 5.2 IJAR 2020; 6(6): 157-160 crop: A review www.allresearchjournal.com Received: 22-04-2020 Accepted: 24-05-2020 Poonam Kumari, Shivam Maurya, Lokesh Kumar and Snehika Pandia Poonam Kumari Ph.D. Scholars Department of Abstract Plant Pathology, Sri Karan Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat Narendra Agriculture in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The University, Jobner, Jaipur, major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy Rajasthan, India odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne Shivam Maurya Ph.D. Scholars Department of which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the Plant Pathology, Sri Karan pathogen is a critical step in analysis and its management. The present review highlights a brief outline Narendra Agriculture of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide University, Jobner, Jaipur, application etc. for the control of Karnal bunt disease. Rajasthan, India Keywords: Bunt, trimethylamine, bunt ear, teliospore, seed treatment Lokesh Kumar Ph.D. Scholar Department of Introduction Extension Education, Rajasthan College of Karnal bunt of wheat (Triticum aestivum L.), caused by the smut fungus Tilletia indica Mitra Agriculture (MPUAT), (Neovossia indica (Mitra) Mundkur), was first discovered in 1930 at the Botanical Research Udaipur, India Station, Karnal, Haryana, in northwest India (Mitra, M.
    [Show full text]
  • Karnal Bunt, Wheat Karnal Bunt: a Fungal Growers Should Look for Bunted Kernels That Are Frag- Ile, Dark in Color, and Fishy Smelling
    APHIS Industry Alert Plant Protection and Quarantine July 2001 When checking crops for Karnal bunt, wheat Karnal Bunt: A Fungal growers should look for bunted kernels that are frag- ile, dark in color, and fishy smelling. The kernel usu- Disease of Wheat ally remains whole, although part of the germ may be eroded. Cracks in the surface reveal a black pow- Karnal bunt, or partial bunt, is a fungal disease of dery spore mass within the endosperm at the embryo wheat, durum wheat, and triticale (a hybrid of wheat end of the kernel or along the kernel groove. and rye). Typically, only a portion of the kernel is Any kernels that show signs of contamination affected; this is why the disease is sometimes called should be placed in a plastic bag within a sturdy con- partial bunt. Climatic conditions determine the extent tainer and taken to the nearest State regulatory offi- of the disease. The damage may be twofold: infect- cial or to a field office of USDA’s Animal and Plant ed plants may produce less grain, and the quality of Health Inspection Service’s (APHIS) Plant Protection the grain itself may be lessened. and Quarantine (PPQ) program. The U.S. Department of Agriculture (USDA) regu- lates wheat infected with Karnal bunt and restricts the How It Spreads wheat’s movement to keep the fungus from spread- Karnal bunt is spread mainly by the planting of ing or being co-mingled with other wheat. Infected infected seeds. Infection occurs during the flowering wheat can, however, be sent to approved facilities stage of the host plant, when its developing ovary where it is steam rolled, a form of heat treatment, comes into contact with infectious sporidia, a stage in and sold as animal feed.
    [Show full text]
  • Economic Analysis of Ending the Issuance of Karnal Bunt Phytosanitary Wheat Export Certificates
    Special Article Economic Analysis of Ending the Issuance of Karnal Bunt Phytosanitary Wheat Export Certificates Gary Vocke, Edward W. Allen, J. Michael Price1 Abstract: Karnal bunt is a wheat disease that is subject to regulation in the United States through quarantining of affected counties to limit its spread. Currently, the Karnal bunt regulatory program allows the U.S. Department of Agriculture (USDA) to issue phytosanitary export certificates stating that wheat in a given shipment is from an area where Karnal bunt is not known to occur. Ending this certifiation pro- gram would jeopardize U.S. exports to some countries. A model developed by the Economic Research Service was used to analyze a scenario of ending the certifica- tion. The loss of export markets for U.S. wheat producers would be only partially offset by increased domestic feeding of lower-priced wheat. Wheat prices would remain below baseline levels. Reduced wheat production and lower prices for wheat combine to reduce the total value of the wheat produced in the country, as well as the net income in U.S. agriculture. The cumulative reduction of national net farm income from 2003 to 2007 relative to the baseline is $5.3 billion. However, this includes cumulative marketing loan payments associated with all crops of $2.0 bil- lion above the baseline over the 2003-07 period. Keywords: Wheat, Karnal bunt. Introduction spread of Karnal bunt in the United States and con- ducts an annual voluntary survey of grain delivered to Karnal bunt (sometimes called partial bunt), caused by elevators to check for Karnal bunt across the country.
    [Show full text]
  • Nonsystemic Bunt Fungi—Tilletia Indica and T. Horrida: a Review of History, Systematics, and Biology∗
    ANRV283-PY44-05 ARI 7 February 2006 20:39 V I E E W R S I E N C N A D V A Nonsystemic Bunt Fungi—Tilletia indica and T. horrida: A Review of History, Systematics, and Biology∗ Lori M. Carris,1 Lisa A. Castlebury,2 and Blair J. Goates3 1Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430; email: [email protected] 2USDA ARS Systematic Botany and Mycology Laboratory, Beltsville, Maryland 20705-2350; email: [email protected] 3USDA ARS National Small Grains Germplasm Research Facility, Aberdeen, Idaho 82310; email: [email protected] Annu. Rev. Phytopathol. Key Words 2006. 44:5.1–5.21 Karnal bunt, Neovossia, rice kernel smut, Tilletia walkeri, Tilletiales The Annual Review of Phytopathology is online at phyto.annualreviews.org Abstract doi: 10.1146/ The genus Tilletia is a group of smut fungi that infects grasses either annurev.phyto.44.070505.143402 systemically or locally. Basic differences exist between the systemi- Copyright c 2006 by cally infecting species, such as the common and dwarf bunt fungi, and Annual Reviews. All rights locally infecting species. Tilletia indica, which causes Karnal bunt of reserved wheat, and Tilletia horrida, which causes rice kernel smut, are two ex- 0066-4286/06/0908- amples of locally infecting species on economically important crops. 0001-$20.00 However, even species on noncultivated hosts can become important ∗ The U.S. Government when occurring as contaminants in export grain and seed shipments. has the right to retain a nonexclusive, royalty-free In this review, we focus on T. indica and the morphologically similar license in and to any but distantly related T.
    [Show full text]
  • DP 4: Tilletia Indica Mitra INTERNATIONAL STANDARD for PHYTOSANITARY MEASURES PHYTOSANITARY for STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • Diagnostic Protocol for Tilletia Indica, the Cause of Karnal Bunt
    Diagnostic protocol for Tilletia indica, the cause of karnal bunt The International Diagnostic Protocol for Tilletia indica (ISPM-27 DP04) was released March 2014 https://www.ippc.int/en/publications/2457/ PEST STATUS Not present in Australia PROTOCOL NUMBER NDP 19 VERSION NUMBER V1.3 PROTOCOL STATUS Endorsed ISSUE DATE 2012 REVIEW DATE 2017 ISSUED BY SPHDS Prepared for the Subcommittee on Plant Health Diagnostic Standards (SPHDS) This version of the National Diagnostic Protocol (NDP) for karnal bunt is current as at the date contained in the version control box on the front of this document. NDPs are updated every 5 years or before this time if required (i.e. when new techniques become available). The most current version of this document is available from the SPHDS website: http://plantbiosecuritydiagnostics.net.au/resource-hub/priority-pest-diagnostic-resources/ Where an IPPC diagnostic protocol exists it should be used in preference to the NDP. NDPs may contain additional information to aid diagnosis. IPPC protocols are available on the IPPC website: https://www.ippc.int/core-activities/standards-setting/ispms Contents 1 Introduction .................................................................................................................... 1 1.1 General introduction ................................................................................................ 1 1.2 Host range .............................................................................................................. 2 1.3 Symptoms ..............................................................................................................
    [Show full text]
  • Response of Putative Pathogenicity-Related Genes in Tilletia Indica Inciting Karnal Bunt of Wheat
    Cereal Research Communications 46(1), pp. 89–103 (2018) DOI: 10.1556/0806.45.2017.067 Published Online: January 02, 2018 Response of Putative Pathogenicity-related Genes in Tilletia indica Inciting Karnal Bunt of Wheat M.S. GURJAR*, A. JOGAWAT, M.S. SAHARAN and R. AGGARWAL Fungal and Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, Delhi, India (Received 15 February 2017; Accepted 14 August 2017; Communicated by J. Kolmer and Á. Mesterházy) Karnal bunt of wheat (Tilletia indica) is an important internationally quarantined disease from food security point of view. For understanding host specificity and host-pathogen inter- action, putative pathogenicity-related genes were analysed in Tilletia indica in response to host factor at different time points. Highest radial mycelia growth (3.4 cm) was recorded in media amended with susceptible host factor followed by resistant host (2.6 cm) and control (2.0 cm) at 30 days after incubation significantly. Fourteen homologous sequences of puta- tive pathogenicity-related genes, viz. TiPmk1, TiKss1, TiHog1, TiHsp70, TiKpp2, TiCts1, TiHos2, TiChs1, TiPrf1, TiSid1, TiSsp1, TiSte20, TiUbc4 and TiUkc1, were identified in T. indica by in silico analysis. Some of the pathogenicity-related genes were highly expressed significantly in T. indica in response to susceptible host factor as compared to resistant host factor. TiPmk1, TiHog1, TiKss1 were found highly upregulated up to 26-fold (3 days), 20-fold (3 days) and 18-fold (4 days), respectively, significantly in presence of susceptible host factor. The TiCts1 and TiChs1 showed transcripts up to 26-fold (4 days) and 20-fold (3 days) in the presence of susceptible host factor.
    [Show full text]
  • Epitypification of Tilletia Ehrhartae, a Smut Fungus with Potential For
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Eur J Plant Pathol (2015) 143:151–158 DOI 10.1007/s10658-015-0672-1 Epitypification of Tilletia ehrhartae,asmutfungus with potential for nature conservation, biosecurity and biocontrol Marcin Piątek & Matthias Lutz & Adriaana Jacobs & Francis Villablanca & Alan R. Wood Accepted: 1 May 2015 /Published online: 21 May 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Tilletia ehrhartae, a smut fungus infecting caused by Tilletia indica (which is absent in Australia), perennial veldtgrass Ehrharta calycina,isepitypified and therefore constituting a potential risk for Australian and characterized using the Consolidated Species Con- wheat export. The current global distribution of Tilletia cept, including morphology, ecology (host plant) and ehrhartae, possible colonization history, and potential rDNA sequences (ITS and LSU). Tilletia ehrhartae is for nature conservation, biosecurity and biocontrol are native and endemic to the Cape Floral Kingdom discussed. The sequences generated in this work could (located entirely in South Africa), but it has also been serve as DNA barcodes to facilitate rapid identification introduced to the alien artificial range of Ehrharta of this important species. calycina in Australia and California. This smut has already caused some biosecurity problems in Australia Keywords Australia . California . Cape Floral as its spores were found to contaminate harvested wheat Kingdom . South Africa . Epitype . Plant pathogens . seeds, leading to confusion with Karnal bunt of wheat DNA barcodes M. Piątek (*) Department of Mycology, W. Szafer Institute of Botany, Introduction Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland The plant pathogenic teliosporic smut fungi are predom- e-mail: [email protected] inantly distributed with host plants growing in natural M.
    [Show full text]