Epitypification of Tilletia Ehrhartae, a Smut Fungus with Potential For

Total Page:16

File Type:pdf, Size:1020Kb

Epitypification of Tilletia Ehrhartae, a Smut Fungus with Potential For View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Eur J Plant Pathol (2015) 143:151–158 DOI 10.1007/s10658-015-0672-1 Epitypification of Tilletia ehrhartae,asmutfungus with potential for nature conservation, biosecurity and biocontrol Marcin Piątek & Matthias Lutz & Adriaana Jacobs & Francis Villablanca & Alan R. Wood Accepted: 1 May 2015 /Published online: 21 May 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Tilletia ehrhartae, a smut fungus infecting caused by Tilletia indica (which is absent in Australia), perennial veldtgrass Ehrharta calycina,isepitypified and therefore constituting a potential risk for Australian and characterized using the Consolidated Species Con- wheat export. The current global distribution of Tilletia cept, including morphology, ecology (host plant) and ehrhartae, possible colonization history, and potential rDNA sequences (ITS and LSU). Tilletia ehrhartae is for nature conservation, biosecurity and biocontrol are native and endemic to the Cape Floral Kingdom discussed. The sequences generated in this work could (located entirely in South Africa), but it has also been serve as DNA barcodes to facilitate rapid identification introduced to the alien artificial range of Ehrharta of this important species. calycina in Australia and California. This smut has already caused some biosecurity problems in Australia Keywords Australia . California . Cape Floral as its spores were found to contaminate harvested wheat Kingdom . South Africa . Epitype . Plant pathogens . seeds, leading to confusion with Karnal bunt of wheat DNA barcodes M. Piątek (*) Department of Mycology, W. Szafer Institute of Botany, Introduction Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland The plant pathogenic teliosporic smut fungi are predom- e-mail: [email protected] inantly distributed with host plants growing in natural M. Lutz ecosystems, especially different kinds of grasslands and Plant Evolutionary Ecology, Institute of Evolution and savannas where the highest species diversity occurs. Ecology, University of Tübingen, Auf der Morgenstelle 1, These species have been intensively studied with respect D-72076 Tübingen, Germany to their biodiversity and evolutionary significance A. Jacobs (Vánky 2012). A number of smut fungi are however National Collection of Fungi, ARC-Plant Protection Research also important to different aspects of human life and Institute, P. Bag X134QueenswoodPretoria 0121, South economy, being devastating pathogens of cultivated Africa crops or ornamental plants. The clear application of F. Villablanca correct names for plant pathogens having an impact on Biological Sciences Department, California Polytechnic State plant production and the economy is of primary interest University, San Luis Obispo, CA 93407, USA for phytopathologists (Crous 2005; Wingfield et al. 2012). However, morphology often does not provide A. R. Wood ARC-Plant Protection Research Institute, P. Bag X5017, sufficient resolution for an unambiguous identification Stellenbosch 7599, South Africa of species. In recent years, application of molecular 152 Eur J Plant Pathol (2015) 143:151–158 methods has revealed a considerable degree of cryptic specimens collected in Australia. The main constraint of species amongst plant pathogens (Shivas and Cai 2012). these sequences is that they were generated from spec- Thus, the combination of morphological, ecological and imens collected outside South Africa, i.e., from where molecular characters are valuable for correct species Tilletia ehrhartae was described as new to science and identification. This polyphasic approach has often been also from non-native range of the host plant, and there- used to differentiate fungal species including smuts fore none of the respective specimens was an appropri- (Lutz et al. 2008; Bauer et al. 2008;Piątek et al. 2012, ate candidate to be designated as the epitype. Further- 2013; Savchenko et al. 2013, 2014; Vasighzadeh et al. more, it cannot entirely be excluded that, under different 2014), and it was recently named the Consolidated environmental conditions, some local, morphologically Species Concept (Quaedvlieg et al. 2014). Strictly de- similar species jumped to Ehrharta calycina and that fined species, with reference sequences deposited in Australian (and Californian) specimens do not represent public repositories (such as NCBI’sGenBank),arees- Tilletia ehrhartae. The Californian material was not sential for progress in plant pathology. The ideal situa- sequenced so far. tion is when the reference sequences are from type This study aimed to epitypify Tilletia ehrhartae using specimens, which is usually realized when a new spe- recently collected material in South Africa, to provide a cies is described based on recently collected material, detailed morphological and molecular characterization but is difficult for species described during historical of the epitype specimen, and to compare the epitype ITS times and when the original type materials are inappro- and LSU sequences with those obtained from Australian priate for sequencing. That dilemma, however, may be and Californian specimens in order to confirm their abrogated by epitypification of known species, with conspecificity. Both the South African and Californian reference sequences obtained from a recently collected material are used to provide DNA barcodes, and to specimen that serves as the epitype. Ideally, such discuss the current distribution of Tilletia ehrhartae in epitypifications should include material collected on its natural and introduced range. the same host plant and in the same geographical area from where the species was described (Hyde and Zhang 2008). Materials and methods Karnal bunt of wheat caused by Tilletia indica is a disease with minor yield impact for wheat production Morphological examination but important economic losses could result from quar- antine regulations and export restrictions from infected Sori, spores, and sterile cells of the South African ma- regions (Carris et al. 2006). Three smut fungi with quite terial were studied using dried herbarium material. The similar morphology could impede correct identification herbarium specimens are deposited in KRAM F, KR-M, of Tilletia indica,namelyT. ehrhartae, T. horrida and and PREM. The material was examined by light T. walkeri (Carris et al. 2006). Notably, none of these microscopy (LM) and scanning electron microscopy important bunt pathogens have ITS sequences generated (SEM). The species description and measurements are from type specimens (the ITS sequences of Tilletia based on holotype and epitype specimens. For LM, walkeri in GenBank cannot be unequivocally linked to small pieces of sori were mounted in 80 % lactic acid, the type specimen). Tilletia ehrhartae, a species infect- heated to boiling point and cooled, and then examined ing perennial veldtgrass (Ehrharta calycina), is native under a Nikon Eclipse 80i light microscope. LM micro- and endemic to South Africa (Vánky 2012), but has graphs were taken with a Nikon DS-Fi1 camera. Fifty been introduced to Australia and California. This smut spores and at least 10 sterile cells were measured from has already caused some biosecurity problems in Aus- each of the holotype and epitype, at a magnification of tralia as its spores were found to contaminate harvested ×1000, using NIS-Elements BR 3.0 imaging software. wheat seeds, leading to confusion with Tilletia indica Except for the walls of spores, the remaining measure- (which is absent in Australia), and therefore constituting ments are adjusted to the nearest 0.5 μm. For SEM, a potential risk for Australian wheat export (Pascoe et al. spores and sterile cells were mounted on carbon tabs 2005; Vánky and Shivas 2008; Wright 2012). All pre- and fixed to an aluminium stub with double-sided trans- viously generated sequences deposited in GenBank (one parent tape. The stubs were sputter-coated with carbon ITS: AY770433, and one LSU: AY819013) are from using a Cressington sputter-coater and viewed under a Eur J Plant Pathol (2015) 143:151–158 153 Hitachi S-4700 scanning electron microscope, with a Parasitic on Ehrharta calycina, infection systemic, working distance of ca. 12 mm. SEM micrographs were infected culms dwarfed. Sori in all ovaries in the inflo- taken in the Laboratory of Field Emission Scanning rescences, causing a moderate hypertrophy of the ova- Electron Microscopy and Microanalysis at the Institute ries, ovoid to broadly fusiform, 2–7 mm long, 1.5–2mm of Geological Sciences of Jagiellonian University, wide, partly or rarely completely hidden by the glumes, Kraków (Poland). at first enclosed by a dirty green pericarp of host origin that in maturity ruptures irregularly exposing a blackish DNA extraction, PCR, and sequencing brown, granular powdery mass of spores mixed with sterile cells. Spores brown to chestnut-brown, rarely Genomic DNA for the South African epitype was iso- pale brown, regular in shape and size, globose or lated directly from the herbarium specimen. The Cali- subglobose, (17.5–)18.0–22.0 (−23.0)×17.5–21.0 μm fornia sample is from a specimen in the frozen tissue [av. ± SD, 19.9±1.3×19.3±1.1 μm, n=50] for the collection (FC – 712) at California Polytechnic State epitype, (17.0–)18.0–22.0 (−23.5)×17.5–21.0 μm[av. University, San Luis Obispo, CA. For methods of iso- ± SD, 19.5±1.4×19.3±1.1 μm, n=50] for the holotype; lation and crushing of fungal material, DNA extraction,
Recommended publications
  • Ehrharta Calycina
    Information on measures and related costs in relation to species considered for inclusion on the Union list: Ehrharta calycina This note has been drafted by IUCN within the framework of the contract No 07.0202/2017/763436/SER/ENV.D2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission, or IUCN. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor IUCN or any person acting on the Commission’s behalf, including any authors or contributors of the notes themselves, may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. This document shall be cited as: Visser, V. 2018. Information on measures and related costs in relation to species considered for inclusion on the Union list: Ehrharta calycina. Technical note prepared by IUCN for the European Commission. Date of completion: 25/10/2018 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected]. Species (scientific name) Ehrharta calycina Sm. Pl. Ic. Ined. t. 33. Species (common name) Perennial veldt grass, purple veldt grass, veldt grass, common ehrharta, gewone ehrharta (Afrikaans), rooisaadgras (Afrikaans). Author(s) Vernon Visser, African Climate & Development Institute Date Completed 25/10/2018 Reviewer Courtenay A. Ray, Arizona State University Summary Highlight of measures that provide the most cost-effective options to prevent the introduction, achieve early detection, rapidly eradicate and manage the species, including significant gaps in information or knowledge to identify cost-effective measures.
    [Show full text]
  • Karnal Bunt Tilletia Indica What Is It? Karnal Bunt (Tilletia Indica) Is a Fungus Affecting Grains of Wheat, Durum and Triticale
    Fact sheet Karnal bunt Tilletia indica What is it? Karnal bunt (Tilletia indica) is a fungus affecting grains of wheat, durum and triticale. Karnal bunt is not present in Australia. It does occur in the USA, Mexico, India, Afghanistan, Pakistan and parts of Nepal and Iraq. If introduced into Australia, Karnal bunt would be almost impossible to eradicate as its spores can live in the soil for five years or more until conditions favour growth, usually a period of cool, wet weather. An incursion of this fungus could severely disrupt international trade and have a major economic impact on our agricultural industry, as a major exporter of wheat. Karnal bunt is most likely to enter Australia either on diseased grain or as spores on travellers' clothing. To prevent the introduction of this disease to Australia it is important that all seed imports to Australia occur through appropriate quarantine facilities, and that travellers to overseas farms thoroughly wash all clothing on return to Australia. Suspect samples must be reported to Biosecurity SA immediately. Two ears of wheat smutted What does it look like? Source: Ruben Durán, Washington State University, Karnal bunt is not easily detected prior to harvest, since it is usual Bugwood.org for only a few seeds in each head to be affected by the disease. The symptoms of this fungus are most easily seen in harvested grain, and range from pinpoint sized spots to thick black spore masses running the length of the groove in the grain. Usually only part of each grain is affected, although occasionally the whole seed will be blackened with a sooty appearance.
    [Show full text]
  • Montaña De Oro Checklist-07Jun19
    Checklist1 of Vascular Flora of Montaña de Oro State Park San Luis Obispo County, California (07 June 2019) David J. Keil Robert F. Hoover Herbarium Biological Sciences Department California Polytechnic State University San Luis Obispo, California Scientific Name Common Name Family Rare n Abronia latifolia yellow sand-verbena NYCTAGINACEAE v n Abronia maritima beach sand-verbena, red NYCTAGINACEAE 4.2 v sand-verbena n Abronia umbellata var. umbellata purple sand-verbena NYCTAGINACEAE v n Acer macrophyllum big-leaf maple SAPINDACEAE v n ❀ Achillea millefolium yarrow ASTERACEAE v n Acmispon brachycarpus shortpod deervetch FABACEAE v 1 Please notify the author of additions or corrections to this list ([email protected]). ❀ — See Wildflowers of San Luis Obispo, California, second edition (2018) for photograph. Most are illustrated in the first edition as well; old names for some species in square brackets. n — California native n1 — California native but planted at Montaña de Oro. i — exotic species, introduced to California, naturalized or waif. v — documented by one or more specimens (Consortium of California Herbaria record; specimen in OBI; or collection that has not yet been accessioned) o — observed during field surveys; no voucher specimen known R—California Rare Plant Rank Scientific Name Common Name Family Rare n ❀ Acmispon glaber var. glaber common deerweed FABACEAE v n Acmispon heermannii var. orbicularis woolly deer-vetch FABACEAE v n Acmispon junceus var. biolettii Biolett's rush deerweed FABACEAE v n Acmispon junceus var. junceus common rush deerweed FABACEAE v n Acmispon maritimus var. maritimus coastal deer-vetch FABACEAE v n Acmispon micranthus fishhook deervetch FABACEAE v n Acmispon parviflorus miniature deervetch FABACEAE o n ❀ Acmispon strigosus strigose deer-vetch FABACEAE v n Actaea rubra baneberry RANUNCULACEAE v n ❀ Adelinia grandis Pacific hound's tongue BORAGINACEAE v n ❀ Adenostoma fasciculatum var.
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • BFS048 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No kens01 (FCT23a) Wd? Acacia sessilis Wattle Mimosaceae Dicot WA 3 SH P 48 y Acacia stenoptera Narrow-winged Wattle Mimosaceae Dicot WA 3 SH P 48 y * Aira caryophyllea Silvery Hairgrass Poaceae Monocot 5 G A 48 y Alexgeorgea nitens Alexgeorgea Restionaceae Monocot WA 6 S-R P 48 y Allocasuarina humilis Dwarf Sheoak Casuarinaceae Dicot WA 3 SH P 48 y Amphipogon turbinatus Amphipogon Poaceae Monocot WA 5 G P 48 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 48 y Austrostipa compressa Golden Speargrass Poaceae Monocot WA 5 G P 48 y Banksia menziesii Firewood Banksia Proteaceae Dicot WA 1 T P 48 y Bossiaea eriocarpa Common Bossiaea Papilionaceae Dicot WA 3 SH P 48 y * Briza maxima Blowfly Grass Poaceae Monocot 5 G A 48 y Burchardia congesta Kara Colchicaceae Monocot WA 4 H PAB 48 y Calectasia narragara Blue Tinsel Lily Dasypogonaceae Monocot WA 4 H-SH P 48 y Calytrix angulata Yellow Starflower Myrtaceae Dicot WA 3 SH P 48 y Centrolepis drummondiana Sand Centrolepis Centrolepidaceae Monocot AUST 6 S-C A 48 y Conostephium pendulum Pearlflower Epacridaceae Dicot WA 3 SH P 48 y Conostylis aculeata Prickly Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis juncea Conostylis Haemodoraceae Monocot WA 4 H P 48 y Conostylis setigera subsp.
    [Show full text]
  • Use of Whole Genome Sequence Data to Characterize Mating and Rna
    USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA SILENCING GENES IN TILLETIA SPECIES By SEAN WESLEY MCCOTTER A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PLANT PATHOLOGY WASHINGTON STATE UNIVERSITY Department of Plant Pathology DECEMBER 2014 © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WESLEY MCCOTTER find it satisfactory and recommend that it be accepted. Lori M. Carris, Ph.D., Chair Dorrie Main, Ph.D. Patricia Okubara, Ph.D. Lisa A. Castlebury, Ph. D. ii ACKNOWLEDGMENTS The research presented in this thesis could not have been carried out without the expertise and cooperation of others in the scientific community. Significant contributions were made by colleagues here at Washington State University, at the United States Department of Agriculture and at Agriculture and Agri-Food Canada. I would like to start by thanking my committee members Dr. Lori Carris, Dr. Lisa Castlebury, Dr. Pat Okubara and Dr. Dorrie Main, who provided guidance on procedure, feedback on my research as well as contacts and laboratory resources. Dr. André Lévesque of AAFC initially alerted me to the prospect of collaboration with other AAFC Tilletia researchers and placed me in contact with Dr. Sarah Hambleton, whose lab sequenced four out of five strains of Tilletia used in this study (CSSP CRTI 09-462RD). Dr. Prasad Kesanakurti and Jeff Cullis coordinated my access to AAFC’s genome and transcriptome data for these species.
    [Show full text]
  • Karnal Bunt in Texas Wheat Dr
    Texas Agricultural Extension Service The Texas A&M University System Karnal Bunt in Texas Wheat Dr. Travis Miller Historical Information sion that several states in the southeastern U.S. were posi- In the spring of 1996, Karnal bunt (Tilletia indica Mitra) tive for Karnal bunt. This led APHIS to go to the stan- was found in a sample of durum wheat seed in Arizona. dard of finding one or more “bunted” kernels in a 4 pound Subsequent investigation revealed that Karnal bunt had sample as the definitive test for the disease. been distributed in durum wheat planting seed, and that it was widespread in Arizona and New Mexico, and found The USDA-APHIS maintains a comprehensive web site in limited regions in California and Texas. Following this on the disease at: http://www.aphis.usda.gov/karnalbunt/ discovery, movement of wheat and wheat equipment was Refer to this site for more details on the disease including quarantined in the entire state of Arizona, parts of New color photographs. Mexico and California, and in El Paso and Hudspeth counties of Texas. A national survey was initiated over Disease Characteristics the next two years, with samples of wheat being submit- Upon infection, the bunt does not generally affect an en- ted from most of the wheat producing regions of the U.S. tire kernel. Typically, only a portion of a kernel, starting This survey found an infestation in San Saba County in at the embryo end, is blackened or “bunted” and eroded 1997 in hard red winter wheat, which was the first ever with a mass a mass of black spores with the offensive detection in this class of wheat.
    [Show full text]
  • Karnal Bunt of Wheat in India and Its Management: a Review Article
    Plant Pathology & Quarantine 7(2): 165–173 (2017) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/7/2/10 Copyright © Mushroom Research Foundation Karnal bunt of wheat in India and its management: a review Sharma A1*, Sharma P1, Dixit A2 and Tyagi R3 1Department of Zoology, Stani Memorial PG College, Jaipur-302020, India 2Department of Zoology, St. Xavier's College, Nevta, Jaipur-302029, India 3Department of Biotechnology, Suresh Gyan Vihar University, Jaipur-302017, India Sharma A, Sharma P, Dixit A, Tyagi R 2017 – Karnal bunt of wheat in India and its management: a review. Plant Pathology & Quarantine 7(2), 165–173, Doi 10.5943/ppq/7/2/10 Abstract Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the pathogen is a critical step in analysis and its management. The present review highlights a brief outline of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide application etc. for the control of Karnal bunt disease. Keywords – disease – fungicide – pathogen – Tilletia indica – quarantine Introduction Agriculture plays a vital role in the economy and stability of India.
    [Show full text]
  • Diseases Affecting Rice in Louisiana Harry Rascoe Fulton
    Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1908 Diseases affecting rice in Louisiana Harry Rascoe Fulton Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Fulton, Harry Rascoe, "Diseases affecting rice in Louisiana" (1908). LSU Agricultural Experiment Station Reports. 574. http://digitalcommons.lsu.edu/agexp/574 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Louisiana Buiietin No, 105. April, 1908. Agricultural Experiment Station OF THE Louisiana State University and A. & M. College, BATON ROUGE. Diseases Affecting: Rice IN LOUISIANA. H. R. FULTON, M. S. BATON ROUGE: The Daily State Publishing Company^ State Peinthes. 1908. Louisiana State University and A. 6i n College LOUISIANA STATE BOARD OF AGRICULTURE AND IMMIGRATION EX-OFFICIO. Governor NEWTON C. BLANCHARD, President. S. M. ROBERTSON, Vice President of Board of Supervisors. CHAS. SCHULER, Commissioner of Agriculture and Immigration. THOMAS D. BOYD, President State University. W. It. DODSON, Director Experiment Stations. MEMBERS. JOHN DYMOND, Belair, La. LUCIEN SONIAT, Camp Parapet, La. La. J. SHAW JONES, Monroe, La. C. A. TIEBOUT, Roseland, FRED SEIP, Alexandria, La. C. A. CELESTIN, Houma, La. H. C. STRINGFELLOW, Howard, La. STATION STAFF. W. R. DODSON^ A.B., B.S., Director, Baton Rouge. R. E. BLOUIN, M.S., Assistant Director, Audubon Park, New Orleans. J G. LEE, B.S., Assistant Director, Calhoun. S. E.
    [Show full text]
  • Karnal Bunt Disease a Major Threatening to Wheat Crop: a Review
    International Journal of Applied Research 2020; 6(6): 157-160 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Karnal bunt disease a major threatening to wheat Impact Factor: 5.2 IJAR 2020; 6(6): 157-160 crop: A review www.allresearchjournal.com Received: 22-04-2020 Accepted: 24-05-2020 Poonam Kumari, Shivam Maurya, Lokesh Kumar and Snehika Pandia Poonam Kumari Ph.D. Scholars Department of Abstract Plant Pathology, Sri Karan Wheat has been a source of staple food to mankind since ancient times. Decreased production of wheat Narendra Agriculture in the major wheat growing countries may be attributed to prevalence of Karnal bunt disease. The University, Jobner, Jaipur, major impact of Karnal bunt is yield reduction and a decrease in quality of grains by imparting a fishy Rajasthan, India odour and taste to the wheat. The disease has gained significant importance due to the fact that it is prevalent only in a few countries around the world. The pathogen Tilletia indica is soil and seed borne Shivam Maurya Ph.D. Scholars Department of which pose a serious quarantine problem and thus interferes with wheat trade. Early recognition of the Plant Pathology, Sri Karan pathogen is a critical step in analysis and its management. The present review highlights a brief outline Narendra Agriculture of the pathogen, symptoms and various methods like seed treatment, crop rotation, fungicide University, Jobner, Jaipur, application etc. for the control of Karnal bunt disease. Rajasthan, India Keywords: Bunt, trimethylamine, bunt ear, teliospore, seed treatment Lokesh Kumar Ph.D. Scholar Department of Introduction Extension Education, Rajasthan College of Karnal bunt of wheat (Triticum aestivum L.), caused by the smut fungus Tilletia indica Mitra Agriculture (MPUAT), (Neovossia indica (Mitra) Mundkur), was first discovered in 1930 at the Botanical Research Udaipur, India Station, Karnal, Haryana, in northwest India (Mitra, M.
    [Show full text]
  • Karnal Bunt, Wheat Karnal Bunt: a Fungal Growers Should Look for Bunted Kernels That Are Frag- Ile, Dark in Color, and Fishy Smelling
    APHIS Industry Alert Plant Protection and Quarantine July 2001 When checking crops for Karnal bunt, wheat Karnal Bunt: A Fungal growers should look for bunted kernels that are frag- ile, dark in color, and fishy smelling. The kernel usu- Disease of Wheat ally remains whole, although part of the germ may be eroded. Cracks in the surface reveal a black pow- Karnal bunt, or partial bunt, is a fungal disease of dery spore mass within the endosperm at the embryo wheat, durum wheat, and triticale (a hybrid of wheat end of the kernel or along the kernel groove. and rye). Typically, only a portion of the kernel is Any kernels that show signs of contamination affected; this is why the disease is sometimes called should be placed in a plastic bag within a sturdy con- partial bunt. Climatic conditions determine the extent tainer and taken to the nearest State regulatory offi- of the disease. The damage may be twofold: infect- cial or to a field office of USDA’s Animal and Plant ed plants may produce less grain, and the quality of Health Inspection Service’s (APHIS) Plant Protection the grain itself may be lessened. and Quarantine (PPQ) program. The U.S. Department of Agriculture (USDA) regu- lates wheat infected with Karnal bunt and restricts the How It Spreads wheat’s movement to keep the fungus from spread- Karnal bunt is spread mainly by the planting of ing or being co-mingled with other wheat. Infected infected seeds. Infection occurs during the flowering wheat can, however, be sent to approved facilities stage of the host plant, when its developing ovary where it is steam rolled, a form of heat treatment, comes into contact with infectious sporidia, a stage in and sold as animal feed.
    [Show full text]
  • Morro Creek Natural Environment Study
    Morro Creek Multi-Use Trail and Bridge Project Natural Environment Study San Luis Obispo County, California Federal Project Number CASB12RP-5391(013) MB-2013-S2 05-SLO-0-MOBY December 2013 For individuals with sensory disabilities, this document is available in Braille, large print, on audiocassette, or computer disk. To obtain a copy in one of these alternate formats, please call or write to Caltrans, Attn: Brandy Rider, Caltrans District 5 Environmental Stewardship Branch, 50 Higuera Street, San Luis Obispo, CA 93401; 805-549-3182 Voice, or use the California Relay Service TTY number, 805-549-3259. This page is intentionally left blank. Summary Summary The City of Morro Bay is extending the existing Harborwalk with continuation of a paved pedestrian boardwalk and separate Class I bike path from the existing parking area and crossing on Embarcadero Avenue northward. The City also proposes to install a clear-span pre-engineered/pre-fabricated bike and pedestrian bridge over Morro Creek to connect to north Morro Bay on Embarcadero Road/State Route 41. In addition, the project will include improvements to beach access from the trail, and two interpretive sign stations that will display educational and other information about the cultural and natural history of the region. This project is receiving funding from the Federal Highway Administration (FHWA) and with assistance from Caltrans. As part of its NEPA assignment of federal responsibilities by the FHWA, effective October 1, 2012 and pursuant to 23 USC 326, Caltrans is acting as the lead federal agency for Section 7 of the federal Endangered Species Act.
    [Show full text]