Optimized Route Network Graph As Map Reference for Autonomous Cars Operating on German Autobahn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Voice and Pointing Gesture Interaction System for Supporting
Clemson University TigerPrints All Dissertations Dissertations 5-2017 A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars Pablo Sauras-Perez Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Sauras-Perez, Pablo, "A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars" (2017). All Dissertations. 1943. https://tigerprints.clemson.edu/all_dissertations/1943 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A VOICE AND POINTING GESTURE INTERACTION SYSTEM FOR SUPPORTING HUMAN SPONTANEOUS DECISIONS IN AUTONOMOUS CARS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Automotive Engineering by Pablo Sauras-Perez May 2017 Accepted by: Dr. Pierluigi Pisu, Committee Chair Dr. Joachim Taiber Dr. Yunyi Jia Dr. Mashrur Chowdhury ABSTRACT Autonomous cars are expected to improve road safety, traffic and mobility. It is projected that in the next 20-30 years fully autonomous vehicles will be on the market. The advancement on the research and development of this technology will allow the disengagement of humans from the driving task, which will be responsibility of the vehicle intelligence. In this scenario new vehicle interior designs are proposed, enabling more flexible human vehicle interactions inside them. In addition, as some important stakeholders propose, control elements such as the steering wheel and accelerator and brake pedals may not be needed any longer. -
Study on Electrical Vehicle and Its Scope in Future
© 2018 JETIR February 2018, Volume 5, Issue 2 www.jetir.org (ISSN-2349-5162) Study on Electrical Vehicle and Its Scope in Future Divya Sharma, Department of Electrical Engineering Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh ABSTRACT: The cars are based on programming in advanced time to give the individual driver relaxed driving. In the automobile industry, various opportunities are known, which makes a car automatic. Google, the largest network, has been working on self-driving cars since 2010 and yet an innovative adaptation to present a mechanised vehicle in a radically new model is continuing to be launched. The modelling, calibration and study of changes in city morphology in autonomous vehicles (AVs). Transport system are utilized to travel among the tangential houses as well as the intermediate work and necessitate transportation space. The main benefits of an autonomous vehicle areit can be operated day parking area for other uses, mitigatemetropolitanground. We also reduce the cost per kilometre of driving. Researchers are interested in the area of automotive automation, where most applications are found in different places. The technology in this research paper will help to understand the quick, present and future technologies used or used in the automotive field to render automotive automation. KEYWORDS: Autonomous Vehicle, Linriccan Wonder, Robotic Van, Self-Driving Car, Tesla corporation. INTRODUCTION Users all over the world are delighted with the introduction of an automated vehicle for the general -
Multimodal Machine Learning for Intelligent Mobility
MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Multimodal Machine Learning for Intelligent Mobility by Aubrey James Roche Doctoral Thesis Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy Institute of Digital Technologies, Loughborough University London © Aubrey James Roche May 2020 i MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Dedicate to my partner Sádhbh & my son Ruadhán – Nunc scio quid sit amor, semper gratiam habebo. Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better. (Samuel Beckett) ii MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Certificate of Originality Thesis Access Conditions and Deposit Agreement Students should consult the guidance notes on the electronic thesis deposit and the access conditions in the University’s Code of Practice on Research Degree Programmes Author: Jamie Roche .............................................................................................................................. Title: Multimodal Machine Learning for Intelligent Mobility ............................................................ I Jamie Roche, 2 Herbert Tec, Herbert Road, Bray, Co Wicklow, Ireland, “the Depositor”, would like to deposit Multimodal Machine Learning for Intelligent Mobility, hereafter referred to as the “Work”, once it has successfully been examined in Loughborough University Research Repository Status of access OPEN / RESTRICTED / CONFIDENTIAL Moratorium Period: 3 years 3 months ................... years, ending 13 ........... -
La Computación En México Por Especialidades Académicas
La Computación en México por Especialidades Académicas ACADEMIA MEXICANA DE COMPUTACIÓN 2017 ACADEMIA MEXICANA DE COMPUTACIÓN A. C. Presidente Dr. Luis Alberto Pineda Cortés Vicepresidente Dr. Luis Enrique Sucar Succar Tesorero Dr. Carlos Artemio Coello Coello Secretarios Dr. Christian Lemaitre León Dr. Francisco Javier Cantú Ortiz Vocal Dr. Jesús Favela Vara Coordinadores de Secciones Académicas Conocimiento y Razonamiento Dr. Ramón Felipe Brena Pinero Aprendizaje e Inteligencia Computacional Dr. Carlos Alberto Reyes García Tecnologías de Lenguaje Dr. Luis Villaseñor Pineda Robótica de Servicio Dr. Alejandro Aceves López Ingeniería de Software Dra. Hanna Oktaba Interacción Humano-Computadora Dr. Luis Adrián Castro Análisis de Señales y Procesamiento de Patrones Dra. Pilar Gómez-Gil Computación Evolutiva Dr. Carlos Artemio Coello Coello La Computación en México por especialidades académicas Luis Alberto Pineda Cortés Coordinador y editor ACADEMIA MEXICANA DE COMPUTACIÓN, A, C. 2017 La Computación en México por especialidades académicas Coordinador general: Luis Alberto Pineda Cortés. Primera edición: 2017 Academia Mexicana de Computación, A. C. Todos los derechos reservados conforme a la ley. ISBN: 978-607-97357-1-5 Corrección de estilo: Luis Alberto Pineda Cortés Formación: Homero Buenrostro Trujillo. Diseño de portada: Mario Alberto Vélez Sánchez. Cuidado de la edición: Nydia De Ávila Jiménez y Homero Buenrostro Trujillo. Este libro se realizó con el apoyo del CONACyT: Proyecto 271979 “Programa Anual de Actividades de la Academia Mexicana de Computación 2016” Queda prohibida la reproducción parcial o total, directa o indirecta, del contenido de esta obra, sin contar con autorización escrita de los autores, en términos de la Ley Federal del Derecho de Autor y, en su caso, de los tratados internacionales aplicables. -
Chapter 8. Automated Driving
CHAPTER 8 Automated Driving Jorge Villagra1, Leopoldo Acosta2, Antonio Artuñedo1, Rosa Blanco3, Miguel Clavijo4, Carlos Fernández5, Jorge Godoy1, Rodolfo Haber1, Felipe Jiménez4, Carlos Martínez4, José E. Naranjo4, Pedro J. Navarro5, Ana Paúl3 and Francisco Sánchez3 1CSIC, Madrid, Spain 2Universidad de La Laguna, Santa Cruz de Tenerife, Spain 3CTAG - Centro Tecnolo´gico de Automocio´n de Galicia, Porrin˜o, Spain 4Universidad Polite´cnica de Madrid, Madrid, Spain 5Universidad Polite´cnica de Cartagena, Cartagena, Spain Contents 8.1 Fundamentals 275 8.2 Technology Bricks 279 8.2.1 Control Architectures 279 8.2.2 Situation Awareness and Risk Assessment 283 8.2.3 Decision Making 286 8.2.4 DriverÀVehicle Interaction 289 8.2.5 Motion Planning 292 8.2.6 Vehicle Control 304 8.3 Cooperative Automated Driving 310 8.3.1 Platooning 311 8.3.2 Urban Road Transport 314 8.4 Verification and Validation 315 8.5 Main Initiatives and Applications 317 8.5.1 Prototypes 317 8.5.2 Projects 322 8.5.3 Special Applications 327 8.6 Socioregulatory Aspects 332 8.6.1 Legal Pathways 332 8.6.2 Ethical Aspects 338 References 339 8.1 FUNDAMENTALS Following the Webster definition, an autonomous vehicle “has the right or power of self-government,” “exists or act separately from other things Intelligent Vehicles © 2018 Elsevier Inc. DOI: http://dx.doi.org/10.1016/B978-0-12-812800-8.00008-4 All rights reserved. 275 276 Intelligent Vehicles or people,” “is undertaken or carried on without outside control,” and “responds, reacts, or develops independently of the whole.” If we take these words at face value, it is therefore clear that there is a common mistake confusing this definition with the kind of systems cur- rently appearing on mass media, where the driver has very little interven- tion. -
The Future of Autonomous Cars a Scenario Analysis of Emergence and Adoption Master’S Thesis in Management and Economics of Innovation
The Future of Autonomous Cars A Scenario Analysis of Emergence and Adoption Master’s thesis in Management and Economics of Innovation LUDVIG BARREHAG Department of Technology Management and Economics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 The Future of Autonomous Cars A Scenario Analysis of Emergence and Adoption LUDVIG BARREHAG © LUDVIG BARREHAG, 2018 Technical report no E2018:114 Department of Technology Management and Economics Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-772 1000 Department of Technology Management and Economics Göteborg, Sweden 2018 "The horse is here to stay, but the automobile is only a novelty – a fad," Stated by the president of the Michigan Savings Bank while advising Henry Ford's lawyer not to invest in Ford Motor Co. Something the lawyer did nonetheless which earned him the fortune of his life. Acknowledgments Several people have been of great help in the making of this study. First of all, I would like to thank Erik Bohlin, my tutor who has guided my work and continuously provided good advice in terms of structuring and making sense of the results. An extra appreciation goes to his great patience in a time when this study got put on hold. I also owe a large appreciation to Berg Insight and in particular Johan Fagerberg who made this study possible through a combination of good advice, access to extensive amount of data as well as a beautiful office to work in with an excellent coffee machine. For anyone interested in reading a market research analysis version of this study I refer to the title The Future of Autonomous Cars available at Berg Insight. -
Real-Time Collision Risk Estimation Based on Pearson's Correlation
Real-time Collision Risk Estimation based on Pearson’s Correlation Coefficient Arthur Miranda Neto, Alessandro Corrêa Victorino, Isabelle Fantoni, Janito Vaqueiro Ferreira To cite this version: Arthur Miranda Neto, Alessandro Corrêa Victorino, Isabelle Fantoni, Janito Vaqueiro Ferreira. Real-time Collision Risk Estimation based on Pearson’s Correlation Coefficient. IEEE Work- shop on Robot Vision (WORV 2013), Jan 2013, Clearwater Beach, FL, United States. pp.40-45, 10.1109/WORV.2013.6521911. hal-00861087 HAL Id: hal-00861087 https://hal.archives-ouvertes.fr/hal-00861087 Submitted on 11 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Real-Time Collision Risk Estimation based on Pearson’s Correlation Coefficient A. Miranda Neto 1, A. Corrêa Victorino 2, I. Fantoni 2 and J. V. Ferreira 1 1 Autonomous Mobility Laboratory (LMA) at FEM/UNICAMP, Brazil 2 Heudiasyc Laboratory at UTC – CNRS UMR 7253, France Abstract understated [8]. The real nature of the information used by humans to evaluate time-to-contact is still an open question. The perception of the environment is a major issue in Humans adapt their motion to avoid collisions in order to autonomous robots. -
Autonomous Cars: Past, Present and Future
Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public. -
Automotive Systems Engineering Automotive Systems Engineering Markus Maurer • Hermann Winner Editors
Markus Maurer Hermann Winner Editors Automotive Systems Engineering Automotive Systems Engineering Markus Maurer • Hermann Winner Editors Automotive Systems Engineering 123 Editors Markus Maurer Hermann Winner Institut für Regelungstechnik Fachgebiet Fahrzeugtechnik Technische Universität Braunschweig Technische Universität Darmstadt Braunschweig Darmstadt Germany Germany ISBN 978-3-642-36454-9 ISBN 978-3-642-36455-6 (eBook) DOI 10.1007/978-3-642-36455-6 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013935997 Ó Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Robust Horizon Finding Algorithm for Real-Time Autonomous Navigation
Robust Horizon Finding Algorithm for Real-Time Autonomous Navigation based on Monocular Vision Arthur de Miranda Neto, Alessandro Correa Victorino, Isabelle Fantoni, Douglas Eduardo Zampieri To cite this version: Arthur de Miranda Neto, Alessandro Correa Victorino, Isabelle Fantoni, Douglas Eduardo Zampieri. Robust Horizon Finding Algorithm for Real-Time Autonomous Navigation based on Monocular Vision. 14th IEEE International Conference on Intelligent Transportation Systems (ITSC 2011), Oct 2011, Washington DC, United States. pp.532-537. hal-00657425 HAL Id: hal-00657425 https://hal.archives-ouvertes.fr/hal-00657425 Submitted on 6 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Robust Horizon Finding Algorithm for Real-Time Autonomous Navigation based on Monocular Vision A. Miranda Neto, A. Corrêa Victorino, I. Fantoni and D. E. Zampieri Abstract —Navigation of an Autonomous Vehicle is based techniques [8]. Besides their intrinsic higher computational on its interaction with the environment, through information complexity caused by a significant increment in the acquired by sensors. The perception of the environment is a amount of data to be processed, the most common vision major issue in autonomous and (semi)-autonomous systems. systems (such as the processing of non-monocular images) This work presents the embedded real-time visual perception must also be robust enough to tolerate noise caused by problem applied to experimental platform. -
Road Transportation
The ‘Autonomes’ are Coming - This Will Fundamentally Change How We ‘Do’ Road Transportation Author: Paul Godsmark, CEng., MICE Transportation Specialist Independent Consultant Co-Author: Bill Kenny P.Eng. Director, Project Management and Training, Geometric Standards Specialist Alberta Transportation Paper Prepared for presentation at the Road Safety Strategies and Intelligent Transportation Systems (ITS) Session of the 2013 Conference of the Transportation Association of Canada Written 26 April 2013 TAC 2013: Autonomes - Godsmark/Kenny 1 Abstract This forward looking presentation addresses the issue of the two separate technological tidal waves that we face in automotive and communications technology that will start to transform our roadways sometime between 2015 and 2022. They will result in a paradigm shift in how we ‘do’ road transportation. The Connected Vehicle will allow road vehicles to communicate with each other and with infrastructure, thereby improving congestion and the efficiency of our road networks as well as improving safety for unimpaired drivers. The autonomous vehicle (or ‘autonome’ as we call it) will allow vehicle users to be completely disengaged from the driving process for most, or all of their journey, thus effectively removing human error (a factor in 95% of collisions) from the driver/road/vehicle equation. The road safety benefits, business efficiencies, improved mobility and reduced emissions could possibly equate to 4% to 7% improvements in GDP. These technologies will eventually change how we use our road space and parking, the size and weight of vehicles, the need for road furniture, how intersections function, transform public transport as well have major wider societal impacts. In order to maximize the benefits of this technology, and see rapid and significant reductions in collisions, we need to prepare now and ensure that our thinking, policies, regulations and standards can accommodate this impending revolution on our roads. -
Automated Vehicles and Regulation: Panel Discussion
TRANSPORTATION RESEARCH Number E-C232 April 2018 USERS. VEHICLES. INFRASTRUCTURE. TRANSPORTATION RESEARCH BOARD 2018 EXECUTIVE COMMITTEE OFFICERS Chair: Katherine F. Turnbull, Executive Associate Director and Research Scientist, Texas A&M Transportation Institute, College Station Vice Chair: Victoria A. Arroyo, Executive Director, Georgetown Climate Center; Assistant Dean, Centers and Institutes; and Professor and Director, Environmental Law Program, Georgetown University Law Center, Washington, D.C. Division Chair for NRC Oversight: Susan Hanson, Distinguished University Professor Emerita, School of Geography, Clark University, Worcester, Massachusetts Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2017–2018 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board David Ballard, Senior Economist, Gellman Research Associates, Inc., Jenkintown, Pennsylvania, Aviation Group Chair Coco Briseno, Deputy Director, Planning and Modal Programs, California Department of Transportation, Sacramento, State DOT Representative Anne Goodchild, Associate Professor, University of Washington, Seattle, Freight Systems Group Chair George Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair David Harkey, Director, Highway Safety Research Center, University of North Carolina, Chapel Hill, Safety and Systems Users Group Chair Dennis Hinebaugh, Director, National