La Computación En México Por Especialidades Académicas

Total Page:16

File Type:pdf, Size:1020Kb

La Computación En México Por Especialidades Académicas La Computación en México por Especialidades Académicas ACADEMIA MEXICANA DE COMPUTACIÓN 2017 ACADEMIA MEXICANA DE COMPUTACIÓN A. C. Presidente Dr. Luis Alberto Pineda Cortés Vicepresidente Dr. Luis Enrique Sucar Succar Tesorero Dr. Carlos Artemio Coello Coello Secretarios Dr. Christian Lemaitre León Dr. Francisco Javier Cantú Ortiz Vocal Dr. Jesús Favela Vara Coordinadores de Secciones Académicas Conocimiento y Razonamiento Dr. Ramón Felipe Brena Pinero Aprendizaje e Inteligencia Computacional Dr. Carlos Alberto Reyes García Tecnologías de Lenguaje Dr. Luis Villaseñor Pineda Robótica de Servicio Dr. Alejandro Aceves López Ingeniería de Software Dra. Hanna Oktaba Interacción Humano-Computadora Dr. Luis Adrián Castro Análisis de Señales y Procesamiento de Patrones Dra. Pilar Gómez-Gil Computación Evolutiva Dr. Carlos Artemio Coello Coello La Computación en México por especialidades académicas Luis Alberto Pineda Cortés Coordinador y editor ACADEMIA MEXICANA DE COMPUTACIÓN, A, C. 2017 La Computación en México por especialidades académicas Coordinador general: Luis Alberto Pineda Cortés. Primera edición: 2017 Academia Mexicana de Computación, A. C. Todos los derechos reservados conforme a la ley. ISBN: 978-607-97357-1-5 Corrección de estilo: Luis Alberto Pineda Cortés Formación: Homero Buenrostro Trujillo. Diseño de portada: Mario Alberto Vélez Sánchez. Cuidado de la edición: Nydia De Ávila Jiménez y Homero Buenrostro Trujillo. Este libro se realizó con el apoyo del CONACyT: Proyecto 271979 “Programa Anual de Actividades de la Academia Mexicana de Computación 2016” Queda prohibida la reproducción parcial o total, directa o indirecta, del contenido de esta obra, sin contar con autorización escrita de los autores, en términos de la Ley Federal del Derecho de Autor y, en su caso, de los tratados internacionales aplicables. Impreso en México. Printed in Mexico. Capítulo 1: Conocimiento y Razonamiento • Luis Alberto Pineda Cortés, Instituto de Investigaciones en Matemá- ticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México • Ramón Felipe Brena Pinero, Escuela de Ingeniería y Ciencias, Tecno- lógico de Monterrey, Campus Monterrey • Luis Enrique Sucar Succar, Coordinación de Ciencias Computacio- nales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Juan Manuel Ahuactzin Larios, T-Systems México, Puebla • Rocío Aldeco Pérez, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Querétaro • José Matías Alvarado Mentado, Departamento de Computación, Cen- tro de Investigaciones y Estudios Avanzados (CINVESTAV-IPN), México • Ofelia Delfina Cervantes Villagómez, Departamento de Computa- ción, Electrónica y Mecatrónica, Universidad de las Américas Puebla, Cholula, Puebla • Juan Pablo García Vázquez, Universidad Autónoma de Baja Califor- nia, Mexicali • Genoveva Vargas Solar, CNRS, Francia • Jose Luis Zechinelli, Universidad de Las Américas, Laboratorio Fran- co-Mexicano de Informática, Puebla • Carlos Zozaya Gorostiza, Grupo BAL, México Capítulo 2: Aprendizaje e Inteligencia Computacional • Eduardo F. Morales Manzanares, Coordinación de Ciencias Compu- tacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Carlos A. Reyes García, Coordinación de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Alicia Morales-Reyes, Coordinación de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Hugo J. Escalante Balderas, Coordinación de Ciencias Computacio- nales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla Capítulo 3. Lingüística Computacional • Luis Alberto Pineda Cortés, Instituto de Investigaciones en Matemá- ticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México • Hiram Calvo, Centro de Investigación en Computación, Instituto Po- litécnico Nacional, Ciudad de México • Luis Villaseñor Pineda, Coordinación de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Noé Alejandro Castro Sánchez, Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México • Alexander Gelbukh, Centro de Investigación en Computación, Insti- tuto Politécnico Nacional, Ciudad de México • Yasmín Hernández Pérez, Instituto Nacional de Electricidad y Ener- gías Limpias, Morelos • Héctor Jiménez Salazar, Universidad Autónoma Metropolitana, Uni- dad Cuajimalpa • Manuel Montes y Gómez, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • David Pinto Avendaño, Benemérica Universidad Autónoma de Pue- bla, Puebla • Fernando Sánchez Vega, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Grigori Sidorov, Centro de Investigación en Computación, Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México • Gerardo Sierra Martínez, Instituto de Ingeniería, Universidad Nacio- nal Autónoma de México, Ciudad de México • Esaú Villatoro Tello, Universidad Autónoma Metropolitana, Unidad Cuajimalpa Capítulo 4. Robótica • Luis Alberto Pineda Cortés, Instituto de Investigaciones en Matemá- ticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México • Luis Enrique Sucar Succar, Coordinación de Ciencias Computacio- nales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Jesús Savage Carmona, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México • Alejandro Aceves López, Instituto Tecnológico y de Estudios Supe- riores de Monterrey, Estado de México • Héctor Manuel Becerra Fermín, Departamento de Ciencias de la Computación, Centro de Investigación en Matemáticas, Guanajuato • Gibrán Fuentes Pineda, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Méxi- co, Ciudad de México • Marco Antonio Morales Aguirre, Departamento de Sistemas Digita- les, Instituto Tecnológico Autónomo de México, Ciudad de México • Hernando Ortega Carrillo, Departamento de Probabilidad y Esta- dística, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México • Caleb Rascón, Consejo Nacional de Ciencia y Tecnología -Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Univer- sidad Nacional Autónoma de México, Ciudad de México • Arturo Rodríguez García, Posgrado de Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, Ciudad de México Capítulo 5. Ingeniería de Software • Raúl Antonio Aguilar Vera, Facultad de Matemáticas, Universidad Autónoma de Yucatán • Hanna Jadwiga Oktaba, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México • Reyes Juárez Ramírez, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California • Jorge Rafael Aguilar Cisneros, Decanato de Ingenierías, Universidad Popular del Estado de Puebla • Carlos Alberto Fernández y Fernández, Instituto de Computación, Universidad Tecnológica de la Mixteca • Oscar Mario Rodríguez Elias, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Hermosillo • Juan Pablo Ucán Pech, Facultad de Matemáticas, Universidad Autó- noma de Yucatán Capítulo 6. Interacción Humano Computadora • Luis A. Castro, Departamento de Computación y Diseño, Instituto Tecnológico de Sonora (ITSON) • Mónica Elizabeth Tentori Espinosa, Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California • Jesús Favela Vara, Departamento de Ciencias de la Computación, Centro de Investigación Científica y Educación Superior de Ensena- da, Baja California • Marcela Deyanira Rodríguez Urrea, Facultad de Ingeniería, Universi- dad Autónoma de Baja California, Mexicali • J. Alfredo Sánchez, Laboratorio de Tecnologías Interactivas y Coope- rativas, Universidad de las Américas Puebla, Cholula, Puebla Capítulo 7. Análisis de Señales y Reconocimiento de Patrones • Pilar Gómez-Gil, Coordinación de Ciencias Computacionales, Insti- tuto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Adolfo Guzmán Arenas, Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México • Felipe Orihuela-Espina, Coordinación de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla • Ernesto Bribiesca, Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México • Caleb Rascón, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Consejo Nacional de Ciencia y Tecnología - Universi- dad Nacional Autónoma de México, Ciudad de México Capítulo 8. Computación Evolutiva • Carlos Artemio Coello Coello, Departamento de Computación, Cen- tro de Investigaciones y Estudios Avanzados (CINVESTAV-IPN), México • Carlos Alberto Brizuela Rodríguez, Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Su- perior de Ensenada (CICESE), Baja California • Nareli Cruz Cortés, Centro de Investigación en Computación, Insti- tuto Politécnico Nacional, Ciudad de México • Arturo Hernández Aguirre, Departamento de Ciencias de la Compu- tación, Centro de Investigación en Matemáticas, Guanajuato • Efrén Mezura Montes, Centro de Investigación en Inteligencia Arti- ficial, Universidad Veracruzana, Xalapa • Alicia Morales-Reyes, Coordinación de Ciencias Computacionales, Instituto Nacional de Astrofísica, Óptica y
Recommended publications
  • Optimized Route Network Graph As Map Reference for Autonomous Cars Operating on German Autobahn
    Optimized Route Network Graph as Map Reference for Autonomous Cars Operating on German Autobahn Paul Czerwionka, Miao Wang Artificial Intelligence Group Institute of Computer Science Freie Universitat¨ Berlin, Germany Abstract— This paper describes several optimization tech- mapping errors are more crucial when driving at high speeds, niques used to create an adequate route network graph for performing lane changes or overtaking maneuvers. autonomous cars as a map reference for driving on German An universal format to define such digital road maps has autobahn or similar highway tracks. We have taken the Route Network Definition File Format (RNDF) specified by DARPA been issued by the Defense Advanced Research Projects and identified multiple flaws of the RNDF for creating digital Agency (DARPA) for its autonomous vehicle competitions in maps for autonomous vehicles. Thus, we introduce various desert terrain in 2004 and 2005, and in urban environments enhancements to it to form a digital map graph called RND- in 2007. The Grand Challenges 2004 and 2005 used a route FGraph, which is well suited to map almost any urban trans- definition data format (RDDF) which consists of a list of portation infrastructure. We will also outline and show results of fast optimizations to reduce the graph size. The RNDFGraph longitudes, latitudes, speed limits, and corridor widths that has been used for path-planning and trajectory evaluation by define the course boundary. It was later updated to a route the behavior module of our two autonomous cars “Spirit of network definition file (RNDF) for the Urban Challenge Berlin” and “MadeInGermany”. We have especially tuned the including stop signs, parking spots and intersections.
    [Show full text]
  • The Future of Autonomous Cars a Scenario Analysis of Emergence and Adoption Master’S Thesis in Management and Economics of Innovation
    The Future of Autonomous Cars A Scenario Analysis of Emergence and Adoption Master’s thesis in Management and Economics of Innovation LUDVIG BARREHAG Department of Technology Management and Economics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 The Future of Autonomous Cars A Scenario Analysis of Emergence and Adoption LUDVIG BARREHAG © LUDVIG BARREHAG, 2018 Technical report no E2018:114 Department of Technology Management and Economics Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-772 1000 Department of Technology Management and Economics Göteborg, Sweden 2018 "The horse is here to stay, but the automobile is only a novelty – a fad," Stated by the president of the Michigan Savings Bank while advising Henry Ford's lawyer not to invest in Ford Motor Co. Something the lawyer did nonetheless which earned him the fortune of his life. Acknowledgments Several people have been of great help in the making of this study. First of all, I would like to thank Erik Bohlin, my tutor who has guided my work and continuously provided good advice in terms of structuring and making sense of the results. An extra appreciation goes to his great patience in a time when this study got put on hold. I also owe a large appreciation to Berg Insight and in particular Johan Fagerberg who made this study possible through a combination of good advice, access to extensive amount of data as well as a beautiful office to work in with an excellent coffee machine. For anyone interested in reading a market research analysis version of this study I refer to the title The Future of Autonomous Cars available at Berg Insight.
    [Show full text]
  • Autonomous Cars: Past, Present and Future
    Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public.
    [Show full text]
  • Automotive Systems Engineering Automotive Systems Engineering Markus Maurer • Hermann Winner Editors
    Markus Maurer Hermann Winner Editors Automotive Systems Engineering Automotive Systems Engineering Markus Maurer • Hermann Winner Editors Automotive Systems Engineering 123 Editors Markus Maurer Hermann Winner Institut für Regelungstechnik Fachgebiet Fahrzeugtechnik Technische Universität Braunschweig Technische Universität Darmstadt Braunschweig Darmstadt Germany Germany ISBN 978-3-642-36454-9 ISBN 978-3-642-36455-6 (eBook) DOI 10.1007/978-3-642-36455-6 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013935997 Ó Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Road Transportation
    The ‘Autonomes’ are Coming - This Will Fundamentally Change How We ‘Do’ Road Transportation Author: Paul Godsmark, CEng., MICE Transportation Specialist Independent Consultant Co-Author: Bill Kenny P.Eng. Director, Project Management and Training, Geometric Standards Specialist Alberta Transportation Paper Prepared for presentation at the Road Safety Strategies and Intelligent Transportation Systems (ITS) Session of the 2013 Conference of the Transportation Association of Canada Written 26 April 2013 TAC 2013: Autonomes - Godsmark/Kenny 1 Abstract This forward looking presentation addresses the issue of the two separate technological tidal waves that we face in automotive and communications technology that will start to transform our roadways sometime between 2015 and 2022. They will result in a paradigm shift in how we ‘do’ road transportation. The Connected Vehicle will allow road vehicles to communicate with each other and with infrastructure, thereby improving congestion and the efficiency of our road networks as well as improving safety for unimpaired drivers. The autonomous vehicle (or ‘autonome’ as we call it) will allow vehicle users to be completely disengaged from the driving process for most, or all of their journey, thus effectively removing human error (a factor in 95% of collisions) from the driver/road/vehicle equation. The road safety benefits, business efficiencies, improved mobility and reduced emissions could possibly equate to 4% to 7% improvements in GDP. These technologies will eventually change how we use our road space and parking, the size and weight of vehicles, the need for road furniture, how intersections function, transform public transport as well have major wider societal impacts. In order to maximize the benefits of this technology, and see rapid and significant reductions in collisions, we need to prepare now and ensure that our thinking, policies, regulations and standards can accommodate this impending revolution on our roads.
    [Show full text]
  • Keeping Autonomous Driving Alive
    Göde Both Keeping Autonomous Driving Alive Göde Both Keeping Autonomous Driving Alive An Ethnography of Visions, Masculinity and Fragility Budrich Academic Press GmbH Opladen • Berlin • Toronto 2020 © 2020 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0. (CC-BY-SA 4.0) It permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you share under the same license, give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ © 2020 Dieses Werk ist beim Verlag Barbara Budrich GmbH erschienen und steht unter der Creative Commons Lizenz Attribution-ShareAlike 4.0 International (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/ Diese Lizenz erlaubt die Verbreitung, Speicherung, Vervielfältigung und Bearbeitung bei Verwendung der gleichen CC-BY-SA 4.0-Lizenz und unter Angabe der UrheberInnen, Rechte, Änderungen und verwendeten Lizenz. This book is available as a free download from www.barbara-budrich.net (https://doi.org/10.3224/96665009). A paperback version is available at a charge. The page numbers of the open access edition correspond with the paperback edition. Diese Dissertation wurde von der Humanwissenschaftlichen Fakultät der Universität zu Köln im November 2019 angenommen. A CIP catalogue record for this book is available from Die Deutsche Bibliothek (The German Library) © 2020 by Budrich Academic Press, Opladen, Berlin & Toronto www. budrich-academic-press.de ISBN 978-3-96665-009-0 eISBN 978-3-96665-983-3 DOI 10.3224/96665009 Die Deutsche Bibliothek – CIP-Einheitsaufnahme Ein Titeldatensatz für die Publikation ist bei Der Deutschen Bibliothek erhältlich.
    [Show full text]
  • University of California Santa Cruz Tightly-Coupled Lidar
    UNIVERSITY OF CALIFORNIA SANTA CRUZ TIGHTLY-COUPLED LIDAR AND CAMERA FOR AUTONOMOUS VEHICLES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Mohammad Hossein Daraei June 2018 The Dissertation of Mohammad Hossein Daraei is approved: Professor Hamid Sadjadpour, Chair Professor Yu Zhang Professor Roberto Manduchi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Mohammad Hossein Daraei 2018 Table of Contents List of Figures v List of Tables vii Abstract viii Dedication x Acknowledgments xi 1 Introduction 1 2 Environment Perception for Autonomous Driving 9 2.1 Literature on Environment Perception . 10 2.2 Measuring the Surroundings . 14 2.3 Multi-modal Spatio-temporal Association . 17 2.3.1 Continuous Mapping Between Sensor Spaces . 20 2.3.2 Discrete Multi-modal Measurement Association . 22 2.4 Distance-aware Processing Resolution . 23 2.5 Proposed Fusion Architecture . 29 3 Velocity Estimation 34 3.1 Related Work . 36 3.2 Problem Formulation . 41 3.3 Proposed Motion Estimation and Depth Reconstruction . 42 3.3.1 Energy Function Derivation . 43 3.3.2 LiDAR Data Term EP (v, d) ................. 45 3.3.3 Surface Smoothness Term ES (d) .............. 46 3.3.4 LiDAR Likelihood Term, EL(v) ............... 49 3.3.5 Image-based Data Term EI (v)................ 50 3.3.6 Occlusion and parallax modeling . 53 3.4 Optimization . 54 iii 3.4.1 Inference and Tracking . 54 3.4.2 Non-linear Penalization . 57 3.4.3 Multi-resolution analysis . 58 3.5 B-Spline Wavelets as Basis Functions .
    [Show full text]
  • Control De Crucero Cooperativo Mediante Comunicaciones V2X
    Escuela Tecnica´ Superior de Ingenieros Informaticos´ Universidad Politecnica´ de Madrid Control de crucero cooperativo mediante comunicaciones V2X Trabajo Fin de Master´ Master´ Universitario en Inteligencia Artificial AUTOR: Aitor G´omez Torres DIRECTOR: Jos´e Eugenio Naranjo TUTOR: Javier de Lope Asia´ın 2018 i RESUMEN El objeto de este trabajo de fin de m´aster se enmarca en elambito ´ de los Siste- mas de Transporte Inteligente (ITS, Intelligent Transportation Systems), donde se intenta desarrollar e implantar una nueva tecnolog´ıa para la mejora de la seguridad y la eficacia en lo que respecta a la circulaci´on de veh´ıculos, especialmente aut´onomos. Actualmente empiezan a aparecer los primeros s´ıntomas de la ineficiencia de las v´ıas convencionales y de sus m´etodos de gesti´on. Una de las principales ra´ıces de este problema es que, aunque los veh´ıculos han avanzado mucho en cuanto a tecnolog´ıa y seguridad en losultimos ´ a˜nos, la infraestructura apenas ha cambiado en lasulti- ´ mas d´ecadas. Con la llegada de los veh´ıculos aut´onomos y de las tecnolog´ıas ITS se presenta la oportunidad de implantar tecnolog´ıas que permitan actualizar la infra- estructura provocando un m´ınimo impacto sobre ella y sobre los usuarios, abriendo la puerta a nuevos m´etodos de gesti´on que permitan solventar estos problemas. En concreto, dentro de los ITS, la gesti´on autom´atica de la velocidad es uno de los temas que ha experimentado un gran inter´es dadas sus m´ultiples aplicaciones en la actualidad en los sistemas de seguridad en la conducci´on.
    [Show full text]
  • Investigating the Emotional Aspect and Experience of Autonomous Vehicles from the Perspective of an Industrial Designer.”
    “Investigating the emotional aspect and experience of autonomous vehicles from the perspective of an Industrial Designer.” Process Book Vol.1 Research I CONTENTS II PRELIMINARY RESEARCH III AUTONOMOUS VEHICLES I IV ITERATIVE DESIGN BRIEF V PRECEDENCE AND SPECULATION FUTURE timeline SPECULATION timeline CONTENTS INDEX of TECH INDEX of ACCIDENT INDEX of SAFETY VI USING AUTONOMOUS VEHICLES VII RESEARCH PLAN Hello. VIII IDEATION V.1 TAPE Drawing V1 • IX CONTACT PART 1 1. 2. X MID-TERM VIDEO 2.1. 2.2. XI CONTACT PART 2 2.3. 2.4. Diderik Severin Astrup Westby - Fall 2016 - Design Core 2 Project Outline “The summer before your degree In addition to this, we were also project is a good opportunity to think asked to create a reflection portfolio. openly about your degree project. Your The aim with this was to aid us in fram- ideas for the degree project should be ing our interest and design language, to II taking shape over the summer, and you ensure we could create a project which are asked to begin initial research and was related to our wants as a design- investigation early, and choose two topic er, to be able to fully focus thorugh the areas capable of sustaining your inter- entire term of the projects duration. ests and energy. There was a alot of emphasis on PRELIMINARY cars in this portfolio, so I intentionally 4th year: Projects are self-man- tried looking elsewhere to see if there RESEARCH aged. Students choose the topic, deter- were any other opportunities I might mine the criteria for success, and select have found interesting.
    [Show full text]
  • Self-Piloted Cars: the Future of Road Transport?
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES TRANSPORT AND TOURISM Research for TRAN Committee – Self-piloted cars: The future of road transport? STUDY This document was requested by the European Parliament's Committee on Transport and Tourism. AUTHORS Steer Davies Gleave: Roberta Frisoni, Andrea Dall’Oglio, Craig Nelson, James Long, Christoph Vollath, Davide Ranghetti, Sarah McMinimy RESPONSIBLE ADMINISTRATOR Piero Soave Policy Department Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Adrienn Borka LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in March 2016. © European Union, 2016. Print ISBN 978-92-823-9055-9 doi:10.2861/685052 QA-01-16-341-EN-C PDF ISBN 978-92-823-9056-6 doi:10.2861/66390 QA-01-16-341-EN-N This document is available on the Internet at: http://www.europarl.europa.eu/supporting-analyses DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES TRANSPORT AND TOURISM Research for TRAN Committee – Self-piloted cars: The future of road transport? STUDY Abstract The study provides an analysis of the development of automated vehicles inside and outside the EU, including both the technologies which are already on the market and those under testing and research.
    [Show full text]
  • Automated Driving Maneuvers Julia Nilsson
    Thesis for the degree of Doctor of Philosophy Automated Driving Maneuvers - Trajectory Planning via Convex Optimization in the Model Predictive Control Framework by Julia Nilsson Department of Signals and Systems Chalmers University of Technology G¨oteborg, Sweden 2016 Automated Driving Maneuvers - Trajectory Planning via Convex Optimization in the Model Predictive Con- trol Framework Julia Nilsson ISBN 978-91-7597-450-7 c Julia Nilsson, 2016. Doktorsavhandlingar vid Chalmers Tekniska H¨ogskola Ny serie nr 4131 ISSN 0346-718X Department of Signals and Systems Division of Automatic Control, Automation and Mechatronics Chalmers University of Technology SE-412 96 G¨oteborg, Sweden Telephone: +46 (0)31 - 772 1000 Julia Nilsson Telephone: +46 (0)76 - 621 0495 E-mail: [email protected], [email protected] Front cover: A convex quadratic program is formulated within the model predictive con- trol framework to generate an appropriate, safe, and smooth lane change trajectory for the ego vehicle. Typeset by the author using LATEX. Printed by Chalmers Reproservice G¨oteborg, Sweden 2016 To my family and friends Abstract Highly automated vehicles have the potential to provide a variety of benefits e.g., decreasing traffic injuries and fatalities while offering people the freedom to choose how to spend their time in their vehicle without jeopardizing the safety of themselves or other traffic participants. For automated vehicles to be successfully commercialized, the safety and reliability of the technology must be guaranteed. A safe and robust trajectory planning algorithm is therefore a key enabling technology to realize an intelligent vehicle system for automated driving that can cope with both normal and high risk driving situations.
    [Show full text]
  • Self-Piloted Cars: the Future of Road Transport?
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES TRANSPORT AND TOURISM RESEARCH FOR TRAN COMMITTEE – SELF-PILOTED CARS: THE FUTURE OF ROAD TRANSPORT? STUDY Provisional version This document was requested by the European Parliament's Committee on Transport and Tourism. AUTHORS Steer Davies Gleave: Roberta Frisoni, Andrea Dall’Oglio, Craig Nelson, James Long, Christoph Vollath, Davide Ranghetti, Sarah McMinimy RESPONSIBLE ADMINISTRATOR Piero Soave Policy Department Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Adrienn Borka LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in March 2016. © European Union, 2016. Print ISBN 978-92-823-9055-9 doi:10.2861/685052 QA-01-16-341-EN-C PDF ISBN 978-92-823-9056-6 doi:10.2861/66390 QA-01-16-341-EN-N This document is available on the Internet at: http://www.europarl.europa.eu/supporting-analyses DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES TRANSPORT AND TOURISM RESEARCH FOR TRAN COMMITTEE – SELF-PILOTED CARS: THE FUTURE OF ROAD TRANSPORT? STUDY Provisional version Abstract The study provides an analysis of the development of automated vehicles inside and outside the EU, including both the technologies which are already on the market and those under testing and research.
    [Show full text]