Study on Electrical Vehicle and Its Scope in Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Innovation in Ecosystem Business Models: an Application to Maas and Autonomous Vehicles in Urban Mobility System
Innovation in ecosystem business models : An application to MaaS and Autonomous vehicles in urban mobility system Rodrigo Gandia To cite this version: Rodrigo Gandia. Innovation in ecosystem business models : An application to MaaS and Autonomous vehicles in urban mobility system. Economics and Finance. Université Paris-Saclay; University of Lavras, UFLA (Brésil), 2020. English. NNT : 2020UPASC018. tel-02895349 HAL Id: tel-02895349 https://tel.archives-ouvertes.fr/tel-02895349 Submitted on 9 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Innovation in Ecosystem Business Models: An Application to MaaS and Autonomous Vehicles in Urban Mobility System Thèse de doctorat de l'université Paris-Saclay École doctorale n° 573 Interfaces : approches interdisciplinaires, fon- dements, applications et innovation (Interfaces) Spécialité de doctorat : Ingénierie des systèmes complexes Unité de recherche : Université Paris-Saclay, CentraleSupélec, Laboratoire Genie Industriel, 91190, Gif-sur-Yvette, France. Référent : CentraleSupélec Thèse présentée et -
Autonomous Vehicle, Sensing and Communication Survey 1 Introduction
Autonomous Vehicle, Sensing and Communication Survey Edited and submitted by Shraga Shoval Prepared by Shlomi Hacohen and Oded Medina Department of Mechanical Engineering, Ariel University, Ariel, Israel. August 2020 Abstract Autonomous vehicles introduce dramatic changes to the way in which we travel. This technology has the potential to impact the transportation across a wide array of categories including safety, congestion, and travel behavior. In this report we review the main issues involved in autonomous driving as discussed in the literature and shed light on topics that we believe require further development. 1 Introduction The challenges in autonomous driving require a combination of many capabilities, among them: localization, motion planning, vehicle’s systems control (steering, acceleration/deceleration, signaling, etc.), road perception, prediction of other road-users behavior, awareness of dangers, etc. These capabilities have a various level of importance for various levels of driving automation. Even though the first autonomous vehicle (AV) was experimented in 1926 [104], a real-modern autonomous vehicle was first presented in 1986 by a team from Carnegie Mellon University [58]. Since 2010, many major automotive manufacturers, such as GM, Mercedes Benz, Ford, Toyota, and many more are developing AVs [90]. A demonstration of AV equipped with numerous sensors and communication systems was presented by Toyota in 2013 [10]. In 2016, Google’s AV has passed over one million kilometers. These events present a glimpse to the landmarks in the development of AV that, due to the complexity of the task, progresses slowly with considerable amount of attention to safety and reliability. AVs need a large amount of data for reliable decision making. -
Optimized Route Network Graph As Map Reference for Autonomous Cars Operating on German Autobahn
Optimized Route Network Graph as Map Reference for Autonomous Cars Operating on German Autobahn Paul Czerwionka, Miao Wang Artificial Intelligence Group Institute of Computer Science Freie Universitat¨ Berlin, Germany Abstract— This paper describes several optimization tech- mapping errors are more crucial when driving at high speeds, niques used to create an adequate route network graph for performing lane changes or overtaking maneuvers. autonomous cars as a map reference for driving on German An universal format to define such digital road maps has autobahn or similar highway tracks. We have taken the Route Network Definition File Format (RNDF) specified by DARPA been issued by the Defense Advanced Research Projects and identified multiple flaws of the RNDF for creating digital Agency (DARPA) for its autonomous vehicle competitions in maps for autonomous vehicles. Thus, we introduce various desert terrain in 2004 and 2005, and in urban environments enhancements to it to form a digital map graph called RND- in 2007. The Grand Challenges 2004 and 2005 used a route FGraph, which is well suited to map almost any urban trans- definition data format (RDDF) which consists of a list of portation infrastructure. We will also outline and show results of fast optimizations to reduce the graph size. The RNDFGraph longitudes, latitudes, speed limits, and corridor widths that has been used for path-planning and trajectory evaluation by define the course boundary. It was later updated to a route the behavior module of our two autonomous cars “Spirit of network definition file (RNDF) for the Urban Challenge Berlin” and “MadeInGermany”. We have especially tuned the including stop signs, parking spots and intersections. -
Using Fuzzy Logic in Automated Vehicle Control
Intelligent Transportation Systems Using Fuzzy Logic in Automated Vehicle Control José E. Naranjo, Carlos González, Ricardo García, and Teresa de Pedro, Instituto de Automática Industrial Miguel A. Sotelo, Universidad de Alcalá de Henares ntil recently, in-vehicle computing has been largely relegated to auxiliary U tasks such as regulating cabin temperature, opening doors, and monitoring Automated versions fuel, oil, and battery-charge levels. Now, however, computers are increasingly assum- of a mass-produced ing driving-related tasks in some commercial models. Among those tasks are vehicle use fuzzy logic • maintaining a reference velocity or keeping a safe nomous robots and fuzzy control systems and the distance from other vehicles, Universidad de Alcalá de Henares’s knowledge of techniques to both • improving night vision with infrared cameras, and artificial vision. (The “Intelligent-Vehicle Systems” • building maps and providing alternative routes. sidebar discusses other such projects.) We’re devel- address common oping a testbed infrastructure for vehicle driving that Still, many traffic situations remain complex and includes control-system experimentation, strategies, challenges and difficult to manage, particularly in urban settings. and sensors. All of our facilities and instruments are The driving task belongs to a class of problems that available for collaboration with other research groups incorporate human depend on underlying systems for logical reasoning in this field. So far, we’ve automated and instru- and dealing with uncertainty. So, to move vehicle mented two Citroën Berlingo mass-produced vans procedural knowledge computers beyond monitoring and into tasks related to carry out our objectives. to environment perception or driving, we must inte- into the vehicle control grate aspects of human intelligence and behaviors Automated-vehicle equipment so that vehicles can manage driving actuators in a Figure 1 shows two mass-produced electric Cit- algorithms. -
Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning
Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning by Charles Ng supervised by Laura Taylor A Major Paper submitted to the Faculty of Environmental Studies in partial fulfillment of the requirements for the degree of Master in Environmental Studies York University, Toronto, Ontario, Canada December 8, 2017 Acknowledgments This paper could not have been completed without the help and support of the caring individuals that I am thankful to have in my life. I would like to thank and acknowledge my mother, Maria, and my sister, Ka Lang for providing me with love and support; my advisor, Peter Timmerman, and my supervisor, Laura Taylor, for providing me with academic and non-academic support; and my invaluable friends that I have made in the MES program for their encouragement, support and relief. i Foreword My Area of Concentration for my Plan of Study is sustainable transportation planning for growth management. Connected and Autonomous Vehicles will change the urban landscape, the roles of governments and present new challenges to planners. This paper has allowed me to view transportation planning through the lens of emerging technologies and how this affects cities in the short and long term. There are many sustainability and growth management implications with Connected and Autonomous Vehicles. For example, automated vehicles can foster decentralization because it easily enables travel however, if utilized correctly, automated vehicles can also compliment local transit systems to support intensification. This is especially important in Ontario (Canada’s first province to allow testing of autonomous vehicles on public roads) as it directly relates to the goals and policies related to sprawl and sustainability as outlined in Ontario’s four provincial land use plans: The Growth Plan for the Greater Golden Horseshoe (GGH), The Greenbelt Plan, The Oak Ridges Moraine Conservation Plan and the Niagara Escarpment Plan. -
A Voice and Pointing Gesture Interaction System for Supporting
Clemson University TigerPrints All Dissertations Dissertations 5-2017 A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars Pablo Sauras-Perez Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Sauras-Perez, Pablo, "A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars" (2017). All Dissertations. 1943. https://tigerprints.clemson.edu/all_dissertations/1943 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A VOICE AND POINTING GESTURE INTERACTION SYSTEM FOR SUPPORTING HUMAN SPONTANEOUS DECISIONS IN AUTONOMOUS CARS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Automotive Engineering by Pablo Sauras-Perez May 2017 Accepted by: Dr. Pierluigi Pisu, Committee Chair Dr. Joachim Taiber Dr. Yunyi Jia Dr. Mashrur Chowdhury ABSTRACT Autonomous cars are expected to improve road safety, traffic and mobility. It is projected that in the next 20-30 years fully autonomous vehicles will be on the market. The advancement on the research and development of this technology will allow the disengagement of humans from the driving task, which will be responsibility of the vehicle intelligence. In this scenario new vehicle interior designs are proposed, enabling more flexible human vehicle interactions inside them. In addition, as some important stakeholders propose, control elements such as the steering wheel and accelerator and brake pedals may not be needed any longer. -
The Study on Innovation, Development and Implementation
ISSN (Online) 2581-9429 IJAR SCT ISSN (Print) 2581-XXXX International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) Volume 11, Issue 1, November 2020 Impact Factor: 4.819 The Study on Innovation, Development and Implementation of the Self-driving Car Aniruddha Chaki Student, Department of Electrical Engineering Siliguri Institute of Technology, Siliguri, India Abstract: The development of the self-driving car is one of the greatest inventions of the century. With the technological advancement, the implementation of the autonomous vehicle has become the major attention among the researchers. This paper discusses the brief history of self-driving cars, its research and development, key technologies behind the self-driving, main aspects of implementing self-driving cars. The paper also describes some challenges with possible solutions to the fully autonomous vehicle in mass implementation. Keywords: Advanced Driver Assistance System (ADAS), autonomous, navigation, positioning, self- driving technology, radar, lidar, path planning, obstacle avoidance, Full Self driving (FSD), accidents, protests, advantages, challenges. I. INTRODUCTION In this 21st-century progress in technology has made man as omnipotent, omniscient and omnipresent as a god. It is being tried to find out and accomplish any work with higher efficiency, lesser cost, and least possible effort. This makes researchers explore the domain of Automation, Machine learning, and Artificial Intelligence to handle the hardest of the jobs which were once tedious and cumbersome for humans [1]. We are driving towards the future where humans will only be involved in high mental ability skills and all the other works will be automated [2]. In this paper, the previous researches in the field of self-driving have been studied. -
Morgan Stanley NDR
AMBARELLA.COM AMBARELLA.COM December 6th & 9th, 2019 COPYRIGHT COPYRIGHT AMBARELLA 2019 Morgan Stanley NDR Frankfurt, Germany and Milan, Italy Dr. Alberto Broggi, GM Ambarella Italy Casey Eichler, CFO Louis Gerhardy, Corporate Development 1 Forward-Looking Statements This presentation contains forward-looking statements that are subject to many risks and uncertainties. All statements made in this presentation other than statements of historical facts are forward-looking statements, including, without limitation, statements regarding Ambarella’s strategy, future operations, financial targets, future revenues, projected costs, prospects, plans and objectives for future operations, future product introductions, future rate of our revenue growth, the size of markets addressed by the company's solutions and the growth rate of those markets, technology trends, our ability to address market and customer demands and to timely develop new or enhanced solutions to meet those demands, our ability to achieve design wins, and our ability to retain and expand our customer and partner relationships. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "could," "would," "expects," "plans," "anticipates," "believes," "estimates," "projects," "predicts," "potential," or the negative of those terms, and similar expressions and comparable terminology intended to identify forward-looking statements. We have based forward-looking statements largely on our estimates of our financial results and our current expectations -
Multimodal Machine Learning for Intelligent Mobility
MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Multimodal Machine Learning for Intelligent Mobility by Aubrey James Roche Doctoral Thesis Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy Institute of Digital Technologies, Loughborough University London © Aubrey James Roche May 2020 i MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Dedicate to my partner Sádhbh & my son Ruadhán – Nunc scio quid sit amor, semper gratiam habebo. Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better. (Samuel Beckett) ii MULTIMODAL MACHINE LEARNING FOR INTELLIGENT MOBILITY Certificate of Originality Thesis Access Conditions and Deposit Agreement Students should consult the guidance notes on the electronic thesis deposit and the access conditions in the University’s Code of Practice on Research Degree Programmes Author: Jamie Roche .............................................................................................................................. Title: Multimodal Machine Learning for Intelligent Mobility ............................................................ I Jamie Roche, 2 Herbert Tec, Herbert Road, Bray, Co Wicklow, Ireland, “the Depositor”, would like to deposit Multimodal Machine Learning for Intelligent Mobility, hereafter referred to as the “Work”, once it has successfully been examined in Loughborough University Research Repository Status of access OPEN / RESTRICTED / CONFIDENTIAL Moratorium Period: 3 years 3 months ................... years, ending 13 ........... -
Forecasting Americans' Long-Term Adoption of Connected And
FORECASTING AMERICANS’ LONG-TERM ADOPTION OF CONNECTED AND AUTONOMOUS VEHICLE TECHNOLOGIES 1 Prateek Bansal 2 Graduate Research Assistant 3 Department of Civil, Architectural and Environmental Engineering 4 The University of Texas at Austin 5 [email protected] 6 Phone: 512-293-1802 7 Kara M. Kockelman 8 (Corresponding Author) 9 E.P. Schoch Professor in Engineering 10 Department of Civil, Architectural and Environmental Engineering 11 The University of Texas at Austin 12 [email protected] 13 14 15 The following paper is a pre-print, the final publication can be found in 16 Transportation Research Part A: Policy and Practice, 95:49-63 (2017). 17 18 19 ABSTRACT 20 Automobile enterprises, researchers, and policymakers are interested in knowing the future of 21 connected and autonomous vehicles (CAVs). To this end, this study proposes a new simulation- 22 based framework to forecast Americans’ long-term (year 2015 to 2045) adoption levels of CAV 23 technologies under eight different scenarios based on: 5% and 10% annual drops in technology 24 prices; 0%, 5%, and 10% annual increments in Americans’ willingness to pay (WTP); and 25 changes in government regulations. This simulation was calibrated with the data obtained from a 26 survey of 2,167 Americans, in order to obtain their preferences for CAV technologies and their 27 household’s annual vehicle transaction decisions. 28 29 Results indicate that the average WTP (of respondents with a non-zero WTP) to add connectivity 30 and Level 3 and Level 4 automations are $110, $5,551, and $14,589, respectively. Long-term 31 fleet evolution suggests that the privately held light-duty vehicle fleet will have 24.8% Level 4 32 AV penetration by 2045 under an annual 5% price drop and constant WTP values. -
From Local Academic Spin-Off to International Firm: the Case of Vislab
International Business Research; Vol. 13, No. 6; 2020 ISSN 1913-9004 E-ISSN 1913-9012 Published by Canadian Center of Science and Education From Local Academic Spin-Off to International Firm: The Case of VisLab Maria Cristina Arcuri1, Elisa Bocchialini2 & Gino Gandolfi2 1 Department of Economics and Management, University of Florence, Florence, Italy 2 Department of Economics and Management, University of Parma, Parma, Italy Correspondence: Elisa Bocchialini, Department of Economics and Management, University of Parma, Via J.F. Kennedy, 6 – 43125 Parma, Italy. Received: April 7, 2020 Accepted: May 8, 2020 Online Published: May 22, 2020 doi:10.5539/ibr.v13n6p100 URL: https://doi.org/10.5539/ibr.v13n6p100 Abstract Universities play an important role in developing and transferring technology. In Italy, much innovation takes place where universities are located outside large towns, as in the case of VisLab. VisLab, the Vision and Intelligent Systems Laboratory, founded by Prof. Alberto Broggi of Parma University, is a pioneer in perception systems and autonomous vehicle research. It is also the spin-off of the University of Parma acquired by Silicon Valley company Ambarella Inc., in July 2015 for $30 million. After the deal, VisLab remained in Italy and all the staff, about thirty researchers, were hired by VisLab for the Parma location. This paper examines the university-industry interaction and, in particular, academic spin-off, as a source of economic growth, pointing out the importance of the context. The study describes the main characteristics of the VisLab case, including the possible alternative strategies, the structure of the final M&A deal and the advantages deriving from Parma and surrounding area. -
Terramax Vision at the Urban Challenge 2007
1 TerraMax Vision at the Urban Challenge 2007 Alberto Broggi, Andrea Cappalunga, Claudio Caraffi, Stefano Cattani, Stefano Ghidoni, Paolo Grisleri, Pier Paolo Porta, Matteo Posterli, Paolo Zani VisLab – Dipartimento di Ingegneria dell’Informazione Universita` degli Studi di Parma, ITALY www.vislab.it fbroggi,kappa,caraffi,cattani,ghidoni,grisleri,portap,posterli,[email protected] Abstract—This paper presents the TerraMax vision systems used during the 2007 DARPA Urban Challenge. First a descrip- tion of the different vision systems is provided, focusing on their hardware configuration, calibration method and tasks. Then each componentis described in details, focusing on the algorithms and sensor fusion opportunities: obstacle detection, road markings detection and vehicle detection. The conclusions summarize the lesson learned from the developing of the passive sensing suite and its succesful fielding in the Urban Challenge. I. INTRODUCTION The Challenges organized by DARPA are considered some of the most important milestones in the field of vehicular Fig. 1. The TerraMax vehicle. robotics. Not only did DARPA provide a vigorous help in the flourishing of new technological solutions, but the many researchers who accepted these challenges demonstrated that in order to decide on the action to be taken, it is not sufficient the current technology is indeed mature enough to drive to model the vehicle itself like it happens on the control side, vehicles in off-road and urban-like environments. but it is mandatory to model the real world as well; therefore, The design and realization of autonomous vehicles capable a huge number of situations must be taken into account. of handling unknown and dynamic situations involve different Different technologies have been tested and implemented aspects, spanning from new technologies to implementation, on the robotic vehicles that participated in the DARPA Urban from concept to hardware issues, challenging many different Challenge, ranging from conservative products up to com- research fields.