Terramax Vision at the Urban Challenge 2007

Total Page:16

File Type:pdf, Size:1020Kb

Terramax Vision at the Urban Challenge 2007 1 TerraMax Vision at the Urban Challenge 2007 Alberto Broggi, Andrea Cappalunga, Claudio Caraffi, Stefano Cattani, Stefano Ghidoni, Paolo Grisleri, Pier Paolo Porta, Matteo Posterli, Paolo Zani VisLab – Dipartimento di Ingegneria dell’Informazione Universita` degli Studi di Parma, ITALY www.vislab.it fbroggi,kappa,caraffi,cattani,ghidoni,grisleri,portap,posterli,[email protected] Abstract—This paper presents the TerraMax vision systems used during the 2007 DARPA Urban Challenge. First a descrip- tion of the different vision systems is provided, focusing on their hardware configuration, calibration method and tasks. Then each componentis described in details, focusing on the algorithms and sensor fusion opportunities: obstacle detection, road markings detection and vehicle detection. The conclusions summarize the lesson learned from the developing of the passive sensing suite and its succesful fielding in the Urban Challenge. I. INTRODUCTION The Challenges organized by DARPA are considered some of the most important milestones in the field of vehicular Fig. 1. The TerraMax vehicle. robotics. Not only did DARPA provide a vigorous help in the flourishing of new technological solutions, but the many researchers who accepted these challenges demonstrated that in order to decide on the action to be taken, it is not sufficient the current technology is indeed mature enough to drive to model the vehicle itself like it happens on the control side, vehicles in off-road and urban-like environments. but it is mandatory to model the real world as well; therefore, The design and realization of autonomous vehicles capable a huge number of situations must be taken into account. of handling unknown and dynamic situations involve different Different technologies have been tested and implemented aspects, spanning from new technologies to implementation, on the robotic vehicles that participated in the DARPA Urban from concept to hardware issues, challenging many different Challenge, ranging from conservative products up to com- research fields. pletely innovative solutions. Based on the teams’ capabilities, A completely autonomous vehicle needs to perceive the budget, and –most importantly– vision, the various vehicles environment, assess the situation and react to it, and finally have tackled the perception problem in different ways. control the actuators to implement a correct behavior. In other Team Oshkosh’s vehicle, TerraMax, was designed to operate words, the vehicle must have perception, decision, and control with conservative technology so that the integration of the final capabilities. The DARPA Grand Challenge –in particular the sensing suite on new vehicles and/or its retrofit to existing second one in 2005 when 5 vehicles were able to reach the vehicles could be straightforward. Furthermore the choice of end of the 130 miles course,– the DARPA Urban Challenge using passive technology (sensors not emitting any signal) is –which witnessed the completion of the course by 6 vehicles,– generally preferred in the military environment and is also and other public demonstrations –such as the PReVENT dictated by the will of producing vehicles able to operate in demonstration at the end of 2007 [1]– showed that the control close proximity, namely in situations in which active sensors side has already reached an advanced development stage. may interfere with each other. Some advanced control systems (such as ABS, EBD, ESP,...) The final solution was then to adopt cameras as the main have in fact already reached the market. sensing device and develop a 360◦ sensing suite based on Conversely, developing effective and reliable perception artificial vision. Eleven cameras have been mounted on Ter- and decision systems is definitely more challenging. The raMax to perceive all possible events around the vehicle that perception problem is very complex and even not well defined: may need to be considered by the decision system: presence a perception system must deal with a high number of different of obstacles, moving vehicles, lane markings, horizontal road situations and unknown scenarios. Objects in a scene have to signs. To improve system robustness, three laserscanners have be perceived and classified; a cluttered background –typical of also been installed –two in the front and one on the back– a urban environment and therefore of a common situation– can to complement vision perception. Besides providing their own lead to misdetections and introduce a high level of noise in the information to the decision system, these 3 LIDARs supply results. Similar considerations also apply to decision systems: raw data to the vision systems, which perform data fusion to 2 T2500 CPU, 2 GB of RAM and an Intel 945GM chipset. Two FireWire 800 boards, one PCI, and one PCI Express provide 4 connectors on the back. All the PCs are placed under the passenger seat inside the cabin, together with LIDAR, INS/GPS, and vehicle control units, as shown in Fig. 3. The Fig. 2. The Terramax vision systems (TerraMax facing right) and their placement: orange – trinocular system; purple – stereo systems; green – lateral system; cyan – rear view system. fine tune their final results. This paper is organized as follows: Section II presents the vision systems and provides details on the architectural and hardware solutions; Section III presents the Obstacle Detection functionality and shows how it is implemented using the different vision systems; Section IV and Section V describe the solutions adopted for Lane Detection and Vehicle Detection respectively; Section VI concludes the paper with a discussion on the lessons learned about the use of a vision system onboard an autonomous vehicle. II. TERRAMAX VISION SYSTEMS Fig. 3. Hardware arrangement inside the passenger seat for the various TerraMax perception is provided by 11 cameras grouped systems. into 4 different systems, each supplying information about the environment in a specific area around the vehicle. Fig. 2 shows imaging hardware for the trinocular, stereo and rear systems a sketch of the coverage of the vision systems. is based on Point Grey Research4 Flea2 industrial cameras, A trinocular vision system (orange in Fig. 2) is used to equipped with a 1/3 ”, 1024×768 pixels Sony CCD sensor, perceive information about the road in front, including lane while the lateral one features two full HD (1920×1080), markings, road borders, and possible obstacles/vehicles on the FireWire B, AVT5 Pike2 industrial cameras; the exposure driving path. Two stereo vision systems (purple in Fig. 2) parameters, like gain and shutter speed, can be adjusted monitor the close proximity of the vehicle’s front and back through the FireWire interface, while syncronization at 12.5 Hz in order to locate obstacles and road signs. The precise with the three IBEO6 AlascaXT LIDARs is provided by a localization of road signs (lane markings and stop lines) is dedicated SyncBox. Cameras are connected to the processing essential due to the vehicle’s abnormal size. Two monocular system using 7.5 m cables from AVT, specifically designed vision systems (green in Fig. 2) are used to surveil the sides for industrial use in noisy environments. Cables, cameras and of the vehicle when approaching intersections; normally off, boards are also equipped with locking screws to keep the these two high resolution cameras start to process images connectors in a fixed position, even in critical environments as soon as the vehicle stops at an intersection, and look for with strong vibrations; all cameras placed outdoor are enclosed oncoming traffic in any possible direction (not only orthogonal in sealed boxes, in order to preserve them from dust and rain. to the vehicle direction). Finally, two other monocular vision Polarizers have been used to minimize the reflections. systems (cyan in Fig. 2) keep track of overtaking traffic in adjacent lanes; their output is required when TerraMax needs The following sections present each single system in detail to change lane. together with the solution adopted for their calibration, consid- All the vision systems share a common hardware platform ering that calibration has to be performed on-the-fly, in many consisting of a rugged PC from SmallPC1, equipped with a different places, without any static calibration environment. mini-ITX board from Mini-Box.com2, an Intel3 Core 2 Duo 1http://www.smallpc.com 4http://www.ptgrey.com/ 2http://www.mini-box.com 5http://www.alliedvisiontec.com 3http://www.intel.com 6http://www.ibeo-as.com 3 Fig. 4. The trinocular portable calibration grid. A. Trinocular The trinocular system has been designed to provide robust Fig. 5. Stereo calibration is performed by means of a grid painted on a obstacle and lane detection capabilities in the long range (7– portable tarp. The picture on the top shows TerraMax while calibrating the 50 m, with the lower bound determined by the presence of stereo back, on the bottom is shown the acquired image and the result after the hood in the cameras field of view). Obstacle detection the pixel remapping using a lookup table. makes it possible to deal with certain kinds of situations that LIDARs can hardly (if at all) handle correctly, such as multiple extracting the correct values from the collected data is a non- vehicles queued at crossings, poles, and dust in unpaved areas trivial, time-consuming activity, which needs to be performed (which can be perceived as a solid obstacle by these sensors, each time the cameras are serviced, and as such must be while stereovision tends to filter it out since it corresponds scheduled properly, in order to avoid making the system to a textureless region originating no reliable matches); it also unavailable for some time provides additional information on the detected obstacles (such as height), and constitutes a reliable solution even in case of complete LIDAR sensors failures. Finally, it improves the B. Stereo abilities of the lane detection system by masking image areas The trinocular system described in section II-A can only corresponding to objects.
Recommended publications
  • Innovation in Ecosystem Business Models: an Application to Maas and Autonomous Vehicles in Urban Mobility System
    Innovation in ecosystem business models : An application to MaaS and Autonomous vehicles in urban mobility system Rodrigo Gandia To cite this version: Rodrigo Gandia. Innovation in ecosystem business models : An application to MaaS and Autonomous vehicles in urban mobility system. Economics and Finance. Université Paris-Saclay; University of Lavras, UFLA (Brésil), 2020. English. NNT : 2020UPASC018. tel-02895349 HAL Id: tel-02895349 https://tel.archives-ouvertes.fr/tel-02895349 Submitted on 9 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Innovation in Ecosystem Business Models: An Application to MaaS and Autonomous Vehicles in Urban Mobility System Thèse de doctorat de l'université Paris-Saclay École doctorale n° 573 Interfaces : approches interdisciplinaires, fon- dements, applications et innovation (Interfaces) Spécialité de doctorat : Ingénierie des systèmes complexes Unité de recherche : Université Paris-Saclay, CentraleSupélec, Laboratoire Genie Industriel, 91190, Gif-sur-Yvette, France. Référent : CentraleSupélec Thèse présentée et
    [Show full text]
  • Autonomous Vehicle, Sensing and Communication Survey 1 Introduction
    Autonomous Vehicle, Sensing and Communication Survey Edited and submitted by Shraga Shoval Prepared by Shlomi Hacohen and Oded Medina Department of Mechanical Engineering, Ariel University, Ariel, Israel. August 2020 Abstract Autonomous vehicles introduce dramatic changes to the way in which we travel. This technology has the potential to impact the transportation across a wide array of categories including safety, congestion, and travel behavior. In this report we review the main issues involved in autonomous driving as discussed in the literature and shed light on topics that we believe require further development. 1 Introduction The challenges in autonomous driving require a combination of many capabilities, among them: localization, motion planning, vehicle’s systems control (steering, acceleration/deceleration, signaling, etc.), road perception, prediction of other road-users behavior, awareness of dangers, etc. These capabilities have a various level of importance for various levels of driving automation. Even though the first autonomous vehicle (AV) was experimented in 1926 [104], a real-modern autonomous vehicle was first presented in 1986 by a team from Carnegie Mellon University [58]. Since 2010, many major automotive manufacturers, such as GM, Mercedes Benz, Ford, Toyota, and many more are developing AVs [90]. A demonstration of AV equipped with numerous sensors and communication systems was presented by Toyota in 2013 [10]. In 2016, Google’s AV has passed over one million kilometers. These events present a glimpse to the landmarks in the development of AV that, due to the complexity of the task, progresses slowly with considerable amount of attention to safety and reliability. AVs need a large amount of data for reliable decision making.
    [Show full text]
  • Using Fuzzy Logic in Automated Vehicle Control
    Intelligent Transportation Systems Using Fuzzy Logic in Automated Vehicle Control José E. Naranjo, Carlos González, Ricardo García, and Teresa de Pedro, Instituto de Automática Industrial Miguel A. Sotelo, Universidad de Alcalá de Henares ntil recently, in-vehicle computing has been largely relegated to auxiliary U tasks such as regulating cabin temperature, opening doors, and monitoring Automated versions fuel, oil, and battery-charge levels. Now, however, computers are increasingly assum- of a mass-produced ing driving-related tasks in some commercial models. Among those tasks are vehicle use fuzzy logic • maintaining a reference velocity or keeping a safe nomous robots and fuzzy control systems and the distance from other vehicles, Universidad de Alcalá de Henares’s knowledge of techniques to both • improving night vision with infrared cameras, and artificial vision. (The “Intelligent-Vehicle Systems” • building maps and providing alternative routes. sidebar discusses other such projects.) We’re devel- address common oping a testbed infrastructure for vehicle driving that Still, many traffic situations remain complex and includes control-system experimentation, strategies, challenges and difficult to manage, particularly in urban settings. and sensors. All of our facilities and instruments are The driving task belongs to a class of problems that available for collaboration with other research groups incorporate human depend on underlying systems for logical reasoning in this field. So far, we’ve automated and instru- and dealing with uncertainty. So, to move vehicle mented two Citroën Berlingo mass-produced vans procedural knowledge computers beyond monitoring and into tasks related to carry out our objectives. to environment perception or driving, we must inte- into the vehicle control grate aspects of human intelligence and behaviors Automated-vehicle equipment so that vehicles can manage driving actuators in a Figure 1 shows two mass-produced electric Cit- algorithms.
    [Show full text]
  • Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning
    Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning by Charles Ng supervised by Laura Taylor A Major Paper submitted to the Faculty of Environmental Studies in partial fulfillment of the requirements for the degree of Master in Environmental Studies York University, Toronto, Ontario, Canada December 8, 2017 Acknowledgments This paper could not have been completed without the help and support of the caring individuals that I am thankful to have in my life. I would like to thank and acknowledge my mother, Maria, and my sister, Ka Lang for providing me with love and support; my advisor, Peter Timmerman, and my supervisor, Laura Taylor, for providing me with academic and non-academic support; and my invaluable friends that I have made in the MES program for their encouragement, support and relief. i Foreword My Area of Concentration for my Plan of Study is sustainable transportation planning for growth management. Connected and Autonomous Vehicles will change the urban landscape, the roles of governments and present new challenges to planners. This paper has allowed me to view transportation planning through the lens of emerging technologies and how this affects cities in the short and long term. There are many sustainability and growth management implications with Connected and Autonomous Vehicles. For example, automated vehicles can foster decentralization because it easily enables travel however, if utilized correctly, automated vehicles can also compliment local transit systems to support intensification. This is especially important in Ontario (Canada’s first province to allow testing of autonomous vehicles on public roads) as it directly relates to the goals and policies related to sprawl and sustainability as outlined in Ontario’s four provincial land use plans: The Growth Plan for the Greater Golden Horseshoe (GGH), The Greenbelt Plan, The Oak Ridges Moraine Conservation Plan and the Niagara Escarpment Plan.
    [Show full text]
  • The Study on Innovation, Development and Implementation
    ISSN (Online) 2581-9429 IJAR SCT ISSN (Print) 2581-XXXX International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) Volume 11, Issue 1, November 2020 Impact Factor: 4.819 The Study on Innovation, Development and Implementation of the Self-driving Car Aniruddha Chaki Student, Department of Electrical Engineering Siliguri Institute of Technology, Siliguri, India Abstract: The development of the self-driving car is one of the greatest inventions of the century. With the technological advancement, the implementation of the autonomous vehicle has become the major attention among the researchers. This paper discusses the brief history of self-driving cars, its research and development, key technologies behind the self-driving, main aspects of implementing self-driving cars. The paper also describes some challenges with possible solutions to the fully autonomous vehicle in mass implementation. Keywords: Advanced Driver Assistance System (ADAS), autonomous, navigation, positioning, self- driving technology, radar, lidar, path planning, obstacle avoidance, Full Self driving (FSD), accidents, protests, advantages, challenges. I. INTRODUCTION In this 21st-century progress in technology has made man as omnipotent, omniscient and omnipresent as a god. It is being tried to find out and accomplish any work with higher efficiency, lesser cost, and least possible effort. This makes researchers explore the domain of Automation, Machine learning, and Artificial Intelligence to handle the hardest of the jobs which were once tedious and cumbersome for humans [1]. We are driving towards the future where humans will only be involved in high mental ability skills and all the other works will be automated [2]. In this paper, the previous researches in the field of self-driving have been studied.
    [Show full text]
  • Morgan Stanley NDR
    AMBARELLA.COM AMBARELLA.COM December 6th & 9th, 2019 COPYRIGHT COPYRIGHT AMBARELLA 2019 Morgan Stanley NDR Frankfurt, Germany and Milan, Italy Dr. Alberto Broggi, GM Ambarella Italy Casey Eichler, CFO Louis Gerhardy, Corporate Development 1 Forward-Looking Statements This presentation contains forward-looking statements that are subject to many risks and uncertainties. All statements made in this presentation other than statements of historical facts are forward-looking statements, including, without limitation, statements regarding Ambarella’s strategy, future operations, financial targets, future revenues, projected costs, prospects, plans and objectives for future operations, future product introductions, future rate of our revenue growth, the size of markets addressed by the company's solutions and the growth rate of those markets, technology trends, our ability to address market and customer demands and to timely develop new or enhanced solutions to meet those demands, our ability to achieve design wins, and our ability to retain and expand our customer and partner relationships. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "could," "would," "expects," "plans," "anticipates," "believes," "estimates," "projects," "predicts," "potential," or the negative of those terms, and similar expressions and comparable terminology intended to identify forward-looking statements. We have based forward-looking statements largely on our estimates of our financial results and our current expectations
    [Show full text]
  • Study on Electrical Vehicle and Its Scope in Future
    © 2018 JETIR February 2018, Volume 5, Issue 2 www.jetir.org (ISSN-2349-5162) Study on Electrical Vehicle and Its Scope in Future Divya Sharma, Department of Electrical Engineering Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh ABSTRACT: The cars are based on programming in advanced time to give the individual driver relaxed driving. In the automobile industry, various opportunities are known, which makes a car automatic. Google, the largest network, has been working on self-driving cars since 2010 and yet an innovative adaptation to present a mechanised vehicle in a radically new model is continuing to be launched. The modelling, calibration and study of changes in city morphology in autonomous vehicles (AVs). Transport system are utilized to travel among the tangential houses as well as the intermediate work and necessitate transportation space. The main benefits of an autonomous vehicle areit can be operated day parking area for other uses, mitigatemetropolitanground. We also reduce the cost per kilometre of driving. Researchers are interested in the area of automotive automation, where most applications are found in different places. The technology in this research paper will help to understand the quick, present and future technologies used or used in the automotive field to render automotive automation. KEYWORDS: Autonomous Vehicle, Linriccan Wonder, Robotic Van, Self-Driving Car, Tesla corporation. INTRODUCTION Users all over the world are delighted with the introduction of an automated vehicle for the general
    [Show full text]
  • Forecasting Americans' Long-Term Adoption of Connected And
    FORECASTING AMERICANS’ LONG-TERM ADOPTION OF CONNECTED AND AUTONOMOUS VEHICLE TECHNOLOGIES 1 Prateek Bansal 2 Graduate Research Assistant 3 Department of Civil, Architectural and Environmental Engineering 4 The University of Texas at Austin 5 [email protected] 6 Phone: 512-293-1802 7 Kara M. Kockelman 8 (Corresponding Author) 9 E.P. Schoch Professor in Engineering 10 Department of Civil, Architectural and Environmental Engineering 11 The University of Texas at Austin 12 [email protected] 13 14 15 The following paper is a pre-print, the final publication can be found in 16 Transportation Research Part A: Policy and Practice, 95:49-63 (2017). 17 18 19 ABSTRACT 20 Automobile enterprises, researchers, and policymakers are interested in knowing the future of 21 connected and autonomous vehicles (CAVs). To this end, this study proposes a new simulation- 22 based framework to forecast Americans’ long-term (year 2015 to 2045) adoption levels of CAV 23 technologies under eight different scenarios based on: 5% and 10% annual drops in technology 24 prices; 0%, 5%, and 10% annual increments in Americans’ willingness to pay (WTP); and 25 changes in government regulations. This simulation was calibrated with the data obtained from a 26 survey of 2,167 Americans, in order to obtain their preferences for CAV technologies and their 27 household’s annual vehicle transaction decisions. 28 29 Results indicate that the average WTP (of respondents with a non-zero WTP) to add connectivity 30 and Level 3 and Level 4 automations are $110, $5,551, and $14,589, respectively. Long-term 31 fleet evolution suggests that the privately held light-duty vehicle fleet will have 24.8% Level 4 32 AV penetration by 2045 under an annual 5% price drop and constant WTP values.
    [Show full text]
  • From Local Academic Spin-Off to International Firm: the Case of Vislab
    International Business Research; Vol. 13, No. 6; 2020 ISSN 1913-9004 E-ISSN 1913-9012 Published by Canadian Center of Science and Education From Local Academic Spin-Off to International Firm: The Case of VisLab Maria Cristina Arcuri1, Elisa Bocchialini2 & Gino Gandolfi2 1 Department of Economics and Management, University of Florence, Florence, Italy 2 Department of Economics and Management, University of Parma, Parma, Italy Correspondence: Elisa Bocchialini, Department of Economics and Management, University of Parma, Via J.F. Kennedy, 6 – 43125 Parma, Italy. Received: April 7, 2020 Accepted: May 8, 2020 Online Published: May 22, 2020 doi:10.5539/ibr.v13n6p100 URL: https://doi.org/10.5539/ibr.v13n6p100 Abstract Universities play an important role in developing and transferring technology. In Italy, much innovation takes place where universities are located outside large towns, as in the case of VisLab. VisLab, the Vision and Intelligent Systems Laboratory, founded by Prof. Alberto Broggi of Parma University, is a pioneer in perception systems and autonomous vehicle research. It is also the spin-off of the University of Parma acquired by Silicon Valley company Ambarella Inc., in July 2015 for $30 million. After the deal, VisLab remained in Italy and all the staff, about thirty researchers, were hired by VisLab for the Parma location. This paper examines the university-industry interaction and, in particular, academic spin-off, as a source of economic growth, pointing out the importance of the context. The study describes the main characteristics of the VisLab case, including the possible alternative strategies, the structure of the final M&A deal and the advantages deriving from Parma and surrounding area.
    [Show full text]
  • 2014 Automated Vehicles Symposium Proceedings
    2014 Automated Vehicles Symposium Proceedings 2014 Automated Vehicle Symposium – Synopsis of Proceedings DISCLAIMER The opinions, findings, and conclusions expressed in this publication are those of the speakers and contributors to the Automated Vehicle Symposium and not necessarily those of the United States Department of Transportation. The United States Government assumes no liability for its contents or use thereof. If trade names manufacturers’ names or specific products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. 2014 Automated Vehicles Symposium Proceedings—Final December 2014 Publication Number: FHWA-JPO-14-176 Prepared by: Volpe National Transportation Systems Center Cambridge, MA 02142 Prepared for: Intelligent Transportation Systems Joint Program Office Office of the Assistant Secretary for Research and Technology 1200 New Jersey Avenue, S.E. Washington, DC 20590 2 Acknowledgments The 2014 Automated Vehicles Symposium (AVS 2014) was produced through a partnership between the Association of Unmanned Vehicle Systems International (AUVSI) and Transportation Research Board (TRB), and is indebted to its many volunteer contributors and speakers who developed the symposium content, produced sessions, and contributed to the development of these proceedings. AVS 2014 also benefitted from the direct financial contributions of its commercial benefactors, and the institutional support of the many companies and agencies that supported the time, travel, and participation for their staff. The organizing committee gratefully acknowledges the United States Department of Transportation (U.S. DOT) Intelligent Transportation Systems Joint Program Office (ITS JPO) for the level of its support to AVS 2014 and for these proceedings.
    [Show full text]
  • Report on VRA Network
    Ref. Ares(2015)4974225 - 10/11/2015 EUROPEAN COMMISSION DG Communications Networks, Content & Technology SEVENTH FRAMEWORK PROGRAMME INFORMATION AND COMMUNICATION TECHNOLOGIES Coordination and Support Action Grant Agreement Nr 610737 Support action for Vehicle and Road Automation network Report on VRA Network Deliverable no. D2.2 Dissemination level PU Work Package no. WP2 Main author(s) Davide Brizzolara, Maxime Flament Co-author(s) VRA Partners Version Nr (F: final, D: draft) V1.0 F File Name VRA_20151031_WP2_DEL2.2_v1.0.docx Project Start Date and Duration 01 July 2013, 42 months D2.2 – Report on VRA Network V1.0 F Document Control Sheet Main author(s) or editor(s): Davide Brizzolara, Maxime Flament Work area: WP2 Document title: Report on VRA Network Version history: Version Date Main author Summary of changes number v0.1 01/09/2015 Davide Brizzolara ToC v0.2 13/09/2015 Davide Brizzolara Chapter 5 and 6 v0.3 24/09/2015 Davide Brizzolara Updates according to the feedback of the VRA partners v0.4 25/11/2015 Davide Brizzolara Revision of the content v0.5 06/11/2015 Davide Brizzolara Updates of Chapter 5 v0.1 09/11/205 Davide Brizzolara Final updates Approval: Name Date Prepared Davide Brizzolara, Maxime Flament 09/11/2015 Reviewed Maxime Flament 09/11/2015 Authorised Maxime Flament 09/11/2015 Circulation: Recipient Date of submission EC 09/11/2015 VRA consortium 09/11/2015 VRA is an ERTICO Partnership activity 2 D2.2 – Report on VRA Network V1.0 F Table of Contents Table of Contents 3 List of Figures 5 List of Tables 5 1 Introduction
    [Show full text]
  • Autonomous Cars: Past, Present and Future
    Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public.
    [Show full text]