(12) United States Patent (10) Patent No.: US 8,270,445 B2 Morasse Et Al
Total Page:16
File Type:pdf, Size:1020Kb
USOO827 0445B2 (12) United States Patent (10) Patent No.: US 8,270,445 B2 Morasse et al. (45) Date of Patent: *Sep. 18, 2012 (54) LIGHT EMITTING DEVICES WITH (58) Field of Classification Search .................... 372/40, PHOSPHOSILICATE GLASS 372/6 See application file for complete search history. (75) Inventors: Bertrand Morasse, Quebec (CA); Jean-Philippe De Sandro, Quebec (56) References Cited Sch E.E. SNR, (CA); U.S. PATENT DOCUMENTS tephane Chatigny, Saint-Redempteur 3,808,549 A 4, 1974 Maurer (CA) 4,033,667 A 7/1977 Fleming, Jr. 4,815,079 A 3, 1989 Snitzer et al. (73) Assignee: Coractive High-Tech Inc., Quebec, (Continued) Quebec (CA) c - FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CN 1400957 A 3, 2003 patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (Continued) This patent is Subject to a terminal dis- OTHER PUBLICATIONS claimer. Broer, M. et al. “Highly nonlinear near-resonant photdarkening in a thulium-doped aluminosilicate glass fiber'. Optics Letter, vol. 18, (21) Appl. No.: 12/669,440 No. 10, May 15, 1993, pp. 799-801. (22) PCT Filed: Jul. 15, 2008 (Continued) Primary Examiner — Patrick Stafford (86). PCT No.: PCT/CA2O08/OO1296 Assistant Examiner — Xinning Niu S371 (c)(1), (74) Attorney, Agent, or Firm — Merchant & Gould P.C. (2), (4) Date: Jan. 15, 2010 (57) ABSTRACT (87) PCT Pub. No.: WO2009/009888 A light-emitting device is provided which includes a gain medium having an optically-active phosphosilicate glass, PCT Pub. Date: Jan. 22, 2009 wherein the phosphosilicate glass includes at least one active O O ion dopant and from about 1 to 30 mol% of phosphorus oxide. (65) Prior Publication Data The phosphorous oxide may be present in an effective amount US 2010/O2O2481 A1 Aug. 12, 2010 for reducing any photodarkening effect and increasing the saturation energy of the system. The active ion dopant may be Related U.S. Application Data a rare earth dopant. The light-emitting device may include an (60) Provisional application No. 60/929,864, filed on Jul optical waveguide, the optical waveguide including the gain 16, 2007 pp sy- Y is medium. The optical waveguide may have a core and at least s one cladding, and the gain medium having the phosphosili (51) Int. Cl. cate glass may be found in the core and/or in one of the HOIS 3/17 (2006.01) cladding. (52) U.S. Cl. ............................... 372/40; 372/6:38.5/142 31 Claims, 12 Drawing Sheets 10 Y 12 12 US 8,270,445 B2 Page 2 U.S. PATENT DOCUMENTS Kitabayashi, T. “Population Inversion Factor Dependence of Photodarkening of Yb-doped Fibers and it Suppression by Highly 4,852,117 A * 7/1989 Po ................................... 372,97 5,173,456 A 12/1992 Hayden et al. Aluminum Doping”. Optical Fiber Communication Conference 5,408,569 A 4/1995 Nishimoto 2006 and 2006 National Fiber Optic Engineers Conference, OFC 5,771.251 A * 6/1998 Kringlebotnet al. ............. 372/6 2006, Mar. 2006. 5,818,630 A 10, 1998 Fermann et al. Izawa, T. et al. “Optical Fibers: Materials and Fabrication', KTK 6,154,598 A 11/2000 Gavrilovic et al. Scientific Publishers, Tokyo, 1987. 6,321,016 B1 * 1 1/2001 Tirloni et al. ................. 385,127 Koponen, J. et al. “Measuring photodarkening from single-mode 6,495,482 B1 12/2002 de Sandro et al. ytterbium doped silica fibers'. Optics Express, vol. 14, No. 24, Nov. 6,625, 180 B2 9, 2003 Bufetov et al. 27, 2006, pp. 11539-11544. 6,636,347 B1 10/2003 Wang Kirchhof, J. etal. "Dopant Interactions in High Power Laser Fibers'. 6,738,186 B2 5/2004 Jiang et al. Proceedings of SPIE, vol. 5723, Optical Components and Materials 6,941,053 B2 9, 2005 Lauzon et al. II, edited by Jiang, S. et al., 2005, pp. 261-272. 7,046,902 B2 5, 2006 de Sandro et al. Dianov, et al. “New generation of Raman fiber lasers, based on 7,062,137 B2 6, 2006 Farroni et al. phosphosilicate fibers”. Conference on Lasers and Electro-Optics 7,068,900 B2 6, 2006 Croteau et al. Europe, Sep. 10-15, 2000. 7,423,803 B1* 9/2008 Chavez-Pirson et al. ......... 372/6 Osanai, et al. “Effect of Dopants on Transmission Loss of Low-OH 2005/0088727 A1* 4/2005 Nakashima et al. ..... 359,34141 Content Optical Fibres'. Electronics Letters, vol. 12, No. 21, Oct. 14. ... 359,334 2005/0225841 A1* 10/2005 Bragheri et al. ... 1976, pp. 549550. 2005/0254764 A1* 11/2005 Chatigny ... 385,123 Xiong, Z. et al. “10-W Raman Fiber Lasers at 1248 nm Using 2006/0187973 A1* 8, 2006 Varnham et al. .................. 372/6 Phosphosilicate Fibers”, Journal of Lightwave Technology, vol. 21. 2007/0053400 A1 3f2007 Sinha et al. ..................... 372/64 No. 10, Oct. 2003, pp. 2377-2381. 2009 OO11233 A1 1/2009 Morasse et al. Broer, M. et al. “Studying Pump Light-Induced Darkening in 2009 OO16387 A1 1/2009 Durkin et al. Erbium-Doped Fiber Amplifiers with Optical Time Domain FOREIGN PATENT DOCUMENTS Reflectometry, IEEE Photonics Technology Letters, vol. 4. No. 11, EP O 617 301 B1 9, 1994 Nov. 1992, pp. 1264-1266. JP 2004-260104. A 9, 2004 Vienne, G. et al. “Fabrication and Characterization of Yb Er" WO WOO2,385.14 A1 5, 2002 Phosphosilicate Fibers for Lasers”, Journal of Lightwave Technol ogy, vol. 16, No. 11, Nov. 1998, pp. 1990-2001. Manek-Honninger, I. et al. “Photodarkening and photobleaching of OTHER PUBLICATIONS anytterbium-doped silica double-clad LMA fiber'. Optics Express, Broer, M. etal. “Ultraviolet-induced distributed-feedbackgratings in vol. 15, No. 4, Feb. 19, 2007, pp. 1606-1611. Ce"-doped silica optical fibers”. Optics Letters, vol. 16, No. 18, Sep. Renaud, C. et al. “Characteristics of Q-Switched Cladding-Pumped Ytterbium-Doped Fiber Lasers with Different High-Energy Fiber 15, 1991, pp. 1391-1393. Designs”, IEEE Journal of Quantum Electronics, vol. 37, No. 2, Feb. Behrens, E. et al. “Characteristics of laser-induced gratings in Pr"- 2001, pp. 199-2001. and Eu'-doped silicate glasses”. J. Opt. Soc. Am. B., vol. 7, No. 8, Vu, K. et al. "Adaptive pulse shape control in a diode-seeded nano Aug. 1990, pp. 1437-1444. second fiber MOPA system”. Optics Express, vol. 14, No. 23, Nov. Paschotta, Ret al. “Lifetime quenching in Yb-doped fibers'. Optics 13, 2006, pp. 10996-1 1001. Communications, vol. 136, 1997, pp. 375-378. Sintov, Y, et al. “Extractable energy from ytterbium-doped high Morasse, B. et al. "Low photodarkening single cladding ytterbium energy pulsed fiber amplifiers and lasers”. J. Opt. Soc. Am. B., vol. fibre amplifier”. Proceedings of SPIE, vol. 6453, Feb. 2007, Fiber 23, No. 2, Feb. 2006, pp. 218-230. Lasers IV: Technology, Systems, and Applications, Harter, D. et al., Editors, 6453OH. * cited by examiner U.S. Patent Sep. 18, 2012 Sheet 1 of 12 US 8,270,445 B2 12 FIG. 1A U.S. Patent Sep. 18, 2012 Sheet 3 of 12 US 8,270,445 B2 F.G. 1C U.S. Patent Sep. 18, 2012 Sheet 4 of 12 US 8,270,445 B2 4 phosphosilicate 3.5 S is n - aluminolgermano E 3 silicate 9, 2.5 O 2 E. 5 1.5 3 C 1 0.5 O Wavelength (nm) FIG. 2 U.S. Patent Sep. 18, 2012 Sheet 5 of 12 US 8,270,445 B2 Mr. W r W OW W -ms--- -Waraw W Wom a -1--8w-W- --W-- M - MMWW W WrW 1 4. O - phosphosilicate 1. 2 O l O O alumino/germano Silicate 60 V & --- -- W M AO 700 800 900 1000 1100 1200 1300 Wavelength (nm) ------ W W Wr ------w m ------ ------ WM ------ --- W----- W FIG. 3 U.S. Patent Sep. 18, 2012 Sheet 6 of 12 US 8,270,445 B2 deformation starts 400 450 5OO 550 600 650 Time (ns) FIG. 4 U.S. Patent Sep. 18, 2012 Sheet 7 of 12 US 8,270,445 B2 13A 20 10A FIG 5A 13B 20 10B FIG. 5B U.S. Patent Sep. 18, 2012 Sheet 8 of 12 US 8,270,445 B2 Reduced Refractive Core NA COre NA index Double cladding Triple cladding F.G. 6 U.S. Patent Sep. 18, 2012 Sheet 9 of 12 US 8,270,445 B2 12A FIG 7A Refractive index Core FIG. 7B Refractive index Core FIG 7C U.S. Patent Sep. 18, 2012 Sheet 10 of 12 US 8,270,445 B2 Comparison of output temporal profile at 10W 20kHz/ O.5m 16 -cervice core = 20 um, cladding = 125um 8 on aluminosilicate 150 2OO 250 3OO 350 400 450 FIG. 8 U.S. Patent Sep. 18, 2012 Sheet 12 of 12 US 8,270,445 B2 FIG. 9B 52 54 46 FIG 9C US 8,270,445 B2 1. 2 LIGHT EMITTING DEVICES WITH Longitudinal mode beating can be an important source of PHOSPHOSILICATE GLASS high frequency noise which consequently gives rise to peak power fluctuations in the pulse structure of a pulsed amplifier CROSS-REFERENCE TO RELATED or laser. Depending on its amplitude and frequency spectrum, APPLICATION this noise can severely limit the ability to generate stable optical pulses having special shapes with fine structures. This application is a National Stage Application of PCT/ Another problem encountered with high-energy amplifiers CA2008/001296, filed 15 Jul. 2008, which claims benefit of and lasers are the non-linear effects that appear at high ener U.S. Ser. No. 60/929,864, filed 16 Jul. 2007 and which appli gies. The onset of non-linear effects can severely degrade the cations are incorporated herein by reference.