Development of Highly Photosensitive Low Loss Inorganic Sol‑Gel Films for Direct Ultraviolet‑Imprinting of Planar Waveguides

Total Page:16

File Type:pdf, Size:1020Kb

Development of Highly Photosensitive Low Loss Inorganic Sol‑Gel Films for Direct Ultraviolet‑Imprinting of Planar Waveguides This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Development of highly photosensitive low loss inorganic sol‑gel films for direct ultraviolet‑imprinting of planar waveguides Rajni 2008 Rajni. (2008). Development of highly photosensitive low loss inorganic sol‑gel films for direct ultraviolet‑imprinting of planar waveguides. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/4113 https://doi.org/10.32657/10356/4113 Nanyang Technological University Downloaded on 04 Oct 2021 19:26:37 SGT ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library Development of Highly Photosensitive Low Loss Inorganic Sol-Gel Films for Direct Ultraviolet- Imprinting of Planar Waveguides Rajni School of Electrical and Electronic Engineering A thesis submitted to the Nanyang Technological University in fulfilment of the requirement for the degree of Doctor of Philosophy 2008 ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library To My Family For affectionate support in all my endeavours........ ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library Acknowledgements This is indeed a privilege and a great pleasure to express my gratitude and deep regards to my supervisor Prof. Kantisara Pita for giving me the opportunity to associate myself with the exciting academic atmosphere of photonics research group (School of Electrical and Electronics) of Nanyang Technological University (NTU) as a Doctor of Philosophy student. It will be always less whatever I say, however I express myself to honour his invaluable guidance, keen interest and encouragement throughout my research work. He encouraged me to develop my research skills and introduced me to the scientific community time to time. Despite my intruding at any hour or day into his busy schedule, he took it in a good positive attitude. I am very grateful to him, as my supervisor’s door was always open to discuss the problems. In particular, I wish to thank him from the bottom of my heart as he had shown enough patience to review my written work. I gratefully acknowledge the financial support provided by NTU in the form of research scholarship during my studies. I would also like to express my sincere thanks to Prof. Tjin Swee Chuan and Prof. Yu Siu Fung for the helpful suggestions and their input on the various topics. I thank the support of Prof. Thomas Osipowicz of National University of Singapore (NUS) for the Rutherford backscattering measurements of my samples. i ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library ACKNOWLEDGEMENTS I thank Charles K. F. Ho who introduced me to the sol-gel process and for his useful discussions that saved my many hours of self teaching nightmare. I also thank to Shuh Ying Lee for helping me in BPM simulations. Finally, I would like to mention Lipi Mohanthy, Chong Munkit, Samson Tua Halomoan Silalahi and other friends for making it comfortable to be at NTU. I also appreciate laboratory technicians Low Poh Chee, Yong Kim Lam, Debbie, Desmond and Seet Lye Ping for helping me in the laboratory experiments and Yee Yang Boey for keeping my computer happy. Last but definitely not least, I like to thank my family for their continued love, support and patience through out the years and specially my husband Rajiv Kashyap for his encouragement and support during this PhD program. Many thanks to all of you! Rajni ii ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library Contents Acknowledgements ····································································································· i Contents···················································································································· iii Summary ···················································································································ix List of Abbreviations ································································································xiv List of Figures··········································································································xvi List of Tables ·······································································································xxviii Chapter 1 Introduction······································································································· 1 1.1. Motivation·······························································································1 1.2. Objective·································································································4 1.3. Major contributions of the Thesis······························································5 1.4. Organization of the Thesis········································································9 Chapter 2 Literature Review··························································································· 12 2.1. Introduction ···························································································12 2.2. Introduction to integrated photonics devices ············································13 2.3. Technologies for the photonic waveguide device fabrication ····················15 iii ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library CONTENTS 2.3.1. Conventional waveguide fabrication method ································15 2.3.2. Waveguide development by ion-implantation ·······························18 2.3.3. Waveguide development by direct electron-beam writing··············19 2.3.4. Waveguide development by direct proton-beam writing················20 2.3.5. Waveguide development by direct laser writing····························21 2.3.5.1. Self-writing waveguide fabrication technique ··············22 2.3.5.2. Direct UV-writing and UV-imprinting waveguide fabrication technique··················································24 2.4. Inorganic materials for photonic waveguide devices·································27 2.4.1. Silicate material ··········································································27 2.4.2. Doped silicate materials·······························································28 2.4.3. Germanosilicate material system··················································31 2.5. Review of germanosilicate photosensitivity ·············································32 2.5.1. Introduction of the photosensitivity of germanosilicate··················32 2.5.2. Mechanism of photosensitivity in germanosilicate ························34 2.5.2.1. Model-I: Color-Center Model ·····································34 2.5.2.2. Model-II: Stress relaxation model································36 2.5.2.3. Model-III: Densification (compaction) model ··············37 2.5.3. Complex nature of germanosilicate photosensitivity······················37 2.5.4. Enhancement techniques for germanosilicate photosensitivity ·······38 2.5.4.1. Hydrogen loading treatment········································38 2.5.4.2. CO2 laser exposure prior to UV-illumination················41 2.5.4.3. Mechanical treatment ·················································41 2.5.4.4. Annealing in reducing atmosphere·······························42 2.5.4.5. Boron co-doping ························································42 2.6. Silica-on-silicon deposition techniques····················································43 iv ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library CONTENTS 2.6.1. Sputtering process·······································································43 2.6.2. Chemical vapor deposition process ··············································44 2.6.3. Flame hydrolysis deposition process ············································45 2.6.4. Sol-gel process············································································46 2.7. Review of sol-gel process·······································································47 2.7.1. Introduction of sol-gel method·····················································47 2.7.2. Fundamentals of sol-gel process ··················································48 2.7.3. Formation of silica films by sol-gel··············································49 2.7.4. Sol-gel processing steps ······························································51 2.7.5. Various critical parameters of sol-gel reaction mechanism·············54 2.7.6. Formation of germanosilicate films by sol-gel ······························58 2.7.7. Sol-gel process limitations···························································59 2.8. Summary·······························································································59 Chapter 3 Theory of Optical Waveguides ····································································· 61 3.1. Introduction ···························································································61 3.2. Introduction to the planar slab-waveguide ···············································61 3.3. The wave equations for planar slab-waveguide ········································63 3.4. Solution for a planar slab-waveguide·······················································65
Recommended publications
  • Transport-Of-Intensity-Based Phase Imaging to Quantify the Refractive Index Response of 3D Direct- Write Lithography
    University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Faculty Electrical, Computer & Energy Engineering Contributions 1-22-2018 Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct- write lithography. David J Glugla Madeline B Chosy Marvin D Alim Amy C Sullivan Robert R McLeod Follow this and additional works at: https://scholar.colorado.edu/ecen_facpapers This Article is brought to you for free and open access by Electrical, Computer & Energy Engineering at CU Scholar. It has been accepted for inclusion in Electrical, Computer & Energy Engineering Faculty Contributions by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS 1851 Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct-write lithography 1,* 2 3 DAVID J. GLUGLA, MADELINE B. CHOSY, MARVIN D. ALIM, AMY C. 1 1,3 SULLIVAN, AND ROBERT R. MCLEOD 1Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA 2Department of Chemistry, Carleton College, Northfield, MN 55057, USA 3Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA *[email protected] Abstract: Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 μm-scale gradient-refractive index structures written by single-photon direct-write laser lithography.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Understanding Composition–Structure– Bioactivity Correlations
    Understanding Composition–Structure– Bioactivity Correlations in Bioactive Glasses Yang Yu Academic dissertation for the Degree of Doctor of Philosophy in Physical Chemistry at Stockholm University to be publicly defended on Wednesday 12 December 2018 at 13.00 in De Geersalen, Geovetenskapens hus, Svante Arrhenius väg 14. Abstract Bioactive glasses integrate with bone/tooth tissues by forming a layer of hydroxy-carbonate apatite (HCA), which mimics the composition of bone mineral. In the current thesis, we investigated composition–structure–bioactivity correlations of phosphosilicate and borophosphosilicate (BPS) glasses. Bioactive phosphosilicate glasses extend the compositional space of the ”45S5 Bioglass®”, which has been in clinical use for decades. Recently developed bioactive BPS glasses with SiO2→B2O3 substitutions transform more completely into HCA and their glass dissolution behaviors can be tuned by varying the relative contents of B and Si. It is known that the average silicate network connectivity NSi and the phosphate content (x(P2O5)) affect the apatite formation (in vitro bioactivity) of phosphosilicate glasses, but the details remain poorly explored. Three series of phosphosilicate glasses were designed by independently varying NSi and x(P2O5). After immersion of the glasses in a simulated body fluid (SBF) for 24 hours, different degrees of their apatite formation were quantified by Fourier-transform infrared (FTIR) spectroscopy. The results revealed that a high P content widened the NSi range that generated optimum amounts of apatite and also mitigated the detrimental effects associated with using glass particles with < 50 μm. The amounts of apatite derived from FTIR agreed with those from 31P magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy.
    [Show full text]
  • Fabrication and Characteristics of Yb-Doped Silica Fibers Produced by the Sol-Gel Based Granulated Silica Method
    fibers Article Fabrication and Characteristics of Yb-Doped Silica Fibers Produced by the Sol-Gel Based Granulated Silica Method Ali El Sayed 1,2,*, Soenke Pilz 1, Hossein Najafi 1, Duncan T. L. Alexander 3,4 , Martin Hochstrasser 5 and Valerio Romano 1,2,* 1 Institute for Applied Laser, Photonics and Surface Technologies (ALPS), Bern University of Applied Sciences, Pestalozzistrasse 20, 3400 Burgdorf, Switzerland; [email protected] (S.P.); hossein.najafi@bfh.ch (H.N.) 2 Institute of Applied Physics (IAP), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; duncan.alexander@epfl.ch 4 Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 5 Reseachem GmbH, Pestalozzistrasse 20, 3400 Burgdorf, Switzerland; [email protected] * Correspondence: [email protected] (A.E.); [email protected] (V.R.); Tel.: +41-34-426-4347 (A.E.); +41-31-631-8940 (V.R.) Received: 7 September 2018; Accepted: 19 October 2018; Published: 23 October 2018 Abstract: Combining the sol-gel method for fiber material production with the granulated silica method for preform assembly results in a robust method that offers a high degree of freedom regarding both the composition and the geometry of the produced fiber. Using this method, two types of Yb-doped silica glass composition, that feature an excess in P concentration with respect to Al, have been prepared. The elemental distributions in a fiber core were analyzed by scanning transmission electron microscopy (STEM).
    [Show full text]
  • Microfabrication in Foturan™ Photosensitive Glass Using Focused Ion Beam
    Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2 - 4, 2007, London, U.K. Microfabrication in Foturan™ Photosensitive Glass Using Focused Ion Beam C J Anthony, P T Docker , P D Prewett and K C Jiang processed using a three step process. A glass wafer is exposed Abstract— The fabrication of nano-dimensional features in the to ultra-violet light typically in the 250-350nm range through a TM photoetchable glass Foturan , using focused ion beam quartz-chromium patterned mask. The exposure of the wafer in technology has been characterized. To date, most the prescribed area causes a release of electrons from the Ce++ microfabrication in this material has used UV lithography and donor ion. These electrons then recombine with the Ag+ ions to UV lasers, with minimum feature size of around 10µm determined by the grain structure, though there has been some recent work form Ag atoms. The wafer is then placed in a furnace at 600 using high energy proton irradiation. Focused ion beam degrees centigrade where the exposed parts are crystallized technology offers two potential advantages: features are etched causing the atoms of silver to agglomerate into small fragments. directly without post bake or HF wet etch and features can be Further heat treatment leads to the formation of lithium generated with lateral and depth resolution on the nanoscale. metasilicate. The final stage of processing is to etch the wafer Initial test features were milled to a depth of 1.46μm, without using hydrofluoric acid. The exposed areas etch preferentially distortion due to charging, at a milling rate of 0.23μm3/nC, in agreement with our simulations.
    [Show full text]
  • 3-Dimensional Microstructural
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS 3-DIMENSIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI NATIONAL UNIVERSITY OF SINGAPORE 2009 3-DIMENSTIONAL MICROSTRUCTURAL FABRICATION OF FOTURANTM GLASS WITH FEMTOSECOND LASER IRRADIATION TEO HONG HAI (B. Eng. (Hons.), Nanyang Technological University) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2009 Acknowledgement ACKNOWLEDGEMENTS I would like to take this opportunity to express my appreciation to my supervisor, Associate Professor Hong Minghui for his guidance during the entire period of my Masters studies. He has been encouraging particularly in trying times. His suggestions and advice were very much valued. I would also like to express my gratitude to all my fellow co-workers from the DSI-NUS Laser Microprocessing Lab for all the assistance rendered in one way or another. Particularly to Caihong, Tang Min and Zaichun for all their encouragement and assistance as well as to Huilin for her support in logistic and administrative issues. Special thanks to my fellow colleagues from Data Storage Institute (DSI), in particular, Doris, Kay Siang, Zhiqiang and Chin Seong for all their support. To my family members for their constant and unconditioned love and support throughout these times, without which, I will not be who I am today. i Table of Contents TABLE OF CONTENTS ACKNOWLEDGEMENTS
    [Show full text]
  • 3D Manufacturing of Glass Microstructures Using Femtosecond Laser
    micromachines Review 3D Manufacturing of Glass Microstructures Using Femtosecond Laser Agne˙ Butkute˙ 1,2* and Linas Jonušauskas 1,2* 1 Femtika Ltd., Sauletekio˙ Ave. 15, LT-10224 Vilnius, Lithuania 2 Laser Research Center, Vilnius University, Sauletekio˙ Ave. 10, LT-10223 Vilnius, Lithuania * Correspondence: [email protected] (A.B.); [email protected] (L.J.) Abstract: The rapid expansion of femtosecond (fs) laser technology brought previously unavailable capabilities to laser material processing. One of the areas which benefited the most due to these advances was the 3D processing of transparent dielectrics, namely glasses and crystals. This review is dedicated to overviewing the significant advances in the field. First, the underlying physical mechanism of material interaction with ultrashort pulses is discussed, highlighting how it can be exploited for volumetric, high-precision 3D processing. Next, three distinct transparent material modification types are introduced, fundamental differences between them are explained, possible applications are highlighted. It is shown that, due to the flexibility of fs pulse fabrication, an array of structures can be produced, starting with nanophotonic elements like integrated waveguides and photonic crystals, ending with a cm-scale microfluidic system with micro-precision integrated elements. Possible limitations to each processing regime as well as how these could be overcome are discussed. Further directions for the field development are highlighted, taking into account how it could synergize with other fs-laser-based manufacturing techniques. Citation: Butkute,˙ A.; Jonušauskas, L. Keywords: femtosecond laser; glass micromachining; 3D structuring 3D Manufacturing of Glass Microstructures Using Femtosecond Laser. Micromachines 2021, 12, 499. https://doi.org/10.3390/mi12050499 1. Introduction Glass and related transparent dielectrics play an important role in huge variety of Academic Editors: Rebeca Martínez applications.
    [Show full text]
  • Absorption and Scattering in Photo-Thermo-Refractive Glass Induced by UV Exposure and Thermal Development J
    Absorption and scattering in photo-thermo-refractive glass induced by UV exposure and thermal development J. Lumeau, L. Glebova, L.B. Glebov To cite this version: J. Lumeau, L. Glebova, L.B. Glebov. Absorption and scattering in photo-thermo-refractive glass induced by UV exposure and thermal development. Optical Materials, Elsevier, 2014, 36, pp.621-627. hal-00947686 HAL Id: hal-00947686 https://hal.archives-ouvertes.fr/hal-00947686 Submitted on 13 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Elsevier Editorial System(tm) for Optical Materials Manuscript Draft Manuscript Number: OM-D-13-00833R2 Title: Absorption and scattering in photo-thermo-refractive glass induced by UV exposure and thermal development Article Type: Original Research Keywords: Absorption; Scattering; Nano-particles; Photosensitive Glass Corresponding Author: Dr. Julien Lumeau, PhD Corresponding Author's Institution: CNRS First Author: Julien Lumeau, PhD Order of Authors: Julien Lumeau, PhD; Larissa Glebova; Leonid B Glebov Abstract: Photo-thermo-refractive (PTR) glass is a multicomponent photosensitive silicate glass that, after successive UV-exposure and thermal treatment, exhibits a refractive index change that results from the precipitation of nano-crystalline NaF.
    [Show full text]
  • Phosphate-Doped Borosilicate Enamel Coating Used to Protect Reinforcing Steel from Corrosion
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Fall 2014 Phosphate-doped borosilicate enamel coating used to protect reinforcing steel from corrosion Xiaoming Cheng Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Materials Science and Engineering Commons Department: Materials Science and Engineering Recommended Citation Cheng, Xiaoming, "Phosphate-doped borosilicate enamel coating used to protect reinforcing steel from corrosion" (2014). Doctoral Dissertations. 2339. https://scholarsmine.mst.edu/doctoral_dissertations/2339 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. 2 PHOSPHATE-DOPED BOROSILICATE ENAMEL COATING USED TO PROTECT REINFORCING STEEL FROM CORROSION by XIAOMING CHENG A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in MATERIALS SCIENCE AND ENGINEERING 2014 Approved by: Richard K. Brow, Advisor Genda Chen Delbert E. Day Matthew J. O’Keefe Mark E. Schlesinger 3 2014 XIAOMING CHENG All Rights Reserved iii PUBLICATION DISSERTATION OPTION This dissertation consists of a section of introduction, four papers and a section of appendix. Papers I (pages 20-57) will be submitted for publication in the Journal of Non- Crystalline Solids. Papers II (pages 58-88) will be submitted for publication in the Journal of Non- Crystalline Solids. Papers III (pages 89-120) will be submitted for publication in the Journal of Non- Crystalline Solids.
    [Show full text]
  • A Review of Selected Nanofabricated Thin Film Platforms for Spectroscopy, Imaging, and Detection Jason R
    Through a window, brightly: A review of selected nanofabricated thin film platforms for spectroscopy, imaging, and detection Jason R. Dwyer and Maher Harb Corresponding authors: Jason R. Dwyer, ORCID 0000-0002- 2938-2888, 140 Flagg Road, Department of Chemistry, University of Rhode Island, Kingston, RI, 02881; Maher Harb, ORCID 0000-0002- 6853-9454, Departments of Physics and Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104. Abstract We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range; electron microscopies and related techniques such as electron energy loss spectroscopy; x-ray photoelectron spectroscopy; and single-molecule sensing. We will anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy, and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single-molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we will elucidate the fabrication and resulting features—including mechanical stability, optical properties, x-ray and electron scattering properties, and chemical nature—of this material in this format. We also outline design and performance principles, and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.
    [Show full text]
  • Composition Structure Property Relationships in Bioactive Glasses
    COMPOSITION STRUCTURE PROPERTY RELATIONSHIPS IN BIOACTIVE GLASSES Sally Watts Doctor of Philosophy Department of Materials Imperial College London London SW7 2AZ United Kingdom COMPOSITION STRUCTURE PROPERTY RELATIONSHIPS IN BIOACTIVE GLASSES Sally Watts A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy And the Diploma of Imperial College Supervised by: Professor Robert Hill and Dr. Rob Law Department of Materials Imperial College London London SW7 2AZ United Kingdom February 2010 2 Hench developed the first bioactive material, Bioglass®, based on a soda-lime phospho-silicate glass. Most materials, elicit a neutral response when implanted into the human body. Bioglass®, however, was seen to create a positive response by depositing the body’s natural bone substance, Hydroxyapatite on its surface. Although it is recognised that compositional modifications effect bioactivity, there is very little comprehension of the composition-structure- property relationships that result in such bioactivity. The objective of this investigation, therefore, was to study such fundamental relationships with respect to two components often found in bioactive glass compositions – P2O5 and MgO. The first component studied was P2O5. The design of two series was undertaken – the first, a straight substitution of silicon for phosphorus, varying the network connectivity, NC, and the second, a charge compensating series, keeping the NC constant. 31P and 29Si MAS NMR of the two series provided evidence that the glasses were phase separated, with a predominantly Q2 silicate structure co-existing with phosphorus in a predominantly Q0 orthophosphate environment. Raman, FTIR, density measurements, differential thermal analysis and dilatometric analysis all further supported the existence of this structure.
    [Show full text]
  • Compact and Efficient O-Band Bismuth-Doped Phosphosilicate Fiber Amplifier for Fiber-Optic Communications
    www.nature.com/scientificreports OPEN Compact and efcient O‑band bismuth‑doped phosphosilicate fber amplifer for fber‑optic communications Sergei V. Firstov1*, Aleksandr M. Khegai1, Alexander V. Kharakhordin1, Sergey V. Alyshev1, Elena G. Firstova1, Yan J. Ososkov1, Mikhail A. Melkumov1, Lyudmila D. Iskhakova1, Elena B. Evlampieva3, Alexey S. Lobanov2, Mikhail V. Yashkov2 & Alexey N. Guryanov2 During last decades there has been considerable interest in developing a fber amplifer for the 1.3‑µ m spectral region that is comparable in performance to the Er‑doped fber amplifer operating near 1.55 µ m. It is due to the fact that most of the existing fber‑optic communication systems that dominate terrestrial networks could be used for the data transmission in O‑band (1260–1360 nm), where dispersion compensation is not required, providing a low‑cost increase of the capacity. In this regard, signifcant eforts of the research laboratories were initially directed towards the study of the praseodymium‑doped fuoride fber amplifer having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifers had rapidly appeared as a commercial amplifer prototype it did not receive widespread demand in the telecom industry because of its low efciency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth‑doped active fbers was developed, which turned out to be a promising medium for amplifcation at 1.3 µ m. Here, we report on the development of a compact and efcient 20‑dB (achieved for signal powers between −40 and −10 dBm) bismuth‑doped fber amplifer for a wavelength region of 1300–1350 nm in the forward, backward and bi‑directional confgurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW.
    [Show full text]