Transport-Of-Intensity-Based Phase Imaging to Quantify the Refractive Index Response of 3D Direct- Write Lithography
Total Page:16
File Type:pdf, Size:1020Kb
University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Faculty Electrical, Computer & Energy Engineering Contributions 1-22-2018 Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct- write lithography. David J Glugla Madeline B Chosy Marvin D Alim Amy C Sullivan Robert R McLeod Follow this and additional works at: https://scholar.colorado.edu/ecen_facpapers This Article is brought to you for free and open access by Electrical, Computer & Energy Engineering at CU Scholar. It has been accepted for inclusion in Electrical, Computer & Energy Engineering Faculty Contributions by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS 1851 Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct-write lithography 1,* 2 3 DAVID J. GLUGLA, MADELINE B. CHOSY, MARVIN D. ALIM, AMY C. 1 1,3 SULLIVAN, AND ROBERT R. MCLEOD 1Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA 2Department of Chemistry, Carleton College, Northfield, MN 55057, USA 3Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA *[email protected] Abstract: Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 μm-scale gradient-refractive index structures written by single-photon direct-write laser lithography. The model material, a high-performance two-component photopolymer, is found to be linear, integrating, and described by a single master dose response function. The sharp saturation of this function is used to demonstrate nearly binary, flat-topped waveguide profiles in response to a Gaussian focus. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (160.0160) Materials; (220.0220) Optical design and fabrication. References and links 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). 2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three- dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003). 3. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007). 4. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7(10), 1445–1453 (1989). 5. S. Bichler, S. Feldbacher, R. Woods, V. Satzinger, V. Schmidt, G. Jakopic, G. Langer, and W. Kern, “Functional flexible organic-inorganic hybrid polymer for two photon patterning of optical waveguides,” Opt. Mater. 34(5), 772–780 (2012). 6. R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, V. Schmidt, N. Pucher, R. Liska, and W. Kern, “3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups,” Opt. Mater. Express 4(3), 486 (2014). 7. C. Ye, K. T. Kamysiak, A. C. Sullivan, and R. R. McLeod, “Mode profile imaging and loss measurement for uniform and tapered single-mode 3D waveguides in diffusive photopolymer,” Opt. Express 20(6), 6575–6583 (2012). 8. T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics 4, 188 (2010). 9. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005). 10. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998). 11. L. Vittadello, A. Zaltron, N. Argiolas, M. Bazzan, N. Rossetto, and R. Signorini, “Photorefractive direct laser writing,” J. Phys. D Appl. Phys. 49(12), 125103 (2016). 12. T. Volk and M. Wöhlecke, “Problem of a Non-Erasable Photorefractive Hologram,” in Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, 2008), pp. 103–137. 13. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “Diffractive optical elements in photosensitive inorganic glasses,” in A. J. Marker III and M. J. Davis, eds. (International Society for Optics and Photonics, 2001), Vol. #308274 https://doi.org/10.1364/OE.26.001851 Journal © 2018 Received 9 Oct 2017; revised 6 Jan 2018; accepted 9 Jan 2018; published 18 Jan 2018 Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS 1852 4452, pp. 39–47. 14. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997). 15. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three- dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). 16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). 17. B. A. Kowalski and R. R. McLeod, “Design concepts for diffusive holographic photopolymers,” J. Polym. Sci. Part B Polym. Phys. 54, 1021–1035 (2016). 18. R. Malallah, H. Li, D. Kelly, J. Healy, and J. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers (Basel) 9(8), 337 (2017). 19. A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016). 20. R. Woods, S. Feldbacher, D. Zidar, G. Langer, V. Satzinger, V. Schmidt, N. Pucher, R. Liska, and W. Kern, “3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups,” Opt. Mater. Express 4(3), 486 (2014). 21. S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two- photon absorption,” Appl. Phys. Lett. 86(21), 211118 (2005). 22. B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-chemistry diffusive photopolymers,” Opt. Mater. Express 4(8), 1668 (2014). 23. J. Guo, M. R. Gleeson, and J. T. Sheridan, “A review of the optimisation of photopolymer materials for holographic data storage,” Phys. Res. Int. 2012, 1–16 (2012). 24. H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012). 25. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model Part I Absorption,” J. Opt. Soc. Am. B 31(11), 2638 (2014). 26. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model Part II Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648 (2014). 27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969). 28. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005). 29. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004). 30. M. S. Dinleyici and C. Sümer, “Characterization and estimation of refractive index profile of laser-written photopolymer optical waveguides,” Opt. Commun. 284(21), 5067–5071 (2011). 31. A. C. Sullivan and R. R. McLeod, “Tomographic reconstruction of weak, replicated index structures embedded in a volume,” Opt. Express 15(21), 14202–14212 (2007). 32. H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett. 80(20), 3673–3675 (2002). 33. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996). 34. M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20(19), 3415–3422 (1981). 35. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative Phase Imaging,” in Progress in Optics (B. V. Elsevier, 2012), Vol. 57, pp. 133–217. 36. A. Jesacher, P. S. Salter, and M. J. Booth, “Refractive index profiling of direct laser written waveguides: tomographic phase imaging,” Opt. Mater. Express 3(9), 1223 (2013). 37. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434 (1983). 38. W. Heller, “Remarks on Refractive Index Mixture Rules,” J. Phys. Chem. 69(4), 1123–1129 (1965). 39. Covestro, “Bayfol HX200 Datasheet,” https://www.films.covestro.com/en/Products/Bayfol/ProductList/201603170508/Bayfol-HX200. 40. W. J. Gambogi, Jr., A. M. Weber, and T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed. (International Society for Optics and Photonics, 1994), Vol. 2043, p. 2. 41. F.-K. Bruder, H.