Immobilization Mechanism of Pb in Fly Ash-Based Geopolymer

Total Page:16

File Type:pdf, Size:1020Kb

Immobilization Mechanism of Pb in Fly Ash-Based Geopolymer Construction and Building Materials 134 (2017) 123–130 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Immobilization mechanism of Pb in fly ash-based geopolymer ⇑ Bin Guo a, De’an Pan a, , Bo Liu a, Alex A. Volinsky b, Mustafa Fincan b, Jinfeng Du c, Shengen Zhang a,1 a Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China b Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA c Center of Technology Research, Shenhua Guohua Electric Power Research Institute Co., LTD, PR China highlights The behavior of Pb in geopolymer depends on the chemical property of the Pb compound. Pb participates in the formation of geopolymer network, forming leaded amorphous gel. Dissolution of lead compounds is a vital step in the formation of leaded geopolymer. Pb compounds, soluble in alkali, are chemically bonded into the geopolymer gel. PbS, inert to alkali, is trapped in the geopolymer by physical encapsulation. article info abstract Article history: Geopolymer possesses good immobilization capacity for Pb. There are two rival interpretations regarding Received 14 October 2015 the immobilization mechanism of Pb. This research investigates the behavior of 3 Pb compounds in Received in revised form 17 October 2016 geopolymer and clarifies the immobilization mechanism. When Pb contamination is added in the form, Accepted 21 December 2016 soluble in sodium hydroxide solution, the Pb is converted to an amorphous form and participates in the formation of geopolymer network. Successful immobilization of these species relies on chemical bonding and physical encapsulation. On the contrary, the Pb compound inert to sodium hydroxide solution is seg- Keywords: regated from the binder and trapped by physical encapsulation. Lead Ó 2016 Elsevier Ltd. All rights reserved. Leaded geopolymer Immobilization mechanism Chemical property 1. Introduction be determined, and (b) the physical properties should be stable, not only to encapsulate toxic metals, but also to make the product Geopolymer, the reaction product of a solid aluminosilicate suitable for further building applications. with a highly concentrated aqueous alkali hydroxide or silicate A great many hazardous solid wastes are proved to be suitable solution [1], is a type of cementitious material with an amorphous as a source material for making good geopolymeric materials, such or semi-crystalline nature [2]. Geopolymer can provide compara- as municipal solid waste incineration fly ash [2], lead smelting slag ble strength performance to traditional binders in practical appli- [11], and primary lead slag [12]. The synthesized geopolymer pos- cations [1]. Due to its low permeability, long-term durability and sess a comparable compressive strength with Ordinary Portland resistance to acid attack [3], geopolymer is believed to be a good Cement. In addition, most of the heavy metals that are presents immobilization system for various hazardous waste. There have in these wastes can be effectively immobilized in geopolymer. It been an increasing number of studies that focus on the potential is worth noting that these synthesized geopolymer possess good application of geopolymer to immobilize heavy metals during the immobilization capacity for Pb. last decade [4–9]. Research into this field have two main objectives The immobilization mechanism of heavy metals in geopolymer [10], i.e. (a) the immobilization efficiency and mechanism should is always a popular research, especially of Pb [4,5,13–15]. There are two rival interpretations regarding the immobilization mechanism of Pb. One is that Pb is likely to be bonded into the amorphous ⇑ Corresponding author at: Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, geopolymer gel, which was proposed by van Jaarsveld et al. [4]. Beijing 100083 PR China. It means that the Pb is in an amorphous form. Perera et al. also con- E-mail addresses: [email protected] (D. Pan), zhangshengen@mater. cluded that Pb may be mainly in the amorphous aluminosilicate ustb.edu.cn (S. Zhang). structure [13]. The other interpretation is that Pb is immobilized 1 Co-corresponding author. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.139 0950-0618/Ó 2016 Elsevier Ltd. All rights reserved. 124 B. Guo et al. / Construction and Building Materials 134 (2017) 123–130 in the form of Pb3SiO5, which is an insoluble crystalline compound 2. Experimental program [14]. Zhang et al. observed the Pb-rich regions in the SEM micro- graphs of the geopolymer with 0.5% Pb as Pb(NO3)2 [15]. The com- 2.1. Materials position of the Pb-rich regions was approximately consistent with the Pb3SiO5 phase. He concluded that the effect of heavy metal Fly ash, class F, according to the ASTM C618, was obtained from immobilization in geopolymer depends on the form of the supplied the Shenhua Power Station, Taicang, Jiangsu Province, China. The contaminant. In sum, the difference between the two interpreta- fly ash is of coal origin. The chemical composition, determined by tions is the existing form of Pb bonded into geopolymer. X-ray fluorescence, is shown in Table 2. Analytical grade reagents Thus, it is clear that more work is required to settle the contro- PbO, PbSO4, PbS and NaOH were used. The silicate modulus (Ms) versy and find out the exact immobilization mechanism. In this of the sodium silicate solution is 3.6. Distilled water was used paper, Pb compounds were used as the simulated lead-laden throughout. wastes to mix with aluminosilicate source for synthesis of geopoly- mer. Fly ash was used as the aluminosilicate source, because it is 2.2. Synthesis the most common source material for geopolymerization and its cost effectiveness [16]. This paper focused on the geopolymer con- Fly ash and Pb compounds were mixed and ground in a ball mill taining three types of Pb compounds: PbO, PbSO4 and PbS. These for 30 min. NaOH, distilled water and sodium silicate solution were Pb compounds are chosen based on the following aspects: mixed and heated at 65 °C for 10 min. Then the mixed powder was added in the alkaline activator (1.3SiO2ÁNa2OÁ14.4H2O), followed 1. PbO, PbSO4 and PbS are three types of the primary Pb contam- by further 5 min mixing. Table 3 shows the summary of the matri- inants existing in the environment [17]. In soil, lead exists ces under discussion. The mass ratio of activator to solid material mainly as PbSO4 and PbO [18]. In the atmosphere, lead is pre- and the composition of the activator were chose based on previous sent mainly as PbSO4 [19]. Lead particles emitted from mining work in which the geopolymer prepared from same fly ash and and smelting processes are mainly in the form of PbSO4, activator showed the optimal strength. The pastes were cast in Á PbO PbSO4, and PbS [19,20]. steel 20  20  20 mm cubic molds for the strength test and in 2. Lead ion is amphoteric specie. This character of Pb has not been u8.5 mm  4 mm plastic cylindrical molds for the leaching test. considered in the previous researches on the immobilization All the samples were cured in an airtight container at 85 °C for mechanism of Pb in geopolymer. The activators provide alkaline 24 h. After that the samples were sealed in plastic bags for curing condition for the geopolymeric reaction. Many Pb compounds, at room temperature, until other tests were carried out after 7 days such as PbO and PbSO4, can dissolve in excess alkali to form of ageing. The mole ratios of Si/Al of the designed geopolymer are plumbite ions. Toxicity Characteristic Leaching Procedure also showed in Table 3, which could be calculated as follows, (TCLP) [21] leaching test is often used to evaluate the immobi- :  WSiO2 ð À Þþ   1 3 MSiO2 lization efficiency. Acetic acid solution is used as extraction 100 WPb 100 RA=S :  þ þ :  100 1 3 MSiO2 MNa2O 14 4 MH2O Si=AlMole ¼ fluid in the TCLP test. Some Pb compounds can also react as a WAl2O3 ð100 À WPbÞ base and dissolve in acetic acid solution, such as PbO. The 100 immobilization mechanism of Pb in geopolymer may be related  MAl2O3  to the chemistry property of Pb contamination. Thus, PbO, 2 MSiO2 ð Þ PbSO4 and PbS were chose to simulate lead-laden wastes based 1 on their solubility in acetic acid and alkali. Table 1 shows the where W is the SiO content in the fly ash (%); W is the solubility of these compounds. SiO2 2 Al2O3 Al2O3 content in the fly ash (%); WPb is the amount of Pb compound added into the fly ash (%); RA/S is the ratio of activator (g) to solid In this paper, research was conducted to establish links À1 material (g); MSiO2 is the molar mass of SiO2 (gÁmol ); MNa2O is between the immobilization mechanism of Pb and chemical prop- À the molar mass of Na O(gÁmol 1); M is the molar mass of H O erties of the supplied Pb compounds. The amounts of Pb added as 2 H2O 2 (gÁmolÀ1). different Pb compounds were 1%, 2%, 8% of fly ash weight. The pur- poses of this research were to (a) investigate the change of Pb before and after geopolymerization; (b) study the distribution of 2.3. Samples analysis Pb in geopolymer; (c) assess the immobilization efficiency of dif- ferent Pb compounds by geopolymer; (d) investigate the upper The compressive strength tests were conducted after 7 days of limit of the Pb content could be immobilized in the geopolymer. ageing. Three samples were tested for each mechanical test. X-ray powder diffraction data was obtained using Rigaku Ultima IV X-ray diffractometer with Cu Ka radiation, 40 kV voltage and Table 1 40 mA current at 20°/min scanning rate, from 5° to 60° 2h range.
Recommended publications
  • Safety Data Sheet CS: 1.7.2
    Safety Data Sheet CS: 1.7.2 Page : 1 of 6 Infosafe No ™ 1CH9H Issue Date : July 2018 RE-ISSUED by CHEMSUPP Product Name : LEAD (II,IV) OXIDE Classified as hazardous 1. Identification GHS Product LEAD (II,IV) OXIDE Identifier Company Name CHEM-SUPPLY PTY LTD (ABN 19 008 264 211) Address 38 - 50 Bedford Street GILLMAN SA 5013 Australia Telephone/Fax Tel: (08) 8440-2000 Number Fax: (08) 8440-2001 Recommended use Storage batteries, glass, pottery and enameling, varnish, purification of alcohol, packing pipe joints, of the chemical and metal protective paints, fluxes, ceramic glazes and laboratory reagent. restrictions on use Other Names Name Product Code Lead oxide red Red lead LEAD (II,IV) OXIDE LR LL027 Lead tetraoxide LEAD (II,IV) OXIDE TG LT027 Other Information EMERGENCY CONTACT NUMBER: +61 08 8440 2000 Business hours: 8:30am to 5:00pm, Monday to Friday. Chem-Supply Pty Ltd does not warrant that this product is suitable for any use or purpose. The user must ascertain the suitability of the product before use or application intended purpose. Preliminary testing of the product before use or application is recommended. Any reliance or purported reliance upon Chem-Supply Pty Ltd with respect to any skill or judgement or advice in relation to the suitability of this product of any purpose is disclaimed. Except to the extent prohibited at law, any condition implied by any statute as to the merchantable quality of this product or fitness for any purpose is hereby excluded. This product is not sold by description. Where the provisions of Part V, Division 2 of the Trade Practices Act apply, the liability of Chem-Supply Pty Ltd is limited to the replacement of supply of equivalent goods or payment of the cost of replacing the goods or acquiring equivalent goods.
    [Show full text]
  • Monoanionic Tin Oligomers Featuring Sn–Sn Or Sn–Pb Bonds: Synthesis and Characterization of a Tris(Triheteroarylstannyl)Stannate and -Plumbate
    inorganics Communication Monoanionic Tin Oligomers Featuring Sn–Sn or Sn–Pb Bonds: Synthesis and Characterization of a Tris(Triheteroarylstannyl)Stannate and -Plumbate Kornelia Zeckert Institute of Inorganic Chemistry, University of Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; [email protected]; Tel.: +49-341-9736-130 Academic Editor: Axel Klein Received: 20 May 2016; Accepted: 14 June 2016; Published: 20 June 2016 6OtBu 6OtBu Abstract: The reaction of the lithium tris(2-pyridyl)stannate [LiSn(2-py )3] (py = C5H3N-6-OtBu), 6OtBu 1, with the element(II) amides E{N(SiMe3)2}2 (E = Sn, Pb) afforded complexes [LiE{Sn(2-py )3}3] for E = Sn (2) and E = Pb (3), which reveal three Sn–E bonds each. Compounds 2 and 3 have been characterized by solution NMR spectroscopy and X-ray crystallographic studies. Large 1J(119Sn–119/117Sn) as well as 1J(207Pb–119/117Sn) coupling constants confirm their structural integrity in solution. However, contrary to 2, complex 3 slowly disintegrates in solution to give elemental lead 6OtBu and the hexaheteroarylditin [Sn(2-py )3]2 (4). Keywords: tin; lead; catenation; pyridyl ligands 1. Introduction The synthesis and characterization of catenated heavier group 14 element compounds have attracted attention in recent years [1–5]. However, contrary to silicon and germanium, there are limitations for tin and lead associated with the significant decrease in element–element bond energy. Hence, homonuclear as well as heteronuclear molecules with E–E bonds become less stable when E represents tin and or lead. Moreover, within this class of compounds, discrete branched oligomers with more than one E–E bond are rare compared with their linear analogs [6–10].
    [Show full text]
  • Tetraethyllead Is a Deadly Toxic Chemical Substance Giving Rise to Severe Psychotic Manifestations. for Its Excellent Properties
    Industrial Health, 1986, 24, 139-150. Determination of Triethyllead, Diethyllead and Inorganic Lead in Urine by Atomic Absorption Spectrometry Fumio ARAI Department of Public Health St. Marianna University School of Medicine 2095 Sugao, Miyamae-ku, Kawasaki 213, Japan (Received March 10, 1986 and in revised form May 21, 1986) Abstract : A method was developed for the sequential extraction of tetraethyllead (Et4Pb), triethyllead (Et3Pb+), diethyllead (Et2Pb2+) and inorganic lead (Pb2+) from one urine sample with methyl isobutyl ketone and the subsequent sequential determination of the respective species of lead by flame and flameless atomic ab- sorption spectrometry. When 40 ml of a urine sample to which 2 ƒÊg of Pb of each of Et4Pb, Et3Pb+, Et2Pb2+ or Pb2+ had been experimentally added was assayed for the respective species of lead by flame atomic absorption spectrometry, ten repetitions of the assay gave a mean recovery rate of 98% for each of Et4Pb, Et3Pb+, and Et2Pb2+, and 99% for Pb2+, with a coefficient of variation of 2.0% for Et4Pb, 0.7% for Et3Pb+ and Pb2+, 2.6% for Et2Pb2+, and a detection limit of 4 ƒÊg of Pb/L for Et4Pb, 3 ƒÊg of Pb/L for Et3Pb+, and 5 ƒÊg of Pb/L for each of Et2Pb2+ and Pb2+. Examination of urine samples from a patient with tetraethyllead poisoning 22 days after exposure to the lead revealed that the total lead output was made up of about 51% Pb2+, about 43% Et2Pb2+, and about 6% Et3Pb+ but no Et4Pb. Ad- ministration of calcium ethylenediaminetetraacetic acid (Ca-EDTA) was followed by no increased urinary excretion of Et3Pb+ or Et2Pb2+.
    [Show full text]
  • Proceedings of the Fifth International Conference T Hlllf I Huf IIII F Lift Ifflf
    Proceedings of the Fifth International Conference t Hlllf I HUf IIII f lift ifflf Ilifl Hilt Illll UIII UN Illl on Energy and Environment, Cairo, Egypt, 1996 I Illllll Hill Mill Hill Illll Hill Illll IH11IIIH Illl Illl EG9700028 LEAD POLLUTION SOURCES AND IMPACTS by S.M.El-Haggar*, S.G.Saad*, M.A.E1-Kady** and S.K.Salch* ABSTRACT Despite the medical awareness of lead toxicity, and despite legislation designed to reduce environmental contamination, lead is one of the most widely used heavy metals. Significant human exposure occurs from automobile exhaust fumes, cigarette smoking, lead-based paints and plumbing systems Lead spread in the environment can take place in several ways, the most important of which is through the lead compounds released in automobile exhaust as a direct result of the addition of tetraethyl or tetraethyl lead to gasoline as octane boosting agents. Of special concern is the effect of lead pollution on children, which affects their behavioral and educational attributes considerably. The major channel through which lead is absorbed is through inhalation of Lead compounds in the atmosphere. Lead is a heavy metal characterized by its malleability, ductility and poor conduction of electricity. So, it has a wide range of applications ranging from battery manufacturing to glazing ceramics. It is rarely found free in nature but is present in several minerals and compounds The aim of this paper is to discuss natural and anthropogenic sources of lead together with its distribution and trends with emphasis on Egypt. The effects of lead pollution on human health, vegetation and welfare are also presented.
    [Show full text]
  • Volume 87 Inorganic and Organic Lead Compounds
    WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 87 Inorganic and Organic Lead Compounds Summary of Data Reported and Evaluation Inorganic and Organic Lead Compounds Posted December 2006 INORGANIC AND ORGANIC LEAD COMPOUNDS INORGANIC LEAD COMPOUNDS (Group 2A) ORGANIC LEAD COMPOUNDS (Group 3) For definition of Groups, see Preamble Evaluation. Vol.: 87 (2006) Lead, lead powder CAS No.: 7439-92-1 Lead acetate CAS No.: 301-04-2 Lead arsenate CAS No.: 3687-31-8 Lead carbonate CAS No.: 598-63-0 Lead chromate CAS No.: 7758-97-6 Lead naphthenate CAS No.: 61790-14-5 Lead nitrate CAS No.: 10099-74-8 Lead dioxide CAS No.: 1309-60-0 Lead monoxide CAS No.: 1317-36-8 Lead trioxide CAS No.: 1314-27-8 Lead phosphate CAS No.: 7446-27-7 Lead subacetate CAS No.: 1335-32-6 Lead sulfate CAS No.: 7446-14-2 Lead sulfide CAS No.: 1314-87-0 Lead tetraoxide CAS No.: 1314-41-6 Tetraethyl lead CAS No.: 78-00-2 Tetramethyl lead CAS No.: 75-74-1 5. Summary of Data Reported and Evaluation 5.1 Exposure data Lead is found at low concentrations in the earth’s crust predominantly as lead sulfide (galena), but the widespread occurrence of lead in the environment is largely the result of anthropogenic activity. The utility of lead and lead compounds was discovered in prehistoric times. Lead has been used in plumbing and tableware since the time of the Roman Empire. Lead usage increased progressively with industrialization and rose dramatically with the widespread use of the automobile in the twentieth century.
    [Show full text]
  • The Radiochemistry of Lead COMMITTEE on NUCLEAR SCIENCE
    National Academy of Sciences NationalI Research Council I NUCLEAR SCIENCE SERIES The Radiochemistry of Lead COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS,Chuirman ROBLEY D. EVANS, ViceChaiYrnutJ NationalBureauofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestlnghotieElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaborstory MaseachueettaInstituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMich@n CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L. PLATZMAN I..aboratcdrede HERBERT GOLDSTEIN Chimie+hysique NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation . LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED AtomicEnergyCommission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OffIceofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chairman HAROLD KIRBY Unlversl~ofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los AlsrnosSclentiflcLaboratory HanfordLaborstories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofC alifornta(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGU1 University CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]
  • Genesis and Evolution in the Chemistry of Organogermanium, Organotin and Organolead Compounds
    CHAPTER 1 Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds MIKHAIL G. VORONKOV and KLAVDIYA A. ABZAEVA A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia e-mail: [email protected] The task of science is to induce the future from the past Heinrich Herz I. INTRODUCTION ..................................... 2 II. ORGANOGERMANIUM COMPOUNDS ...................... 5 A. Re-flowering after Half a Century of Oblivion ................. 5 B. Organometallic Approaches to a CGe and GeGe Bond ......... 6 C. Nonorganometallic Approaches to a CGe Bond ............... 11 D. CGe Bond Cleavage. Organylhalogermanes ................. 13 E. Compounds having a GeH Bond ........................ 14 F. Organogermanium Chalcogen Derivatives .................... 17 G. Organogermanium Pnicogen Derivatives ..................... 26 H. Compounds having a Hypovalent and Hypervalent Germanium Atom .................................... 29 I. Biological Activity ................................... 32 III. ORGANOTIN COMPOUNDS ............................. 33 A. How it All Began ................................... 33 B. Direct Synthesis ..................................... 36 C. Organometallic Synthesis from Inorganic and Organic Tin Halides ... 39 D. Organotin Hydrides .................................. 41 E. Organylhalostannanes. The CSn Bond Cleavage .............. 43 The chemistry of organic germanium, tin and lead compounds —Vol.2 Edited by
    [Show full text]
  • Roc Background Document for Lead and Lead Compounds
    FINAL Report on Carcinogens Background Document for Lead and Lead Compounds May 8, 2003 Prepared for the: U.S. Department of Health and Human Services Public Health Service National Toxicology Program Research Triangle Park, NC 27709 Prepared by: Technology Planning and Management Corporation Canterbury Hall, Suite 310 4815 Emperor Blvd Durham, NC 27703 Contract Number N01-ES-85421 05/08/03 RoC Background Document for Lead and Lead Compounds FOREWORD The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public Health Service Act as amended. The RoC contains a list of all substances (i) that either are known to be human carcinogens or may reasonably be anticipated to be human carcinogens and (ii) to which a significant number of persons residing in the United States are exposed. The Secretary, Department of Health and Human Services, has delegated responsibility for preparation of the RoC to the National Toxicology Program, which prepares the Report with assistance from other Federal health and regulatory agencies and nongovernmental institutions. Nominations for listing in or delisting from the RoC are reviewed by a formal process that includes a multi-phased scientific peer review and several opportunities for public comment. The review groups evaluate each nomination according to specific RoC listing criteria. This Background Document was prepared to assist in the review of the nomination of lead and lead compounds. The scientific information in this document comes from publicly available peer-reviewed sources. Any interpretive conclusions, comments, or statistical calculations made by the authors of this document that are not contained in the original source are identified in brackets [ ].
    [Show full text]
  • Structure, Properties and Preparation of Perovskite-Type Compounds
    STRUCTURE, PROPERTIES AND PREPARATION OF PEROVSKITE-TYPE COMPOUNDS BY FRANCIS S. GALASSO United Aircraft Research Laboratories PERGAMON PRESS OXFORD . LONDON · EDINBURGH · NEW YORK TORONTO . SYDNEY . PARIS · BRAUNSCHWEIG Pergamon Press Ltd., Headington Hill Hall, Oxford 4 & 5 Fitzroy Square, London W.l Pergamon Press (Scotland) Ltd., 2 «& 3 Teviot Place, Edinburgh 1 Pergamon Press Inc., Maxwell House, Fair view Park, Elmsford New York 10523 Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1 Pergamon Press (Aust^) Pty. Ltd., 19a Boundary Street, Rushcutters Bay, N.S.W. 2011, AustraUa Pergamon Press S.A.R.L., 24 rue des Écoles, Paris 5® Vieweg&Sohn GmhH, Burgplatz 1, Braunschweig Copyright © 1969 Pergamon Press Inc. First edition 1969 Library of Congress Catalog Card No. 68-21881 PBINTBD IN HUNQABY 08 012744 4 PREFACE SINCE 1945, when the ferroelectric properties of barium tita­ nate were reported by von Hippel in the United States and independently by workers in other countries, ABO3 com­ pounds with the perovskite structure have been studied extensively. These studies have resulted in the discovery of many new ferroelectric and piezoelectric materials. Most of the Literature written on perovskite-type compounds has been concentrated on these properties. In addition, a number of solid-state chemists devoted many years to producing new ternary perovskite compounds of all kinds and studying their structures. By 1955 it appeared that most of the possible combinations of large A cations and smaller  ions needed to form perovskite-type compounds had been tried. At that time, as part of a thesis problem at the University of Connecticut, I found that new perovskite- type compounds could be prepared by introducing more than one element in the  position of the perovskite structure.
    [Show full text]
  • Lead: Properties, History, and Applications Mikhail Boldyrev¹*, Et Al
    WikiJournal of Science, 2018, 1(2):7 doi: 10.15347/wjs/2018.007 Encyclopedic Review Article Lead: properties, history, and applications Mikhail Boldyrev¹*, et al. Abstract Lead is a chemical element with the atomic number 82 and the symbol Pb (from the Latin plumbum). It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and has a relatively low melting point. When freshly cut, lead is silvery with a hint of blue; it tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and concludes three major decay chains of heavier elements. Lead is a relatively unreactive post-transition metal. Its weak metallic character is illustrated by its amphoteric nature; lead and its oxides react with acids and bases, and it tends to form covalent bonds. Compounds of lead are usually found in the +2 oxidation state rather than the +4 state common with lighter members of the carbon group. Exceptions are mostly limited to organolead compounds. Like the lighter members of the group, lead tends to bond with itself; it can form chains, rings and polyhedral structures. Lead is easily extracted from its ores; prehistoric people in Western Asia knew of it. Galena, a principal ore of lead, often bears silver, interest in which helped initiate widespread extraction and use of lead in ancient Rome. Lead production declined after the fall of Rome and did not reach comparable levels until the Industrial Revolution. In 2014, annual global production of lead was about ten million tonnes, over half of which was from recycling.
    [Show full text]
  • Pharos Project : Materials : LEAD COMPOUNDS Accessed November 3, 2017
    Pharos Project : Materials : LEAD COMPOUNDS Accessed November 3, 2017 Building Chemicals and Certifications CompAIR Dashboard Logout Dashboard / Chemicals and Materials / LEAD COMPOUNDS Products Materials LEAD COMPOUNDS General Information Hazards Compound Group Members Compound Groups Process Chemistry Research GreenScreen C2C Compound Group Members (567): [69011-06-9] (1,2-BENZENEDICARBOXYLATO(2-))DIOXOTRILEAD [22441-40-3] (2,3,4,5,6-pentachlorophenyl)sulfanyl-triphenylplumbane * [63619-76-1] (2-fluoro-5-nitrosophenoxy)-triphenylplumbane * [500317-00-0] (3-chlorophenyl)-trimethylplumbane * [1441-24-3] (4-chlorophenyl)sulfanyl-triphenylplumbane * [2177-16-4] (4-ethenylphenyl)-triphenylplumbane * [38186-05-9] (4-fluorophenyl)sulfanyl-triphenylplumbane * [2034-14-2] (4-nitrophenyl)sulfanyl-triphenylplumbane * [512-26-5] 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, lead(2++) salt (2:3) [6838-85-3] 1,2-Benzenedicarboxylic acid, lead(2++) salt (1:1) [37288-57-6] 1,3,2-[nitrooxy(diphenyl)plumbyl]-4,5-dicarbonitrile, 2,2-dimethyl- [62560-44-5] 1,3,2-Benzodithiaplumbole, 2,2,5-trimethyl- * [62703-65-5] 1,3,2-Dithiaplumbolane, 2,2-dimethyl- * [62560-43-4] 1,3,2-Dithiaplumbole-4,5-dicarbonitrile, 2,2-dimethyl- * [12275-07-9] 1,3,5,7,9-Pentaoxa-252, 452,652,852-tetraplumbacyclotridec-11 -ene-10,13-dione, (Z)- [15245-44-0] 1,3-BENZENEDIOL, 2,4,6-TRINITRO-, LEAD SALT [73070-87-8] 1-Cyclohexylamino-3-(naphthyloxy)-2-propanol * [63027-34-9] 1-O-[(2S,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2- yl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]
    [Show full text]
  • BY 0.K.5I.E. ATTORNEYS 3,671,187 United States Patent Office Patented June 20, 1972
    June 20, 1972 E. A. CUEVAS 3,671,187 REMOVAL OF DISSOLVED LEAD FROM ALKALI METAL CHLORIDE CONTAINING SOLUTIONS Filed July 13, 1970 INVENTOR PARA/M. A. Cue VAS BY 0.k.5i.e. ATTORNEYS 3,671,187 United States Patent Office Patented June 20, 1972 1. 2 be prepared only by virtually removing the lead ions from 3,671,187 solution before crystallizing the lithium chloride. REMOVAL OF DISSOLVED LEAD FROM ALKALI METAL CHLORIDE CONTAININGSOLUTIONS THE PRESENT INVENTION Ephraim A. Cuevas, Corpus Christi,Tex., assignor to In accordance with the present invention a method of PPG Industries, Inc., Pittsburgh, Pa. 5 precipitating lead, dissolved inorganic lead in particular, Filed July 13, 1970, Ser. No. 54,406 from aqueous solutions is provided. The invention in nt. C. C01d3/04, 11/02 volves contacting alkali metal chloride solutions contain U.S. C. 23-89 6 Claims ing contaminating quantities of dissolved lead compounds O with alkali metal sulfide to thereby convert the lead com ABSTRACT OF THE DISCLOSURE pounds contained in the solution to lead sulfide. In par A process is described for the removal of lead from ticular the invention provides an extremely efficient alkali metal chloride containing solutions by precipi method of removing dissolved lead from lithium chloride tation of the lead ions as a lead sulfide. The method in containing solutions having dissolved lead therein by the volves utilizing an alkali metal sulfide as the precipitat 5 addition thereto of lithium sulfide. The quantity of al ing agent in lieu of hydrogen sulfide. The use of alkali kali metal sulfide utilized is usually slightly in excess of metal sulfide as the precipitating agent precipitates the that stoichiometric quantity necessary to precipitate all lead in large particle sizes rendering filtration easy.
    [Show full text]