Checklist of Vascular Plants from Batu Caves, Selangor, Malaysia

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of Vascular Plants from Batu Caves, Selangor, Malaysia Check List 10(6): 1420–1429, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.biotaxa.org/cl) Journal of species lists and distribution PECIES S Malaysia OF Checklist of vascular plants from Batu Caves, Selangor, ISTS Ruth Kiew L The Herbarium, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia [email protected] E-mail: Abstract: are Peninsular Malaysian endemics and 80 species (30%) are calciphiles of which 56 (21%) are obligate calciphiles and 26 The vascular plant flora of Batu Caves, a tower karst limestone formation, includes 269 species; 51 species (19%) species are obligate calciphiles endemic to Peninsular Malaysia. Four taxa are endemic to Batu Caves itself. That Batu Caves harbours a sizeable fraction (21.4%) of Peninsular Malaysia’s limestone flora underlines the need for detailed checklists of each and every limestone hill to enable adequate planning of conservation programmes to support biodiversity. Because species.botanical Although collecting designated began in the as 1890s,a Public Batu Recreation Caves is importantArea, its protection as the type status locality needs of 24 to plant be enforced species. andLand-use the boundaries pressures clearlyhave over marked. time eliminated the surrounding native vegetation, leaving the flora vulnerable to aggressive weedy and alien 10.15560/10.6.1420 DOI: Introduction common species, for example, species of Dipterocarpaceae, o o the dominant tree family in Malaysian rain forest, are is a limestone tower karst formation 11 km northeast of hardly represented on limestone, and in calciphile species the Batucapital Caves Kuala (3 Lumpur.14′ N, 101 It 41′rises E), to or 329 Gua m Batu tall and(in Malay), covers that are restricted to growing on limestone substrate, and about 2.59 km2. This massif with its vertical cliffs and craggy (c) in its high level of endemism—21.4% of species (Chin 1977). Saw et al. (2009) considered that the limestone most famous for the Sri Subramaniaswamy Temple that at thesummit Thaipusam is a dominant festival is landscape visited by hundredsfeature. Batu of thousands Caves is Peninsular Malaysia because of its lack of legal protection of devotees who climb the 277 steps up to the Temple Cave. andflora threatsis one offrom the quarryingmost endangered and disturbance vegetation resultingtypes in from land use changes. important for its cave ecosystems and associated fauna (MoseleyBesides its et cultural al importance as a religious site, it is also Caves when in 1891 he discovered three new species (AdenoncosH.J. Kelsall parviflora was the, Paraboeafirst collector paniculata of plants and from P. verticil­ Batu . 2012) and for its flora (Wycherley 1972). lata). Ridley has made the most comprehensive collections collectedBatu Caves guano has from been the exploited caves (Yussof commercially 1997). Quarrying for a very when he visited in June 1889, December 1896, July and forlong limestone time. At first had alreadyby Chinese started farmers by 1889 who when since H.N. the Ridley1860s August 1897, August 1908 and December 1920 and described many new species (Wycherley 1972). Then it Caves was designated as a Public Recreational Area in 1930,first investigated quarry licenses the caves, continued flora and to befauna. leased Although in spite Batu of but since this time quarrying has left sheer rock faces wherewas apparently previously easier there to accesswere accessiblethe summit gullies of Batu leading Caves, Caves Protection Association and the Malayan Nature to the summit. Now the collector is faced by precipitous Society.lobbying Only for thewhen total quarrying protection caused of the rock massif falls byin the DarkBatu was still surrounded by pristine lowland forest, although coffeerock faces. plantations Ridley collectedand later at arubber time whentree Batuplantations Caves industryCave adjacent and temple to the Temple buildings Cave with did very quarrying little if finally any of stop the originalin 1981. vegetationBatu Caves thatis now surrounded surrounded the by foot residential, of the tower light extinctionwere expanding of a plant towards species, Batu EchinodorusCaves. This forestridleyi has Steenis long Area is lacking and its boundaries are not clearly marked (Alismataceae),since been completely in Malaysia. cleared To causingdate, due the to first its proximityrecorded sokarst. that Enforcement intrusions go of unchecked. its status as a Public Recreational to Kuala Lumpur, more than 35 botanists have sporadically due to (a) its species richness—14% of Peninsular Malaysia’sThe limestone species flora occur in Malaysiaon the 0.04% is botanically of land important area that probablycollected thespecimens best collected from Batu tower Caves karst and hills their in Peninsular research limestone covers (Chin 1977), the result of the many Malaysia.continues Wycherleyto add new (1972) records. provided In fact, a partial Batu list Caves of 199 is different microhabitats stacked on a single limestone vascular plant species collected by Ridley. hill (Kiew 1991); (b) it is distinctly different in species The aim of this updated checklist is to consolidate composition compared with other forest types both in its what is known of the flora of Batu Caves both from 1420the Kiew | Plants from Batu Caves, Malaysia many diverse literature sources as well as from herbarium Epithema parvibracteatum, Pararuellia sumatrensis var. specimens. This is necessary as a basis for drawing up ridleyi, Pseuderanthemum lilacinum and Rhaphidophora conservation management programmes as well as for burkillana tracking the decline or loss of species and the invasion of ● 3 local endemic species that are obligate calciphiles and aggressive alien or weedy species. Materials and Methods are only known fromMaxburretia Batu Caves rupicola and the, nearbyOphiorrhiza Bukit The checklist is based on a search of the literature fruticosaTakun and and Bukit Paraboea Anak Takun paniculata that lie about 10 km north (Henderson 1939, Wycherley 1972, and Chin 1977, ● vofery Batu rare speciesCaves— found on one or two other limestone 1979, 1983a, b are major works, but there are also many hills, e.g., Impatiens ridleyi that house major collections of specimens collected is known only from Batu specialist articles on specific species) and herbaria OtherCaves andrare fromspecies Gunung that are Senyum, not obligate Pahang. calciphiles but are of conservation importance are Herbarium,from Batu ForestCaves, Researchnamely TheInstitute Singapore Malaysia, Herbarium, Kepong, ● Singapore Botanic Gardens, Singapore (SING); the Kepong Begonia phoeniogramma, Beaumontia4 narrowly endemic murdochii species, Piper confined argyrites to andan area Psychotria within Selangor (KEP); and the University of Malaya Herbarium, lanceolaria15 km from Batu Caves— andKuala Herbarium Lumpur (KLU). Management The collections System), at KEP which and SING greatly are ● 6 widespread species that in Peninsular Malaysia partially databased using BRAHMS (Botanical Research Piper mucronata, was done manually from accession books. In the case of Pomatocalpa andamanica, Sageretia thea, Sapium facilitated extraction of data. Extraction of data from KLU insigne,are known Sauropus only from macranthus Batu Caves—, and Trigonostemon checked and the name corrected. Only species recorded villosus. dubious identifications, the herbarium specimen was are included. Thus forest species that Ridley collected are locality for 24 taxa, even though some have since been notfrom included the tower in karstthe checklist, or limestone-derived nor are weeds soil that at thegrow base on reducedBatu toCaves synonymy. is also important because it is the type Discussion wastelandThe checklist around Batuincludes Caves, family nor exoticand aliensspecies that names, have Table 1 illustrates the fact that while the limestone citesinvaded specimens, disturbed provides areas at thethe foot endemic of Batu status, Caves. whether phytogeographic zone that straddles the border of dueflora in is part species to local rich endemism (1,216 species), of the obligateonly a fraction calciphiles. are endemic in Peninsular Malaysia (E) or endemic in the found on a single hill (21.4% of the species on Batu Caves) status as a calciphile, i.e. whether it is an obligate calciphile restrictedPeninsular to Malaysia growing andon limestonePeninsular (R)Thailand or whether (ET); itand is This is illustrated by the Gesneriaceae. For the Peninsular a characteristic species most usually limestone flora as a whole, Gesneriaceae is ranked fourth limestonewith 39 species substrates but and on areBatu widely Caves distributed; it is represented the rest Results found on limestone (U). areby justobligate seven calciphiles, species. Of twothese, are only local two endemics, grow on whilenon- The checklist (Appendix 1) includes 5 lycophyte the remaining three are more widespread but none are species, 27 ferns, 2 gymnosperms, 182 dicotyledons and found on every hill. In fact it is the exception for limestone 53 monocotyledons, in total 269 species. This represents species to be encountered on every or even most hills. 22% of 1,216 species recorded growing on limestone in This is especially true among the obligate calciphiles. For Peninsular Malaysia (Chin 1977). The percentages of instance, eight species of balsam are obligate calciphiles endemic and obligate and characteristic calciphiles (Table but only Impatiens ridleyi The ten most common families are Orchidaceae grows on Batu Caves and one (231) are species),
Recommended publications
  • Mallotus Glomerulatus (Euphorbiaceae Sensu Stricto), a New Species: Description, Pollen and Phylogenetic Position
    THAI FOR. BULL. (BOT.) 32: 173–178. 2004. Mallotus glomerulatus (Euphorbiaceae sensu stricto), a new species: description, pollen and phylogenetic position PETER C. VAN WELZEN*, RAYMOND W.J.M. VAN DER HAM*& KRISTO K.M. KULJU* INTRODUCTION A field trip by several staff members of the Forest Herbarium in Bangkok (BKF) to Phu Langka National Park in Nakhon Phanom Province resulted in the discovery of an unusual undershrub up to 1.5 m high and with the typical ‘explosively’ dehiscent fruits of Euphorbiaceae. The two plants showed a unique combination of characters: opposite leaves, stellate hairs, two apical, axillary ‘fruiting columns’ (no real inflorescences), smooth carpels, and a single ovule per locule (typical for the Euphorbiaceae s.s.: subfamilies Acalyphoideae, Crotonoideae, and Euphorbioideae). A year later, other staff members of BKF collected the staminate flowers, which were present in shortly peduncled glomerules. This inflorescence type is quite common in subfamily Phyllanthoideae (now often referred to at the family level as Phyllanthaceae), but all representatives of this (sub)family have two ovules per locule. Thus, the presence of glomerules makes the set of characters unique and we consider the unidentified plant to be a new species. The new species resembles the genus Mallotus in having extrafloral nectaries in the form of round or oval glands on the upper leaf surface, stellate hairs and short, terminal pistillate inflorescences reduced to a single flower. In Thailand the latter character is present in M. calocarpus Airy Shaw. The new species also resembles M. calocarpus in the smooth, unarmed fruits, the penninerved (not triplinerved) leaf blade, short staminate inflorescences (though no glomerules in M.
    [Show full text]
  • Plant List 2016
    Established 1990 PLANT LIST 2016 European mail order website www.crug-farm.co.uk CRÛG FARM PLANTS • 2016 Welcome to our 2016 list hope we can tempt you with plenty of our old favourites as well as some exciting new plants that we have searched out on our travels. There has been little chance of us standing still with what has been going on here in 2015. The year started well with the birth of our sixth grandchild. January into February had Sue and I in Colombia for our first winter/early spring expedition. It was exhilarating, we were able to travel much further afield than we had previously, as the mountainous areas become safer to travel. We are looking forward to working ever closer with the Colombian institutes, such as the Medellin Botanic Gardens whom we met up with. Consequently we were absent from the RHS February Show at Vincent Square. We are finding it increasingly expensive participating in the London shows, while re-branding the RHS February Show as a potato event hardly encourages our type of customer base to visit. A long standing speaking engagement and a last minute change of date, meant that we missed going to Fota near Cork last spring, no such problem this coming year. We were pleasantly surprised at the level of interest at the Trgrehan Garden Rare Plant Fair, in Cornwall. Hopefully this will become an annual event for us, as well as the Cornwall Garden Society show in April. Poor Sue went through the wars having to have a rush hysterectomy in June, after some timely results revealed future risks.
    [Show full text]
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • 1 History of Vitaceae Inferred from Morphology-Based
    HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14
    [Show full text]
  • Plant Boea Hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis Thaliana
    Identification of a Retroelement from the Resurrection Plant Boea hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis thaliana Yan Zhao1., Tao Xu1., Chun-Ying Shen1, Guang-Hui Xu1, Shi-Xuan Chen1, Li-Zhen Song1,2, Mei-Jing Li1, Li-Li Wang1, Yan Zhu1, Wei-Tao Lv1, Zhi-Zhong Gong3, Chun-Ming Liu2, Xin Deng1* 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 2 Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 3 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China Abstract Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses.
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]
  • Gesneriaceae
    Xu et al. Bot Stud (2017) 58:56 DOI 10.1186/s40529-017-0207-5 ORIGINAL ARTICLE Open Access Three new species of Paraboea (Gesneriaceae) from limestone karsts of China based on morphological and molecular evidence Wei‑Bin Xu1, Jing Guo2, Bo Pan1, Meng‑Qi Han3, Yan Liu1* and Kuo‑Fang Chung4* Abstract Background: The limestone karsts of Southeast Asia and South China are a major biodiversity hotspot of global terrestrial biomes. With more than 130 described species, Paraboea has become one of the most characteristic plant groups in the Southeast Asian limestone fora. During the course of extensive feld work on the limestone formations of southern and southwestern China, three unknown species of Paraboea were collected. Results: Molecular phylogenetic analyses based on nuclear ITS and chloroplast trnL-F sequences strongly con‑ frm the placements of the three new species in Paraboea sensu Puglisi et al. (Taxon 65:277–292. https://doi. org/10.12705/652.5, 2016). Moreover, these three novelties can be distinguished from known Paraboea species with distinct morphological characters, further supporting their recognition as new species. Conclusions: With the support of detailed morphological studies and molecular phylogenetic analyses, Paraboea dushanensis, P. sinovietnamica and P. xiangguiensis are recognized as three species new to science. Keywords: Limestone fora, Loxocarpinae, Paraboea dushanensis, Paraboea sinovietnamica, Paraboea xiangguiensis, Sino-Vietnamese limestone karsts (SVLK) Background Malesia as far east as Sulawesi (Middleton et al. 2010). As currently circumscribed, the Asian gesneriad genus Since the last major revision by Xu et al. (2008) in which Paraboea (C.B.Clarke) Ridl. comprises ca. 130 species of 89 species and 5 varieties were recognized, Paraboea has rosulate or caulescent herbs characterized by the abaxi- been expanded to include the ca.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron Spp
    Berita Biologi, Volume 6, Nomor 3, Desember 2002 PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron spp. (Euphorbiaceae) in Malesia] Tutie Djarwaningsih Puslit Biologi - LIPI Jl. IT. H. JuandaNo. 18 Bogor 16122 ABSTRACT The analysis of geographical distribution of Pimelodendron in Malesia based especially on data from the revision study of Pimelodendron (Euphorbiaceae) in Malesia. An analysis of distribution indicated that the highest number of species can be recognized, i.e. in Sumatera four species P. griffithianum, P. macrocarpum. P. zoanthogyne, and P. yatesianum; Peninsular Malaysia and Borneo have three species P. griffithianum, P. macrocarpum, and P. zoanthogyne; while Celebes, Moluccas, Lesser Sunda Islands, New Guinea, Solomon Islands and tropical Australia have one species (P. amboinicum). The geographical distribution indicated that the Malesian region can be considered as the centre of distribution of Pimelodendron. Kata kunci/ Key words: Pimelodendron, P. amboinicum, P. griffithianum, P. macrocarpum, P. zoanthogyne, P. yatesianum, persebaran geografi/ geographial distribution, aspek ekologi/ ecological aspects, Malesia. PENDAHULUAN sendiri dan kemampuan dari masing-masing jenis Fitogeografi atau geografi tumbuhan merupa- dalam berkompetisi. Dengan demikian informasi ini kan suatu bidang ilmu yang mencakup persebaran sangat penting dan diperlu-kan oleh lembaga-lembaga geografi, habitat, sejarah serta faktor-faktor biologi yang berkaitan dengan program penghijauan.
    [Show full text]
  • Notes on the Genus Argostemma (Rubiaceae) from Lao PDR
    THAI FOREST BULL., BOT. 47(1): 29–33. 2019. DOI https://doi.org/10.20531/tfb.2019.47.1.06 Notes on the genus Argostemma (Rubiaceae) from Lao PDR SOULIVANH LANORSAVANH1 & PRANOM CHANTARANOTHAI2,* ABSTRACT Three species of Argostemma (Rubiaceae) are newly recorded for Lao PDR: A. ebracteolatum, A. pictum and A. verticillatum. Descriptions and photographs of the new records are provided, and a key to Argostemma in Lao PDR is presented. KEYWORDS: Argostemma, key, new record, Lao PDR, taxonomy Accepted for publication 5 February 2019. Published online: 18 March 2019 INTRODUCTION During botanical surveys of the first author in northern Lao PDR, Luangphrabang Province in July Argostemma Wall., a genus of Rubiaceae of 2014 with S. Souvanhnakhoummane, and Luangnamtha ca 100 species in the Old World tropics, is largely Province in August 2015 with C. Phongoudome and confined to the South-East Asia (Robbrecht, 1988) in the southern Attapeu Province in June 2014 with but with two species in tropical West Africa (Sridith V. Lamxay, many unnamed specimens were collected & Puff, 2000; Mabberley, 2008). For Lao PDR, and identified and include new records for Lao PDR, Newman et al. (2007a) and Newman et al. (2007b) viz Argostemma ebracteolatum E.T.Geddes, A. pictum first recorded a species of the genus,A. laeve Benn., Wall. and A. verticillatum Wall. In 1999, Sridith from Khammouan province. Lanorsavanh & indicated the type specimens of A. ebracteolatum, Chantaranothai (2013, 2016) recorded three species A. pictum, A. pubescens, A. repens and A. rotundifo- A. laotica Lanors. & Chantar., A. neurocalyx Miq. lium were holotypes, but this is an error to be corrected and A.
    [Show full text]
  • Progress on Southeast Asia's Flora Projects
    Gardens' Bulletin Singapore 71 (2): 267–319. 2019 267 doi: 10.26492/gbs71(2).2019-02 Progress on Southeast Asia’s Flora projects D.J. Middleton1, K. Armstrong2, Y. Baba3, H. Balslev4, K. Chayamarit5, R.C.K. Chung6, B.J. Conn7, E.S. Fernando8, K. Fujikawa9, R. Kiew6, H.T. Luu10, Mu Mu Aung11, M.F. Newman12, S. Tagane13, N. Tanaka14, D.C. Thomas1, T.B. Tran15, T.M.A. Utteridge16, P.C. van Welzen17, D. Widyatmoko18, T. Yahara14 & K.M. Wong1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA 3Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand 4Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University Building 1540, Ny Munkegade 114, Aarhus C DK 8000, Denmark 5The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand 6Herbarium, Forest Research Institute Malaysia, Kepong, Selangor 52109, Malaysia 7School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 8Department of Forest Biological Sciences, College of Forestry & Natural Resources, University of the Philippines - Los Baños, College, 4031 Laguna, Philippines 9Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 7818125, Japan 10Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam 11Forest
    [Show full text]
  • Tesis-0008 Gestión De La Prod. De Flores Y Frut...Pdf
    1 ÍNDICE DE CUADROS ______________________________ 3 RESUMEN EJECUTIVO _____________________________ 4 CAPÍTULO I. ______________________________________ 6 EL PROBLEMA __________________________________________ 6 1.1 Planteamiento del Problema _________________________________ 6 1.2 Análisis Crítico del Problema. ________________________________ 6 1.3 Justificación. ______________________________________________ 7 1.4 Objetivos. _________________________________________________ 8 1.4.1 General _______________________________________________________________________________ 8 1.4.2 Específico ___________________________________________________________________________ 8 CAPITULO II ______________________________________ 9 MARCO TEÓRICO E HIPÓTESIS ____________________________ 9 2.1 Antecedentes Investigativos. _________________________________ 9 2.2 MARCO CONCEPTUAL _______________________________________ 10 2.2.1 Fundamentación filosófica.__________________________________________________________ 10 2.2.2 Fundamentación legal. __________________________________________________________ 10 2.3 Hipótesis. ________________________________________________ 11 2.4 Variables de la Hipótesis. ___________________________________ 11 2.5 OPERACIONALIZACIÓN DE VARIABLES. ______________________ 12 2.6 Categorías fundamentales. ____________________________________ 13 2.6.1 Sustratos _______________________________________________________________________________ 15 2.6.2 Otros sustratos ________________________________________________________________________
    [Show full text]