An Implementation of Telos in Common Lisp
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Metaobject Protocols: Why We Want Them and What Else They Can Do
Metaobject protocols: Why we want them and what else they can do Gregor Kiczales, J.Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G. Bobrow Published in A. Paepcke, editor, Object-Oriented Programming: The CLOS Perspective, pages 101 ¾ 118. The MIT Press, Cambridge, MA, 1993. © Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Metaob ject Proto cols WhyWeWant Them and What Else They Can Do App ears in Object OrientedProgramming: The CLOS Perspective c Copyright 1993 MIT Press Gregor Kiczales, J. Michael Ashley, Luis Ro driguez, Amin Vahdat and Daniel G. Bobrow Original ly conceivedasaneat idea that could help solve problems in the design and implementation of CLOS, the metaobject protocol framework now appears to have applicability to a wide range of problems that come up in high-level languages. This chapter sketches this wider potential, by drawing an analogy to ordinary language design, by presenting some early design principles, and by presenting an overview of three new metaobject protcols we have designed that, respectively, control the semantics of Scheme, the compilation of Scheme, and the static paral lelization of Scheme programs. Intro duction The CLOS Metaob ject Proto col MOP was motivated by the tension b etween, what at the time, seemed liketwo con icting desires. The rst was to have a relatively small but p owerful language for doing ob ject-oriented programming in Lisp. The second was to satisfy what seemed to b e a large numb er of user demands, including: compatibility with previous languages, p erformance compara- ble to or b etter than previous implementations and extensibility to allow further exp erimentation with ob ject-oriented concepts see Chapter 2 for examples of directions in which ob ject-oriented techniques might b e pushed. -
A Polymorphic Type System for Extensible Records and Variants
A Polymorphic Typ e System for Extensible Records and Variants Benedict R. Gaster and Mark P. Jones Technical rep ort NOTTCS-TR-96-3, November 1996 Department of Computer Science, University of Nottingham, University Park, Nottingham NG7 2RD, England. fbrg,[email protected] Abstract b oard, and another indicating a mouse click at a par- ticular p oint on the screen: Records and variants provide exible ways to construct Event = Char + Point : datatyp es, but the restrictions imp osed by practical typ e systems can prevent them from b eing used in ex- These de nitions are adequate, but they are not par- ible ways. These limitations are often the result of con- ticularly easy to work with in practice. For example, it cerns ab out eciency or typ e inference, or of the di- is easy to confuse datatyp e comp onents when they are culty in providing accurate typ es for key op erations. accessed by their p osition within a pro duct or sum, and This pap er describ es a new typ e system that reme- programs written in this way can b e hard to maintain. dies these problems: it supp orts extensible records and To avoid these problems, many programming lan- variants, with a full complement of p olymorphic op era- guages allow the comp onents of pro ducts, and the al- tions on each; and it o ers an e ective type inference al- ternatives of sums, to b e identi ed using names drawn gorithm and a simple compilation metho d. -
Common Lisp Object System Specification 3. Metaobject Protocol
Common Lisp Object System Specification 3. Metaobject Protocol This document was written by Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and David A. Moon. Contributors to this document include Patrick Dussud, Kenneth Kahn, Jim Kempf, Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L White. CONTENTS CONTENTS ................................................... ............ 3–2 Status of Document ................................................... ........... 3–5 Terminology ................................................... ................ 3–6 Introduction ................................................... ................ 3–7 Class Organization in the CLOS Kernel ............................................... 3–9 The Classes in the CLOS Kernel ................................................... 3–10 standard-class ................................................... ............ 3–11 forward-referenced-class ................................................... ..... 3–11 built-in-class ................................................... ............. 3–11 structure-class ................................................... ............ 3–12 funcallable-standard-class ................................................... .... 3–12 standard-slot-description ................................................... .... 3–12 standard-class-slot-description ................................................... 3–12 standard-method ................................................... .......... 3–12 -
The Pros of Cons: Programming with Pairs and Lists
The Pros of cons: Programming with Pairs and Lists CS251 Programming Languages Spring 2016, Lyn Turbak Department of Computer Science Wellesley College Racket Values • booleans: #t, #f • numbers: – integers: 42, 0, -273 – raonals: 2/3, -251/17 – floang point (including scien3fic notaon): 98.6, -6.125, 3.141592653589793, 6.023e23 – complex: 3+2i, 17-23i, 4.5-1.4142i Note: some are exact, the rest are inexact. See docs. • strings: "cat", "CS251", "αβγ", "To be\nor not\nto be" • characters: #\a, #\A, #\5, #\space, #\tab, #\newline • anonymous func3ons: (lambda (a b) (+ a (* b c))) What about compound data? 5-2 cons Glues Two Values into a Pair A new kind of value: • pairs (a.k.a. cons cells): (cons v1 v2) e.g., In Racket, - (cons 17 42) type Command-\ to get λ char - (cons 3.14159 #t) - (cons "CS251" (λ (x) (* 2 x)) - (cons (cons 3 4.5) (cons #f #\a)) Can glue any number of values into a cons tree! 5-3 Box-and-pointer diagrams for cons trees (cons v1 v2) v1 v2 Conven3on: put “small” values (numbers, booleans, characters) inside a box, and draw a pointers to “large” values (func3ons, strings, pairs) outside a box. (cons (cons 17 (cons "cat" #\a)) (cons #t (λ (x) (* 2 x)))) 17 #t #\a (λ (x) (* 2 x)) "cat" 5-4 Evaluaon Rules for cons Big step seman3cs: e1 ↓ v1 e2 ↓ v2 (cons) (cons e1 e2) ↓ (cons v1 v2) Small-step seman3cs: (cons e1 e2) ⇒* (cons v1 e2); first evaluate e1 to v1 step-by-step ⇒* (cons v1 v2); then evaluate e2 to v2 step-by-step 5-5 cons evaluaon example (cons (cons (+ 1 2) (< 3 4)) (cons (> 5 6) (* 7 8))) ⇒ (cons (cons 3 (< 3 4)) -
The Use of UML for Software Requirements Expression and Management
The Use of UML for Software Requirements Expression and Management Alex Murray Ken Clark Jet Propulsion Laboratory Jet Propulsion Laboratory California Institute of Technology California Institute of Technology Pasadena, CA 91109 Pasadena, CA 91109 818-354-0111 818-393-6258 [email protected] [email protected] Abstract— It is common practice to write English-language 1. INTRODUCTION ”shall” statements to embody detailed software requirements in aerospace software applications. This paper explores the This work is being performed as part of the engineering of use of the UML language as a replacement for the English the flight software for the Laser Ranging Interferometer (LRI) language for this purpose. Among the advantages offered by the of the Gravity Recovery and Climate Experiment (GRACE) Unified Modeling Language (UML) is a high degree of clarity Follow-On (F-O) mission. However, rather than use the real and precision in the expression of domain concepts as well as project’s model to illustrate our approach in this paper, we architecture and design. Can this quality of UML be exploited have developed a separate, ”toy” model for use here, because for the definition of software requirements? this makes it easier to avoid getting bogged down in project details, and instead to focus on the technical approach to While expressing logical behavior, interface characteristics, requirements expression and management that is the subject timeliness constraints, and other constraints on software using UML is commonly done and relatively straight-forward, achiev- of this paper. ing the additional aspects of the expression and management of software requirements that stakeholders expect, especially There is one exception to this choice: we will describe our traceability, is far less so. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Balancing the Eulisp Metaobject Protocol
Balancing the EuLisp Metaob ject Proto col x y x z Harry Bretthauer and Harley Davis and Jurgen Kopp and Keith Playford x German National Research Center for Computer Science GMD PO Box W Sankt Augustin FRG y ILOG SA avenue Gallieni Gentilly France z Department of Mathematical Sciences University of Bath Bath BA AY UK techniques which can b e used to solve them Op en questions Abstract and unsolved problems are presented to direct future work The challenge for the metaob ject proto col designer is to bal One of the main problems is to nd a b etter balance ance the conicting demands of eciency simplicity and b etween expressiveness and ease of use on the one hand extensibili ty It is imp ossible to know all desired extensions and eciency on the other in advance some of them will require greater functionality Since the authors of this pap er and other memb ers while others require greater eciency In addition the pro of the EuLisp committee have b een engaged in the design to col itself must b e suciently simple that it can b e fully and implementation of an ob ject system with a metaob ject do cumented and understo o d by those who need to use it proto col for EuLisp Padget and Nuyens intended This pap er presents a metaob ject proto col for EuLisp to correct some of the p erceived aws in CLOS to sim which provides expressiveness by a multileveled proto col plify it without losing any of its p ower and to provide the and achieves eciency by static semantics for predened means to more easily implement it eciently The current metaob -
Generic Programming
Generic Programming July 21, 1998 A Dagstuhl Seminar on the topic of Generic Programming was held April 27– May 1, 1998, with forty seven participants from ten countries. During the meeting there were thirty seven lectures, a panel session, and several problem sessions. The outcomes of the meeting include • A collection of abstracts of the lectures, made publicly available via this booklet and a web site at http://www-ca.informatik.uni-tuebingen.de/dagstuhl/gpdag.html. • Plans for a proceedings volume of papers submitted after the seminar that present (possibly extended) discussions of the topics covered in the lectures, problem sessions, and the panel session. • A list of generic programming projects and open problems, which will be maintained publicly on the World Wide Web at http://www-ca.informatik.uni-tuebingen.de/people/musser/gp/pop/index.html http://www.cs.rpi.edu/˜musser/gp/pop/index.html. 1 Contents 1 Motivation 3 2 Standards Panel 4 3 Lectures 4 3.1 Foundations and Methodology Comparisons ........ 4 Fundamentals of Generic Programming.................. 4 Jim Dehnert and Alex Stepanov Automatic Program Specialization by Partial Evaluation........ 4 Robert Gl¨uck Evaluating Generic Programming in Practice............... 6 Mehdi Jazayeri Polytypic Programming........................... 6 Johan Jeuring Recasting Algorithms As Objects: AnAlternativetoIterators . 7 Murali Sitaraman Using Genericity to Improve OO Designs................. 8 Karsten Weihe Inheritance, Genericity, and Class Hierarchies.............. 8 Wolf Zimmermann 3.2 Programming Methodology ................... 9 Hierarchical Iterators and Algorithms................... 9 Matt Austern Generic Programming in C++: Matrix Case Study........... 9 Krzysztof Czarnecki Generative Programming: Beyond Generic Programming........ 10 Ulrich Eisenecker Generic Programming Using Adaptive and Aspect-Oriented Programming . -
Java for Scientific Computing, Pros and Cons
Journal of Universal Computer Science, vol. 4, no. 1 (1998), 11-15 submitted: 25/9/97, accepted: 1/11/97, appeared: 28/1/98 Springer Pub. Co. Java for Scienti c Computing, Pros and Cons Jurgen Wol v. Gudenb erg Institut fur Informatik, Universitat Wurzburg wol @informatik.uni-wuerzburg.de Abstract: In this article we brie y discuss the advantages and disadvantages of the language Java for scienti c computing. We concentrate on Java's typ e system, investi- gate its supp ort for hierarchical and generic programming and then discuss the features of its oating-p oint arithmetic. Having found the weak p oints of the language we pro- p ose workarounds using Java itself as long as p ossible. 1 Typ e System Java distinguishes b etween primitive and reference typ es. Whereas this distinc- tion seems to b e very natural and helpful { so the primitives which comprise all standard numerical data typ es have the usual value semantics and expression concept, and the reference semantics of the others allows to avoid p ointers at all{ it also causes some problems. For the reference typ es, i.e. arrays, classes and interfaces no op erators are available or may b e de ned and expressions can only b e built by metho d calls. Several variables may simultaneously denote the same ob ject. This is certainly strange in a numerical setting, but not to avoid, since classes have to b e used to intro duce higher data typ es. On the other hand, the simple hierarchy of classes with the ro ot Object clearly b elongs to the advantages of the language. -
Data Types and Variables
Color profile: Generic CMYK printer profile Composite Default screen Complete Reference / Visual Basic 2005: The Complete Reference / Petrusha / 226033-5 / Chapter 2 2 Data Types and Variables his chapter will begin by examining the intrinsic data types supported by Visual Basic and relating them to their corresponding types available in the .NET Framework’s Common TType System. It will then examine the ways in which variables are declared in Visual Basic and discuss variable scope, visibility, and lifetime. The chapter will conclude with a discussion of boxing and unboxing (that is, of converting between value types and reference types). Visual Basic Data Types At the center of any development or runtime environment, including Visual Basic and the .NET Common Language Runtime (CLR), is a type system. An individual type consists of the following two items: • A set of values. • A set of rules to convert every value not in the type into a value in the type. (For these rules, see Appendix F.) Of course, every value of another type cannot always be converted to a value of the type; one of the more common rules in this case is to throw an InvalidCastException, indicating that conversion is not possible. Scalar or primitive types are types that contain a single value. Visual Basic 2005 supports two basic kinds of scalar or primitive data types: structured data types and reference data types. All data types are inherited from either of two basic types in the .NET Framework Class Library. Reference types are derived from System.Object. Structured data types are derived from the System.ValueType class, which in turn is derived from the System.Object class. -
A Metaobject Protocol for Fault-Tolerant CORBA Applications
A Metaobject Protocol for Fault-Tolerant CORBA Applications Marc-Olivier Killijian*, Jean-Charles Fabre*, Juan-Carlos Ruiz-Garcia*, Shigeru Chiba** *LAAS-CNRS, 7 Avenue du Colonel Roche **Institute of Information Science and 31077 Toulouse cedex, France Electronics, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan Abstract The corner stone of a fault-tolerant reflective The use of metalevel architectures for the architecture is the MOP. We thus propose a special implementation of fault-tolerant systems is today very purpose MOP to address the problems of general-purpose appealing. Nevertheless, all such fault-tolerant systems ones. We show that compile-time reflection is a good have used a general-purpose metaobject protocol (MOP) approach for developing a specialized runtime MOP. or are based on restricted reflective features of some The definition and the implementation of an object-oriented language. According to our past appropriate runtime metaobject protocol for implementing experience, we define in this paper a suitable metaobject fault tolerance into CORBA applications is the main protocol, called FT-MOP for building fault-tolerant contribution of the work reported in this paper. This systems. We explain how to realize a specialized runtime MOP, called FT-MOP (Fault Tolerance - MetaObject MOP using compile-time reflection. This MOP is CORBA Protocol), is sufficiently general to be used for other aims compliant: it enables the execution and the state evolution (mobility, adaptability, migration, security). FT-MOP of CORBA objects to be controlled and enables the fault provides a mean to attach dynamically fault tolerance tolerance metalevel to be developed as CORBA software. strategies to CORBA objects as CORBA metaobjects, enabling thus these strategies to be implemented as 1 . -
Chapter 15 Functional Programming
Topics Chapter 15 Numbers n Natural numbers n Haskell numbers Functional Programming Lists n List notation n Lists as a data type n List operations Chapter 15: Functional Programming 2 Numbers Natural Numbers The natural numbers are the numbers 0, 1, Haskell provides a sophisticated 2, and so on, used for counting. hierarchy of type classes for describing various kinds of numbers. Introduced by the declaration data Nat = Zero | Succ Nat Although (some) numbers are provided n The constructor Succ (short for ‘successor’) as primitives data types, it is has type Nat à Nat. theoretically possible to introduce them n Example: as an element of Nat the number 7 through suitable data type declarations. would be represented by Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero)))))) Chapter 15: Functional Programming 3 Chapter 15: Functional Programming 4 Natural Numbers Natural Numbers Every natural number is represented by a Multiplication ca be defined by unique value of Nat. (x) :: Nat à Nat à Nat m x Zero = Zero On the other hand, not every value of Nat m x Succ n = (m x n) + m represents a well-defined natural number. n Example: ^, Succ ^, Succ(Succ ^) Nat can be a member of the type class Eq Addition ca be defined by instance Eq Nat where Zero == Zero = True (+) :: Nat à Nat à Nat Zero == Succ n = False m + Zero = m Succ m == Zero = False m + Succ n = Succ(m + n) Succ m == Succ n = (m == n) Chapter 15: Functional Programming 5 Chapter 15: Functional Programming 6 1 Natural Numbers Haskell Numbers Nat can be a member of the type class Ord instance