Gametogenic Cycles of Marine Mussels, Mytilus Edulis and Mytilus Trossulus, in Cobscook Bay, Maine Aaron P

Total Page:16

File Type:pdf, Size:1020Kb

Gametogenic Cycles of Marine Mussels, Mytilus Edulis and Mytilus Trossulus, in Cobscook Bay, Maine Aaron P The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2001 Gametogenic Cycles of Marine Mussels, Mytilus edulis and Mytilus trossulus, in Cobscook Bay, Maine Aaron P. Maloy Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons, and the Oceanography Commons Recommended Citation Maloy, Aaron P., "Gametogenic Cycles of Marine Mussels, Mytilus edulis and Mytilus trossulus, in Cobscook Bay, Maine" (2001). Electronic Theses and Dissertations. 146. http://digitalcommons.library.umaine.edu/etd/146 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. GAMETOGENIC CYCLES OF MARINE MUSSELS, MYTIL US EDULIS AND MYTIL US TROSSUL US, IN COBSCOOK BAY, MAINE BY Aaron P. Maloy B.S. East Stroudsburg University, 1997 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine December, 2001 Advisory Committee: Bruce J. Barber, Associate Professor of Marine Sciences, Advisor Paul D. Rawson, Assistant Professor of Marine Sciences Steve R. Fegley, Professor of Marine Biology GAMETOGENIC CYCLES OF MARINE MUSSELS, MYTIL US EDULIS AND MYTIL US TROSSUL US, IN COBSCOOK BAY, MAINE By Aaron P. Maloy Thesis Advisor: Dr. Bruce J. Barber An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) December, 200 1 The Mytilus edulis species complex includes three smooth-shelled blue mussels, M. edulis (Linnaeus 175 8), M trossulus (Gould 1850), and M galloprovincialis (Lamarck 1819). When any two of theses species occur sympatrically, hybridization and backcrossing of hybrid and parental genotypes is evident. Despite introgression of genes between taxa their genetic integrity is maintained. To test the hypothesis that a temporal variation in species-specific spawning times is the mechanism limiting hybridization and maintaining genetic integrity in a M edulis and M. trossulus hybrid zone in eastern Maine, mussels were sampled on monthly to semi-monthly intervals throughout 2000 from a low intertidal site in Cobscook Bay. Four polymerase-chain-reaction-based (PCR) genetic markers were used to differentiate between species. Gamete volume fraction (GVF) and oocyte area measurements indicated that both species are temporally synchronized with respect to gametogenesis and spawning. Thus low frequency of hybridization and preservation of genetic identity is not the result of temporally separated spawning times. Limited hybridization may result from gametic incompatibility, differential environmental adaptation, or selective mortality of hybrids. Preferential collection of M edulis seed for aquaculture in Cobscook Bay is thus not possible on the basis of spawning activity alone. ACKNOWLEDGEMENTS I would like to thank my advisor Bruce J. Barber for providing me with the opportunity to study at the University of Maine and for his guidance as a mentor; to my committee members Paul D. Rawson and Stephen R. Fegley, for their time and commitment to ensuring my development as a scientist; Dawna Beane for the endless preparation of histology slides; my family for their love and support in all aspects of my life, and all those who helped with the collection of animals used in my research. Special thanks to Pilar Haye for her helpful comments on my work, engaging conversations, and most of all for being a true friend in life. Funding and miscellaneous financial support of this work came from the Maine Aquaculture Innovation Center, Association of Graduate Students, and the National Shellfisheries Association. TABLE OF CONTENTS .. ACKNOWLEDGEMENTS..................................................................... ii LIST OF TABLES ................................................................................. v LIST OF FIGURES.............................................................................. vi Chapter 1. THE MYTILUS EDULIS SPECIES COMPLEX. GAMETOGENESIS. AND CULTURE 1. 1. The Mytilus edulis Species Complex ........................................... 1 1.1.1. Species Identification .................................................. 2 1.1.2. Mytilus Distributions in Eastern North America .................. 3 1.l. 3. Mytilus trossulus in Maine............................................ 4 1.1.4. The Southern Distributional Limit and Environmental Stress................................................. 5 1.2. Hybrid Zone Models and Maintenance of Genetic Identity ................6 1.3. Reproduction ...................................................................... -8 1.3.1 . Gametogenesis......................................................... 8 1.3.2. Spawning............................................................... 10 1.3.3. Assessment of Reproductive Condition ...........................11 1.3.4. Gametogenic Variation in Mytilus ................................. 12 1.4. Mussel Culture in Maine ....................................................... 13 2 . GAMETOGENIC CYCLES OF MARINE MUSSELS. MYTILUS EDULIS AND MYTILUS TROSSULUS. IN COBSCOOK BAY. MAINE Introduction..................................................................... -16 Materials and Methods ......................................................... 19 2.2.1. Site Location and Collection ........................................19 2.2.2. Genetic Characterization............................................. 19 2.2.3. Histological Preparation............................................ -20 2.2.4. Quantitative Assessment of Gametogenesis...................... 20 2.2.5 Gamete Volume Fraction (GFV) .................................. 21 2.2.6. Oocyte Area ........................................................... 21 2.2.7 Statistics............................................................... 21 Results ........................................................................... 22 Discussion...................................................................... -24 2.4.1. Biological Implications............................................ -24 2.4.2. Aquaculture Application............................................ 28 REFERENCES .................................................................................. 36 BIOGRAPHY OF THE AUTHOR ........................................................... 42 LIST OF TABLES Table 1. Relative number of males, females and undifferentiated individuals of Mytilus edulis and M. trossulus sampled throughout 2000.............................................................. .29 Table 2. Gamete Volume Fraction. Results of a three-way ANOVA testing the effect of date, species, and gender on the gametogenic cycles of Mytilus edulis and M. trossulus. ................ .30 Table 3. Mean Oocyte Area. Results of a two-way ANOVA testing the effects of date and species on the gametogenic cycles of Mytilus edulis and M. trossulus.. ............................... .31 LIST OF FIGURES Figure 1. Yearly cycle of mean (f 1 SD) gamete volume fraction for Mytilus edulis and M trossulus from Cobscook Bay, Maine. ......................................................................... .32 Figure 2a. Yearly cycle of mean (f 1 SD) gamete volume fraction for Mytilus edulis from Cobscook Bay, Maine.. ..........................33 Figure 2b. Yearly cycle of mean (f 1 SD) gamete volume fraction for Mytilus trossulus from Cobscook Bay, Maine.. ..................... .34 Figure 3. Yearly cycle of mean (+_1 SD) oocyte areas for Mytilus edulis and Mytilus trossulus from Cobscook Bay, Maine. ......................................................................... .3 5 Chapter 1 THE MYTILUS EDULIS SPECIES COMPLEX, GAMETOGENESIS, AND CULTURE 1.1. The Mytilm edulis Species Complex Common blue mussels of temperate waters of the northern and southern hemispheres make up the Mytilus edulis species complex, which is composed of M. edulis, M. galloprovincialis, and M. trossulus (Koehn 1991 ; McDonald et al. 1991 ). Of the three, M. edulis is thought to be the ancestral form from which M. galloprovincialis and M. trossulus have diverged (Stanley 1972, Seed 1992). During glaciation events of the Pleistocene, M. galloprovincialis diverged in the Mediterranean (Barsotti and Meluzzi 1968) and M. trossulus diverged in more northerly latitudes (Varvio et al. 1988). Mytilus trossulus is of Pacific origin and via trans-Arctic movement has more recently expanded its range into the Northeastern Atlantic (Vermeij 1991). Mytilus edulis presumably retained a southern rehge on the east coast and expanded north as glaciation receded, resulting in a zone of secondary contact between species. Hybridization is observed in areas where any two of the three occur sympatrically and has created reluctance to observe them as three separate species (Seed 1974, 1978; Skibinski et al. 1983; McDonald and Koehn 1988; Skibinski 1983; Skibinski and Roderick 1991 ; McDonald et al. 1991 ; Gosling 1992). Due to the expansive distribution, morphological similarities, and lack of a completely diagnostic morphological character, confusion exists over the taxonomy of the M. edulis species complex. 1.1.1. Species Identification Up to1 9 morphological characteristics have been used to distinguish among mussel species (McDonald et a1.1991; Mallet and Carver 1995; Innes
Recommended publications
  • Full Annual Report 1999
    NORTH PACIFIC MARINE SCIENCE ORGANIZATION (PICES) ANNUAL REPORT EIGHTH MEETING VLADIVOSTOK, RUSSIA OCTOBER 8 - 17, 1999 January 2000 Secretariat / Publisher North Pacific Marine Science Organization (PICES) c/o Institute of Ocean Sciences P.O. Box 6000, Sidney, British Columbia, Canada. V8L 4B2 e-mail: [email protected] web: http://pices.ios.bc.ca TABLE OF CONTENTS W X Page Proceedings of the Eighth Annual Meeting Agenda 3 Report of Opening Session 5 Report of Governing Council Meetings 25 Reports of Science Board and Committees Science Board 45 Biological Oceanography Committee 57 Fishery Science Committee 63 Working Group 12: Crabs and Shrimps 67 Marine Environmental Quality Committee 73 Working Group 8: Practical Assessment Methodology 76 Physical Oceanography and Climate Committee 93 Working Group 13: CO2 in the North Pacific 97 Implementation Panel on the CCCC Program 105 Technological Committee on Data Exchange 117 Publication Committee 123 Finance and Administration Report of Finance and Administration Committee 127 Assets on 31st of December, 1998 132 Income and Expenditures for 1998 133 Budget for 2000 136 Composition of the Organization Officers, Delegates, Finance and Administration Committee, Science Board, Secretariat, Scientific and Technical Committees 139 List of Participants 149 List of Acronyms 171 iii REPORT OF OPENING SESSION W X The Opening Session was called to order at 8:30 scientists increase. Also of paramount importance th am on of October 11 . The Chairman, Dr. is research of both ecosystems and the prediction Hyung-Tack Huh, who welcomed delegates, of environmental long term changes. observers and researchers to the Eighth Annual Meeting. Dr. Huh called upon Vice-Governor The changes occurring in the resource structure of Vladimir A.
    [Show full text]
  • Poloprieto Maria 2019URD.Pdf (823.7Kb)
    THE CHILEAN BLUE MUSSEL HAS AN INDEPENDENT CONTAGIOUS CANCER LINEAGE --------------------------------------------------- A Senior Honors Thesis Presented to the Faculty of the Department of Biology & Biochemistry University of Houston --------------------------------------------------- In Partial Fulfillment of the Requirements for the Degree Bachelor of Science --------------------------------------------------- By Maria Angelica Polo Prieto May 2019 THE CHILEAN BLUE MUSSEL HAS AN INDEPENDENT CONTAGIOUS CANCER LINEAGE ____________________________________ Maria Angelica Polo Prieto APPROVED: ____________________________________ Dr. Ann Cheek ____________________________________ Dr. Michael Metzger Pacific Northwest Research Institute 98122 ____________________________________ Dr. ElizaBeth Ostrowski Massey University Auckland, New Zealand _____________________________________ Dr. Dan Wells, Dean College of Natural Sciences and Mathematics ii Acknowledgements I have decided to express my gratitude in my native language. Estoy profundamente agradecida con Dios por haberme dado la oportunidad de participar en este proyecto de investigación. Quiero agradecerle al Dr. Michael Metzger por haber depositado la confianza en mi para la elaboración de este proyecto. Su guianza y apoyo a, pesar de la distancia, permitió un excelente trabajo en equipo. Estoy agradecida con el Dr. Goff y con todos los integrantes de su laboratorio, en especial Kenia y Marta de los Santos, Martine Lecorps, Helen Hong Wang, y los Dres. Yiping Zhu, Yosef Sabo y Oya Cingoz. Gracias por hacer mi estadía en Columbia University una experiencia inolvidable. Quiero también agradecerle a la Dra. Elizabeth Ostrowski por su enseñanza y dedicación, y a los miembros de su laboratorio por haberme entrenado en los procedimientos que hicieron este proyecto realidad. Estoy muy agradecida con la Dra. Ann Cheek, por haber creído en mi y por su apoyo constante aun en medio de las dificultades.
    [Show full text]
  • Blue Mussel Feeding
    MARINE ECOLOGY PROGRESS SERIES Vol. 192: 181-193.2000 Published January 31 Mar Ecol Prog Ser Influence of a selective feeding behaviour by the blue mussel Mytilus trossulus on the assimilation of lo9cdfrom environmentally relevant seston matrices Zainal ~rifinll~,Leah I. ende ell-~oung'" '~ept.of Biological Sciences, Simon Fraser University, 8888 University Ave., Burnaby, British Columbia V5A 1S6, Canada 'R & D Centre for Oceanology, LIPI, Poka, Ambon 97233, Indonesia ABSTRACT: The objective of this study was to determine the influence of a selective feeding strategy on the assimilation efficiency of lo9Cd (Io9Cd-AE)by the blue mussel Mytilus trossulus. Two comple- mentary experiments which used 5 seston matrices of different seston quality (SQ) were implemented: (1)algae labeled with Io9Cd was mixed with unlabeled silt, and (2) labeled silt was mixed with unla- beled algae. Io9Cd-A~was determined by a dual-tracer ratio (109~d/241~m)method (DTR) and based on the ingestion rate of '09Cd by the mussel (IRM) (total amount of Io9Cd ingested over the 4 h feeding period). As a result of the non-conservative behavior of u'~m,the DTR underestimated mussel lo9Cd- AEs as compared to the IRM. Therefore only IRM-determined 'O@C~-AEwas considered further. When only algae was spiked, jdgcd-A~swere proportional to diet quality (DQ), (r = 0.98; p < 0.05) with max- imum 'OgCd-AE occurring at the mussel's filter-feeding 'optimum' and where maximum carbon assim- ilation rates have been observed. However, for the spiked-silt exposures, IWcd-A~was independent of DQ, with maximum values of -85 % occurring in all diets except for silt alone.
    [Show full text]
  • Marine Ecology Progress Series 351:163
    Vol. 351: 163–175, 2007 MARINE ECOLOGY PROGRESS SERIES Published December 6 doi: 10.3354/meps07033 Mar Ecol Prog Ser Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning Pia Norling*, Nils Kautsky Department of Systems Ecology, Stockholm University, 106 91 Stockholm, Sweden ABSTRACT: Habitat-modifying species such as Mytilus edulis strongly impact both community struc- ture and ecosystem functioning through positive or negative interactions with other species and by changing physical and biological conditions. A study of natural patches of mussels showed that C and N content of sediment was higher in mussel patches compared to the surrounding sand community. Species richness and biomass of associated macrofauna and -flora was enhanced even by the pres- ence of single mussels and increased rapidly with patch size up to about 150 cm2, while no change in sediment meiofauna was found. In order to separate the effects of structure and function of M. edulis, a manipulative field experiment was performed with constructed patches of cleaned live mussels or intact empty shells. After 3 mo colonisation, the number of associated species in both treatments approached those in natural mussel patches, indicating that species richness was mainly due to phys- ical structure. Abundance and biomass of associated flora and fauna were higher if live mussels were present because mussel biodeposition and nutrient regeneration supplied limiting resources and increased carrying capacity. Species composition was also affected. Complexity and biodiversity increased with time, especially if Fucus vesiculosus plants established themselves. Measurements of community metabolism showed that the associated community found in mussel patches depends on mussel biodeposition for 24 to 31% of its energy demand.
    [Show full text]
  • Genus Mytilus (Moflusca: Bivalvia)
    Heredity74 (1995)369—375 Received26 May 1994 Chromosomal markers in three species of the genus Mytilus (Moflusca: Bivalvia) A. MARTINEZ-LAGE, A. GONZALEZ-TIZON & J. MENDEZ Departamento de Bio/ogia Ce/u/ar y Molecular, Areade Genética,Universidad de La Coruña, 15071 La Coruña, Spain Theanalysis of C-banding, NOR and fluorochrome staining was carried out in three species of European mussel, Mytilus edulis, M. galloprovincialis and M. trossulus. The results obtained allow us to detect changes in the constitutive heterochromatin within the genus Mytilus. The existence of chromosomal markers permit us to identify and distinguish, at the cytogenetical level, these three types of mussel. Keywords:C-bands,chromosome markers, CMA3 bands, heterochromatin, Mytilus, NORs. along various coastal regions of the British Isles. Subse- Introduction quently, in France, Britain and Ireland, M. galloprovin- Thegenus Mytilus is the subject of an important cialis has been found to be intermixed with M. edulis, controversy about the systematic status of the different producing hybrid forms (Skibinski & Beardmore, forms within it. In this genus, taxonomic studies were 1979). M. trossulus is distributed in the Baltic Sea. In initially developed in order to establish a systematic the Danish straits, M. trossulus is intermixed with M. relationship between M edulis and M. gaioprovincialis edulis (Váinölä & Hvilsom, 1991). and, later, among other forms of mussels. At first, the On the other hand, studies using Mytilus cyto- studies were focused on morphological criteria and genetics have shown that the diploid number is 28 morphometric parameters (internal and external shell chromosomes (Ahmed & Sparks, 1970; Ieyama & characteristics, the anterior adductor muscle features, Inaba, 1974; Thiriot-Quiévreux & Ayraud, 1982; etc.).
    [Show full text]
  • First Record of the Mediterranean Mussel Mytilus Galloprovincialis (Bivalvia, Mytilidae) in Brazil
    ARTICLE First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil Carlos Eduardo Belz¹⁵; Luiz Ricardo L. Simone²; Nelson Silveira Júnior³; Rafael Antunes Baggio⁴; Marcos de Vasconcellos Gernet¹⁶ & Carlos João Birckolz¹⁷ ¹ Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM), Laboratório de Ecologia Aplicada e Bioinvasões (LEBIO). Pontal do Paraná, PR, Brasil. ² Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ORCID: http://orcid.org/0000-0002-1397-9823. E-mail: [email protected] ³ Nixxen Comercio de Frutos do Mar LTDA. Florianópolis, SC, Brasil. ORCID: http://orcid.org/0000-0001-8037-5141. E-mail: [email protected] ⁴ Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Ecologia Molecular e Parasitologia Evolutiva (LEMPE). Curitiba, PR, Brasil. ORCID: http://orcid.org/0000-0001-8307-1426. E-mail: [email protected] ⁵ ORCID: http://orcid.org/0000-0002-2381-8185. E-mail: [email protected] (corresponding author) ⁶ ORCID: http://orcid.org/0000-0001-5116-5719. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0002-7896-1018. E-mail: [email protected] Abstract. The genus Mytilus comprises a large number of bivalve mollusk species distributed throughout the world and many of these species are considered invasive. In South America, many introductions of species of this genus have already taken place, including reports of hybridization between them. Now, the occurrence of the Mediterranean mussel Mytilus galloprovincialis is reported for the first time from the Brazilian coast. Several specimens of this mytilid were found in a shellfish growing areas in Florianópolis and Palhoça, Santa Catarina State, Brazil.
    [Show full text]
  • The Root of the Transmissible Cancer: First Description of a Widespread Mytilus Trossulus-Derived Cancer Lineage in M. Trossulus
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.25.424161; this version posted December 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The root of the transmissible cancer: first description of a widespread 2 Mytilus trossulus-derived cancer lineage in M. trossulus 3 4 Maria Skazina1*, Nelly Odintsova2, Maria Maiorova2, Angelina Ivanova3, 5 Risto Väinölä4, Petr Strelkov3 6 7 1Department of Applied Ecology, Saint-Petersburg State University, Saint-Petersburg 199178, Russia 8 2A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian 9 Academy of Sciences, Vladivostok 690041, Russia 10 3Department of Ichthyology and Hydrobiology, Saint-Petersburg State University, Saint-Petersburg 11 199178, Russia 12 4Finnish Museum of Natural History, University of Helsinki, Helsinki P. O. Box 17, FI-00014, Finland 13 *Corresponding author [email protected] 14 Abstract 15 Two lineages of bivalve transmissible neoplasia (BTN), BTN1 and BTN2, are known in blue 16 mussels Mytilus. Both lineages derive from the Pacific mussel M. trossulus and are identified 17 primarily by the unique genotypes of the nuclear gene EF1α. BTN1 is found in populations of 18 M. trossulus from the Northeast Pacific, while BTN2 has been detected in populations of other 19 Mytilus species worldwide but not in M. trossulus itself. The aim of our study was to examine 20 mussels M. trossulus from the Sea of Japan (Northwest Pacific) for the presence of BTN.
    [Show full text]
  • A Review of California Mussel (Mytilus Californianus) Fisheries Biology and Fisheries Programs
    Fisheries and Oceans Pêches et Océans Canada Canada Canadian Stock Assessment Secretariat Secrétariat canadien pour l’évaluation des stocks Research Document 99/187 Document de recherche 99/187 Not to be cited without Ne pas citer sans permission of the authors1 autorisation des auteurs1 A Review of California Mussel (Mytilus californianus) Fisheries Biology and Fisheries Programs D. Schmidt North Island Biological Consultants Ltd. 5088A Beaver Harbour Road Box 2437 Port Hardy, BC V0N 2P0 1 This series documents the scientific basis for the 1 La présente série documente les bases scientifiques evaluation of fisheries resources in Canada. As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu’elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations. des rapports d’étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat. ISSN 1480-4883 Ottawa, 1999 1.0 Abstract This paper is a literature review of all available and relevant information on past and present data concerning the California mussel (Mytilus californianus) for the purposes of establishing a fishery on M. californianus. A group located on North Vancouver Island, British Columbia (BC), the Vancouver Island Shellfish Cooperative (VISCO), has expressed an interest in starting a commercial harvest on California mussels for the purpose of creating jobs in the winter months (G.
    [Show full text]
  • Physiological and Gene Transcription Assays to Assess Responses of Mussels to Environmental Changes
    Physiological and gene transcription assays to assess responses of mussels to environmental changes Katrina L. Counihan1, Lizabeth Bowen2, Brenda Ballachey3, Heather Coletti4, Tuula Hollmen5, Benjamin Pister6 and Tammy L. Wilson4,7 1 Alaska SeaLife Center, Seward, AK, United States of America 2 US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America 3 US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America 4 Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America 5 College of Fisheries and Ocean Sciences, University of Alaska—Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America 6 Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America 7 Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America ABSTRACT Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
    [Show full text]
  • Toxic Contaminants in Puget Sound's Nearshore Biota: a Large-Scale Synoptic Survey Using Transplanted Mussels (Mytilus Tross
    Puget Sound Ecosystem Monitoring Program (PSEMP) Toxic Contaminants in Puget Sound’s Nearshore Biota: A Large-Scale Synoptic Survey Using Transplanted Mussels (Mytilus trossulus) Final Report September 4, 2014 Jennifer A. Lanksbury, Laurie A. Niewolny, Andrea J. Carey and James E. West WDFW Report Number FPT 14-08 TABLE OF CONTENTS TABLE OF CONTENTS ......................................................................................................................................... i LIST OF FIGURES ................................................................................................................................................ v LIST OF TABLES ................................................................................................................................................ vii EXECUTIVE SUMMARY .................................................................................................................................... 1 1 INTRODUCTION ........................................................................................................................................... 3 1.1 Project Goals ............................................................................................................................................ 4 1.2 Background .............................................................................................................................................. 5 1.2.1 Mussels as Biomonitors ...................................................................................................................
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Marine Science Electronic Archive (PlyMSEA) MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Common mussel (Mytilus edulis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-06-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1421]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Mytilus edulis Common mussel. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1421.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-06-03 Common mussel (Mytilus edulis) - Marine Life Information Network See online review for distribution map Clump of mussels.
    [Show full text]
  • Evidence of Multiple Genome Duplication Events in Mytilus Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456601; this version posted August 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Evidence of multiple genome duplication events in Mytilus evolution Ana Corrochano-Fraile1, Andrew Davie1, Stefano Carboni1,*, and Michael¨ Bekaert1 1Institute of Aquaculture, University of Stirling, Stirling, UK Corresponding author: Stefano Carboni1 Email address: [email protected] ABSTRACT Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi- disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises.
    [Show full text]