Rs-232 Rs-422 Rs-485
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACU-M™ Improving In-Building Communications
Application Note: AN-2306-2 ACU-M™ Improving In-Building Communications Purpose This application note will describe methods in which the Raytheon’s ACU-M can be used to improve in-building communications. The application note will discuss permanent and temporary methods at which different devices can help increase the ability to transmit or receive land mobile radio communications from within a building, below-grade, or behind obstructions. Introduction Land mobile radios, whether used in vehicles or as handheld portables, are an important tool used everyday by first responders to make their jobs safer and more efficient. In the most part, these radio systems function as designed, and serve the end-user with reliable communications. However, when the duties of a first responder require them to enter a building, or operate below- grade during emergencies, the ability of their radios to communicate to the base, incident command or dispatcher may become an issue. One physical constraint of land mobile radio communications is its inability to transmit and receive radio waves through obstructions such as buildings or below-grade structures. The failure of a land mobile radio to transmit and receive communications from within a building or below-grade has cursed radio users since the beginning of land mobile radio communications (see Figure 1). Figure 1: Blockage or Absorption of Low-Power Handheld Radio Transmission Raytheon 5800 Departure Drive Raleigh, NC 27616 919.790.1011 © Raytheon Company. Data is subject to change. http://www.raytheon.com All Trademarks are the property of their respective owners. Application Note: AN-2306-2 Solutions Land mobile radios were first introduced to public safety, in the late 20’s, in the form of shortwave receivers mounted inside patrol vehicles. -
Distributed Systems
14-760: ADVANCED REAL-WORLD NETWORKS LECTURE 17 * SPRING 2019 * KESDEN SERIAL COMMUNICATION Courtesy 18-349 SERIAL VS. PARALLEL TX Serial MCU 1 RX MCU 2 signal Data[0:7] Parallel MCU 1 MCU 2 3 WHY SERIAL COMMUNICATION? 4 • Serial communication is a pin-efficient way of sending and receiving bits of data • Sends and receives data one bit at a time over one wire • While it takes eight times as long to transfer each byte of data this way (as compared to parallel communication), only a few wires are required • Typically one to send, one to receive (for full-duplex), and a common signal ground wire • Simplistic way to visualize serial port • Two 8-bit shift registers connected together • Output of one shift register (transmitter) connected to the input of the other shift register (receiver) • Common clock so that as a bit exits the transmitting shift register, the bit enters the receiving shift register • Data rate depends on clock frequency SIMPLISTIC VIEW OF SERIAL PORT OPERATION Transmitter Receiver n 0 1 2 3 4 5 6 7 n n+1 0 1 2 3 4 5 6 n+1 7 n+2 0 1 2 3 4 5 n+2 6 7 n+3 0 1 2 3 4 n+3 5 6 7 n+4 0 1 2 3 n+4 4 5 6 7 n+5 0 1 2 n+5 3 4 5 6 7 n+6 0 1 n+6 2 3 4 5 6 7 n+7 0 n+7 1 2 3 4 5 6 7 n+8 n+8 0 1 2 3 4 5 6 7 Interrupt raised when Interrupt raised when Transmitter (Tx) is empty Receiver (Rx) is full a Byte has been transmitted a Byte has been received and next byte ready for loading and is ready for reading SIMPLE SERIAL PORT Receive Buffer Register 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Receive Shift Register Transmit Shift Register 0 1 2 3 4 5 -
Enhanced Communications Protocol Serial Port
Enhanced Communications Protocol Serial Port Huey lope below. Shakier Muffin may very threefold while Andrej remains bloody-minded and hypertonic. Foreordained Bartlett overshoots excellently. Why degaussing is missing the linux, it is connected to have various commands from serial communications control signals going into digital Specifies the stac algorithm on the CAIM card for the port. Enhanced communication protocols there is ready for access control equipment costs, required for this interface configuration mode is also occurs waiting for other. The protocol such a real plant as a standard ports for wio lte module can be a single instrument approaches built around, said serial manager. Scanner 1131 Sensia. This communications option uses the NITP protocol to communication with the serial. Its serial manager is installed handlers should be improved accuracy of remote device in some way is processed. Hart communication port interface also values that. Moreover our enhanced security features and mass device management. Homeyduino allows you. Modbus communication problems. However, we recommend that you configure the working interface first. ASCII character key string or byte value serial communication protocols. This allows additional watchdog logic to monitor multiple slave devices for communication faults not detected by the Serial Interface. These protocols are called a protocol for controlling train simulator on device which would still often erred in parallel process to be included a communications in. Data Transmission Parallel vs Serial Transmission Quantil. This prompt type is standard Ethernet protocol; the same used on an empty internal computer network. LZS and MPPC data compression algorithms. For communications with Modbus devices any way these methods can be utilized. -
Serial Communication Buses
Computer Architecture 10 Serial Communication Buses Made wi th OpenOffi ce.org 1 Serial Communication SendingSending datadata oneone bitbit atat oneone time,time, sequentiallysequentially SerialSerial vsvs parallelparallel communicationcommunication cable cost (or PCB space), synchronization, distance ! speed ? ImprovedImproved serialserial communicationcommunication technologytechnology allowsallows forfor transfertransfer atat higherhigher speedsspeeds andand isis dominatingdominating thethe modernmodern digitaldigital technology:technology: RS232, RS-485, I2C, SPI, 1-Wire, USB, FireWire, Ethernet, Fibre Channel, MIDI, Serial Attached SCSI, Serial ATA, PCI Express, etc. Made wi th OpenOffi ce.org 2 RS232, EIA232 TheThe ElectronicElectronic IndustriesIndustries AllianceAlliance (EIA)(EIA) standardstandard RS-232-CRS-232-C (1969)(1969) definition of physical layer (electrical signal characteristics: voltage levels, signaling rate, timing, short-circuit behavior, cable length, etc.) 25 or (more often) 9-pin connector serial transmission (bit-by-bit) asynchronous operation (no clock signal) truly bi-directional transfer (full-duplex) only limited power can be supplied to another device numerous handshake lines (seldom used) many protocols use RS232 (e.g. Modbus) Made wi th OpenOffi ce.org 3 Voltage Levels RS-232RS-232 standardstandard convertconvert TTL/CMOS-levelTTL/CMOS-level signalssignals intointo bipolarbipolar voltagevoltage levelslevels toto improveimprove noisenoise immunityimmunity andand supportsupport longlong cablecable lengthslengths TTL/CMOS → RS232: 0V = logic zero → +3V…+12V (SPACE) +5V (+3.3V) = logic one → −3V…−12V (MARK) Some equipment ignores the negative level and accepts a zero voltage level as the "OFF" state The "dead area" between +3V and -3V may vary, many receivers are sensitive to differentials of 1V or less Made wi th OpenOffi ce.org 4 Data frame CompleteComplete one-byteone-byte frameframe consistsconsists of:of: start-bit (SPACE), data bits (7, 8), stop-bits (MARK) e.g. -
Restricted Radiotelephone Operator's
INDEPENDENT COMMUNICATIONS AUTHORITY OF SOUTH AFRICA RESTRICTED RADIOTELEPHONE OPERATOR’S EXAMINATION GUIDE (VHF, MF AND HF) June 2008 TABLE OF CONTENTS EXAMINATION PAYMENT INFORMATION ________________________________________ 3 BACKGROUND ______________________________________________________________ 4 COMMENTS _________________________________________________________________ 8 SYLLABUS FOR THE POSTMASTER GENERAL’S RESTRICTED CERTIFICATE __________ 8 EXAMINATION ARRANGEMENTS _______________________________________________ 9 IMPORTANT RADIOTELEPHONE FREQUENCIES __________________________________ 9 IMPORTANT VHF MARITIME FREQUENCIES ______________________________________ 9 RADIOTELEPHONE DISTRESS PROCEDURE _____________________________________ 9 RADIOTELEPHONE URGENCY ________________________________________________ 15 RADIOTELEPHONE SAFETY __________________________________________________ 16 MARINE TERMINOLOGY & MODES OF EMISSION ________________________________ 17 ALARM SIGNALS ____________________________________________________________ 18 EPIRBS, VERY IMPORTANT CHECKS ON EPIRBS ________________________________ 18 SART (SEARCH AND RESCUE RADAR TRANSPONDER) ___________________________ 19 NAVTEX RECEIVERS ________________________________________________________ 19 SATELLITE COMMUNICATIONS _______________________________________________ 19 RADIOTELEPHONE CALLING PROCEDURE _____________________________________ 20 TABLE OF CALLING AND ANSWERING FREQUENCIES ____________________________ 21 RADIOTELEGRAMS _________________________________________________________ -
SAM2634 Datasheet
SAM2634 LOW-POWER SYNTHESIZER WITH EFFECTS The SAM2634 integrates into a single chip a proprietary DREAM® DSP core (64-slots DSP + 16-bit microcontroller), a 32k x 16 RAM and an LCD display interface. With addition of a single external ROM or FLASH, a complete low cost sound module can be built, including reverb and chorus effects, parametric equalizer, surround effects, without compromising on sound quality. Key features . Single chip synthesizer + effects, typical application includes: o Wavetable synthesis, serial MIDI in & out, parallel MIDI o Effects: reverb + chorus, on MIDI and/or audio in o Surround on 2 or 4 speakers with intensity/delay control o Equalizer: 4 bands, parametric o Audio in processing through echo, equalizer, surround . Low chip count o Synthesizer, ROM/Flash, DAC o Effects RAM is built-in (32k x 16) . Low power o 14 mA typ. operating o Single 3.3V supply o Built-in 1.2V regulator with power down mode . High quality wavetable synthesis o 16 bits samples, 48 KHz sampling rate, 24dB digital filter per voice o Up to 64 voices polyphony o Up to 64MByte ROM/Flash and RAM for firmware, and PCM data . Available wavetable firmwares and sample sets o CleanWave8® low cost General MIDI 1 megabyte firmware + sample set o CleanWave32® high quality 4 megabyte firmware + sample set o CleanWave64® top quality 8 megabyte firmware + sample set o Other sample sets available under special conditions. Fast product to market o Enhanced P16 processor with C compiler o Built-in ROM debugger o Flash programmer through dedicated pins. Small footprint o 100-pin LQFP package . -
Interface Between a PC Parallel Port and GPIB Devices
Giant Meter wave Radio Telescope National Center for Radio Astrophysics Tata Institute of Fundamental Research NCRA·TTF'R Interface between a PC parallel port and GPIB devices Author: L. Pommier Project director: T.L.VeHkanmuBHUllmll Date: 06102104 Table of Contents 1.Introduction................................................................................................................................... 2 2.The GPm interface .......................................................................................................................§. 2.1.GPIB messages....................................................................................................................................................2 2.2.GPIB devices.......................................................................................................................................................2 2.3.6PIB Signals........................................................................................................................................................2 2.3.1.Data lines....................................................................................................................................................Z 2.3.2.Management lines......................................................................................................................................Z 2.3.3.Handshake lines.........................................................................................................................................Z 2.4.The handshaldng -
Voice Radio Communications Guide for the Fire Service June 2016
U.S. Fire Administration Voice Radio Communications Guide for the Fire Service June 2016 U.S. Fire Administration Mission Statement We provide National leadership to foster a solid foundation for our fi re and emergency services stakeholders in prevention, preparedness, and response. This page intentionally left blank. Voice Radio Communications Guide for the Fire Service i Acknowledgment The U.S. Fire Administration (USFA) is committed to using all means possible for reducing the incidence of injuries and deaths to firefighters. One of these means is to partner with organizations that share this same admirable goal. One such organization is the International Association of Fire Fighters (IAFF). As a labor union, the IAFF has been deeply committed to improving the safety of its members and all firefighters as a whole. This is why the USFA was pleased to work with the IAFF through a partnership supported by the U.S. Department of Homeland Security (DHS), Science and Technology Directorate, First Responders Group, Office for Interoperability and Compatibility to develop this second edition of the “Voice Radio Communications Guide for the Fire Service.” The USFA gratefully acknowledges the following leaders of the IAFF for their willingness to partner on this project: General President Harold Schaitberger General Secretary-Treasurer Thomas Miller Assistant to the General President Occupational Health, Safety and Medicine Patrick Morrison International Association of Fire Fighters, AFL-CIO, CLC Division of Occupational Health, Safety and Medicine -
Communication Protocols on the PIC24EP and Arduino-A Tutorial For
Communication Protocols on the PIC24EP and Arduino – A Tutorial for Undergraduate Students A thesis submitted to the graduate school of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science In the Department of Electrical Engineering and Computing Systems of the College of Engineering and Applied Science By Srikar Chintapalli Bachelor of Technology: Electronics and Communications Engineering NIT Warangal, May 2015 Committee Chair: Dr. Carla Purdy Abstract With embedded systems technology growing rapidly, communication between MCUs, SOCs, FPGAs, and their peripherals has become extremely crucial to the building of successful applications. The ability for designers to connect and network modules from different manufacturers is what allows the embedded computing world to continue to thrive and overcome roadblocks, driving us further and further towards pervasive and ubiquitous computing. This ability has long been afforded by standardized communication protocols developed and incorporated into the devices we use on a day-to-day basis. This thesis aims to explain to an undergraduate audience and to implement the major communication protocols that are used to exchange data between microcontrollers and their peripheral modules. With a thorough understanding of these concepts, students should be able to interface and program their microcontroller units to successfully build projects, giving them hands on experience in embedded design. This is an important skill to have in a field in which configuring the electronics and hardware to work correctly is equally as integral as writing code for the desired application. The protocols that are discussed are the three main serial communication protocols: I2C (inter-integrated circuit), SPI (serial peripheral interface), and TTL UART (universal asynchronous receiver transmitter). -
Computer Ports
Computer Ports In computer hardware, a port serves as an interface between the computer and other computers or peripheral devices. Physically, a port is a specialized outlet on a piece of equipment to which a plug or cable connects. Electronically, the several conductors making up the outlet provide a signal transfer between devices. The term "port" is derived from a Dutch word "poort" meaning gate, entrance or door. ETHERNET PORTS: Ethernet is a family of computer networking technologies for local area networks (LANs) commercially introduced in 1980. Standardized in IEEE 802.3, Ethernet has largely replaced competing wired LAN technologies. Systems communicating over Ethernet divide a stream of data into individual packets called frames. Each frame contains source and destination addresses and error-checking data so that damaged data can be detected and re-transmitted. The standards define several wiring and signaling variants. The original 10BASE5 Ethernet used coaxial cable as a shared medium. Later the coaxial cables were replaced by twisted pair and fiber optic links in conjunction with hubs or switches. Data rates were periodically increased from the original 10 megabits per second, to 100 gigabits per second. Since its commercial release, Ethernet has retained a good degree of compatibility. Features such as the 48-bit MAC address and Ethernet frame format have influenced other networking protocols. HISTORY OF ETHERNET: Ethernet was developed at Xerox PARC between 1973 and 1974.[1][2] It was inspired by ALOHAnet, which Robert Metcalfe had studied as part of his PhD dissertation.[3] The idea was first documented in a memo that Metcalfe wrote on May 22, 1973.[1][4] In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker and Butler Lampson as inventors.[5] In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper. -
The Benefits of Computer Networks
قسم علوم الحاسوب | المرحلة الرابعة كلية الرافدين الجامعة د.اسيل خالد Introduction to Computer Network: Interconnected collection of autonomous computers. Tow computers are side to be interconnection if they are able to exchange information. Or: network is simply a collection of intercommunicating computers and peripherals possibly having access to remote hosts and other computer networks. A network consists of a set of computers: hosts, connected via a communication subnet. The word 'host' refers to an individual computer connected to the network, which can communicate with other hosts via the network. A Compute network should ensure: reliability of the data communication process security of the data performance by achieving higher throughput and smaller delay times The benefits of computer networks: We can summarize the benefits of computer networks as follow: 1. Resource sharing: the goal is to make all programs, equipment, and especially data available to anyone on the network without regard to physical location of the resource and the user. 2. High reliability: by having alternative sources of supply .for example, all files could be replicated on two or three machines, so if one of them is unavailable (due to a hardware failure. قسم علوم الحاسوب | المرحلة الرابعة كلية الرافدين الجامعة د.اسيل خالد 3. Saving money: small computers have a Mach better price/performance ratio than large ones. Mainframes (room-size computers) are roughly a factor of ten faster than personal computers, but they cost a thousand times more. 4. Scalability: is the ability to increase system performance gradually as the workload grows just by adding more processors. 5. -
Unit 1. Introduction to Data Communications and Networking
Unit 1. Introduction to data communications and networking 1 NETWORKING FUNDAMENTALS Unit Structure 1.0 Objectives 1.1 Introduction 1.2 Data & Information 1.3 Data Communication 1.3.1 Characteristics of Data Communication 1.3.2 Components of Data Communication 1.4 Data Representation 1.5 Data Flow 1.5.1. Simplex 1.52. Half Duplex 1.5.3. Full Duplex 1.6 Computer Network 1.6.1 Categories of a network 1.7 Protocol 1.7.1 Elements of a Protocol 1.8 Standards In Networking 1.8.1 Concept of Standard 1.8.2 Standard Organizations in field of Networking 1.0 OBJECTIVES: Introduce the readers to data communication and its fundamentals Define networks Define protocols Standards in networking 2 1.1 INTRODUCTION This chapter provides an introduction to Computer networks and covers fundamental topics like data, information to the definition of communication and computer networks. The main objective of data communication and networking is to enable seamless exchange of data between any two points in the world. This exchange of data takes place over a computer network. 1.2 DATA & INFORMATION Data refers to the raw facts that are collected while information refers to processed data that enables us to take decisions. Ex. When result of a particular test is declared it contains data of all students, when you find the marks you have scored you have the information that lets you know whether you have passed or failed. The word data refers to any information which is presented in a form that is agreed and accepted upon by is creators and users.