Interface Between a PC Parallel Port and GPIB Devices

Total Page:16

File Type:pdf, Size:1020Kb

Interface Between a PC Parallel Port and GPIB Devices Giant Meter wave Radio Telescope National Center for Radio Astrophysics Tata Institute of Fundamental Research NCRA·TTF'R Interface between a PC parallel port and GPIB devices Author: L. Pommier Project director: T.L.VeHkanmuBHUllmll Date: 06102104 Table of Contents 1.Introduction................................................................................................................................... 2­ 2.The GPm interface .......................................................................................................................§. 2.1.GPIB messages....................................................................................................................................................2 2.2.GPIB devices.......................................................................................................................................................2 2.3.6PIB Signals........................................................................................................................................................2 2.3.1.Data lines....................................................................................................................................................Z 2.3.2.Management lines......................................................................................................................................Z 2.3.3.Handshake lines.........................................................................................................................................Z 2.4.The handshaldng protocol. ..................................................................................................................................§. 3.The parallel port interface ............................................................................................................ ,2 3.1.The interface modes............................................................................................................................................ 2­ 3.2.The parallel port signals ......................................................................................................................................2 3.2.1.The Data Register.................................................................................................................................... 10 3.2.2. The Status Register.................................................................................................................................. 10 3.2.3.The Control Register................................................................................................................................ 11 3.3.Accessing the parallel port................................................................................................................................ 12 3.3. 1.Programming ways.................................. ................................................................................................12 3.3.2.Linux direct access and results...............................................................................................................12 4.The existing parallel port-to-GPm interlace .......... .. ........................................................ 13 4.1.The parallel port-to-GPIB driver...................... ...................................................... 13 4.2.Cable connection between the two' ................................................11 4.3.Electrical specifications................................ .. ................................................ 15 4.3. 1.Parallel port electrical ..................................................... 15 4.3.2. GPIB electrical specifications........... ........................................ 16 4.4.Electrical compatibility between the two ................................ 17 4.4. 1. Output types.............................................. .................................................. 17 4.4.1.1.Open-collector and open-drain.......... ~. ....................17 4.4.1.2.Totem-pole and push-pull............ ;.................................................................................................. 17 4.4.I.3.Tri-state............................................................................................................................................j! 4.4.1.4.Conc1usion.......................................................................................................................................ll 4.4.2.Conclusicn on electrical compatibility between the two inteifaces..................................................... 19 5.Further interlacing solution: the adapter box ............................................................................20 5.I.Introduction............................................................................................ ~ ...........................................................20 5.2.Adapter box Design........................................................................................................................................... 21 5.2.1.Adapter box without direction control................................................................................................... 21 5.2.1.1.Presentation......................................................................................................................................21 5.2.1.2.Resistances not compatible with GPIB currents ...........................................................................21 5.2.2.Adap(er box with a 3-state controL .......................................................................................................23 5.2.2.1.Presentation......................................................................................................................................23 5.2.2.2.Final adapter box design .................................................................................................................24 TIFR - NCRA - GMRT Technical Report Parallel port 1GPm interface 2/28 6.Multi-devices testing and further proceedings ..........................................................................25 6.1.Multi-devices testing .........................................................................................................................................25 6.2.Further proceedings ..........................................................................................................................................25 7 .Conclusion............................................................................ :.................... :................................ 26 8.References...................................................................................................................................27 9 .Appendix................................................................................................................ ~ ....................28 Illustration Index Illustration I : GPm devices...........................................................................................................................................6 Illustration 2 : GPm handshaking..................................................................................................................................8 Illustration 3 : Parallel port GPm hybrid cable and connectors ............................................................................. 13 Illustration 4: IEEE 488 bus current according to bus voltage ................................................................................. 16 Fig. 5 : open-collector output........................................................................................................................................ 17 Fig. 6 : bidirectional line with open-collector outputs................................................................................................ 17 Fig.7: Totem-pole output............................................................................................................................................ 17 Fig. 8 : Tri-state oUtpul ................................................................................................................................................. 18 Illustration 9 : Linear-chained configuration ...............................................................................................................20 TIlustration 10: Star-chained configuration................................................................................................................. 20 Illustration. 11 : Adapter box transceiver without direction control for bidirectionallines ....................................21 Illustration. 12: Adapter box transceiver with a 3-state control for bidirectionallines........................................... 23 Illustration 13: Adapter box design .............................................................................................................................24 Illustration 14 ; Test setting.......................................................................................................................................... 25 TIFR - NCRA - GMRT Technical Report Parallel port I GPIB interface 3128 Index of Tables Table I : Parallel port bits of the Data Register.......................................................................................................... 10 Table 2 : Parallel port bits of the Status Register.................................................................................................... ;... 10 Table 3: Parallel
Recommended publications
  • Rs-232 Rs-422 Rs-485
    ConceptConcept ofof SerialSerial CommunicationCommunication AgendaAgenda Serial v.s. Parallel Simplex , Half Duplex , Full Duplex Communication RS-485 Advantage over RS-232 SerialSerial v.s.v.s. ParallelParallel Application: How to Measure the temperature in a long distance? Measuring with a DAC card: 1200 m Remote sensor Control room T/C wire T/C A/D noise Application: How to Measure the temperature in a long distance? Measuring with a remote I/O module: 1200 m Remote sensor Control room T/C Remote I/O Standard Serial Communication T/C signal, 4-20mA, 0-5V… Noise rejection (Differential signal) MostMost PopularPopular 33 typestypes ofof SerialSerial Comm.Comm. z Most commonly available Tx Rx Rx Tx z Simple wiring CTS RTS z Low cost RTS CTS RS-232 z Short length (40 ft) DTR DSR DSR DTR Bar code reader z Slow data rates GND GND z Subject to noise Tx+ z High data rates Tx- z Longer cable lengths (4000 ft) Rx+ Rx- RS-422 z Full-duplex GND z Noise rejection PLC z Multipoint application (Up to 32 units) z Low cost Data+ z Longer cable lengths (4000 ft) Data- RS-485 zNoise immunity GND zHalf-duplex PLC SerialSerial V.S.V.S. ParallelParallel CommunicationCommunication Serial Communication Transfer the data bit by bit Synchronous Data Transfer Bit Send Data Receive Data Parallel Communication Transfer the all data simultaneously Asynchronous Data Transfer Bit Bit Bit Bit Bit Bit Bit Bit Send Data Receive Data SimplexSimplex ,, HalfHalf DuplexDuplex ,, FullFull DuplexDuplex CommunicationCommunication SimplexSimplex CommunicationCommunication Simplex Communication : – Data in a simplex channel is always one way.
    [Show full text]
  • Distributed Systems
    14-760: ADVANCED REAL-WORLD NETWORKS LECTURE 17 * SPRING 2019 * KESDEN SERIAL COMMUNICATION Courtesy 18-349 SERIAL VS. PARALLEL TX Serial MCU 1 RX MCU 2 signal Data[0:7] Parallel MCU 1 MCU 2 3 WHY SERIAL COMMUNICATION? 4 • Serial communication is a pin-efficient way of sending and receiving bits of data • Sends and receives data one bit at a time over one wire • While it takes eight times as long to transfer each byte of data this way (as compared to parallel communication), only a few wires are required • Typically one to send, one to receive (for full-duplex), and a common signal ground wire • Simplistic way to visualize serial port • Two 8-bit shift registers connected together • Output of one shift register (transmitter) connected to the input of the other shift register (receiver) • Common clock so that as a bit exits the transmitting shift register, the bit enters the receiving shift register • Data rate depends on clock frequency SIMPLISTIC VIEW OF SERIAL PORT OPERATION Transmitter Receiver n 0 1 2 3 4 5 6 7 n n+1 0 1 2 3 4 5 6 n+1 7 n+2 0 1 2 3 4 5 n+2 6 7 n+3 0 1 2 3 4 n+3 5 6 7 n+4 0 1 2 3 n+4 4 5 6 7 n+5 0 1 2 n+5 3 4 5 6 7 n+6 0 1 n+6 2 3 4 5 6 7 n+7 0 n+7 1 2 3 4 5 6 7 n+8 n+8 0 1 2 3 4 5 6 7 Interrupt raised when Interrupt raised when Transmitter (Tx) is empty Receiver (Rx) is full a Byte has been transmitted a Byte has been received and next byte ready for loading and is ready for reading SIMPLE SERIAL PORT Receive Buffer Register 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Receive Shift Register Transmit Shift Register 0 1 2 3 4 5
    [Show full text]
  • Interconnect Solutions Short Form Catalog
    Interconnect Solutions Short Form Catalog How to Search this Catalog This digital catalog provides you with three quick ways to find the products and information you are looking for. Just point and click on the bookmarks to the left, the linked images on the next page or the labeled sections of the table of contents. You can also use the “search” function built into Adobe Acrobat to jump directly to any text reference in this document. Acrobat “Search” function instructions: 1. Press CONTROL + F 2. When the dialog box appears, type in the word or words you are looking for and press ENTER. 3. Depending on your version of Acrobat, it will either take you directly to the first instance found, or display a list of pages where the text can be found. In the latter, click on the link to the pages provided. Interconnect Solutions Short Form Catalog Complete Solutions for the Electronics Industry 3M Electronics offers a comprehensive range of Interconnect Solutions for the electronics industry with a product portfolio that includes connectors, cables, cable assemblies and assembly tooling for a wide variety of applications. 3M is dedicated to innovation, continually developing new products that become an important part of everyday life across many diverse markets. A number of 3M solution categories are based on custom-designed products for specialized applications. 3M Electronics can help you design, modify and customize your product as well as help you to seamlessly integrate our products into your manufacturing process on a global basis. RoHS Compliant Statement “RoHS compliant” means that the product or part does not contain any of the following substances in excess of the following maximum concentration values in any homogeneous material, unless the substance is in an application that is exempt under RoHS: (a) 0.1% (by weight) for lead, mercury, hexavalent chromium, polybrominated biphenyls or polybrominated diphenyl ethers; or (b) 0.01% (by weight) for cadmium.
    [Show full text]
  • Enhanced Communications Protocol Serial Port
    Enhanced Communications Protocol Serial Port Huey lope below. Shakier Muffin may very threefold while Andrej remains bloody-minded and hypertonic. Foreordained Bartlett overshoots excellently. Why degaussing is missing the linux, it is connected to have various commands from serial communications control signals going into digital Specifies the stac algorithm on the CAIM card for the port. Enhanced communication protocols there is ready for access control equipment costs, required for this interface configuration mode is also occurs waiting for other. The protocol such a real plant as a standard ports for wio lte module can be a single instrument approaches built around, said serial manager. Scanner 1131 Sensia. This communications option uses the NITP protocol to communication with the serial. Its serial manager is installed handlers should be improved accuracy of remote device in some way is processed. Hart communication port interface also values that. Moreover our enhanced security features and mass device management. Homeyduino allows you. Modbus communication problems. However, we recommend that you configure the working interface first. ASCII character key string or byte value serial communication protocols. This allows additional watchdog logic to monitor multiple slave devices for communication faults not detected by the Serial Interface. These protocols are called a protocol for controlling train simulator on device which would still often erred in parallel process to be included a communications in. Data Transmission Parallel vs Serial Transmission Quantil. This prompt type is standard Ethernet protocol; the same used on an empty internal computer network. LZS and MPPC data compression algorithms. For communications with Modbus devices any way these methods can be utilized.
    [Show full text]
  • VM E Bus S Ingle -B Oard C Om Puter
    DATASHEET KEY FEATURES 2eSST VMEbus protocol with The Motorola MVME6100 The promise of the VME 320MB/s transfer rate across series provides more than just Renaissance is innovation, the VMEbus faster VMEbus transfer rates; it performance and investment provides balanced performance protection. The MVME6100 MPC7457 PowerPC® processor from the processor, memory series from Motorola delivers running at up to 1.267 GHz subsystem, local buses and I/O on this promise. The innovative 128-bit AltiVec coprocessor for subsystems. Customers looking design of the MVME6100 parallel processing, ideal for for a technology refresh for their provides a high performance data-intensive applications application, while maintaining platform that allows customers backwards compatibility with to leverage their investment in Up to 2GB of on-board DDR their existing VMEbus infra- their VME infrastructure. ECC memory and 128MB of structure, can upgrade to the fl ash memory for demanding The MVME6100 series supports MVME6100 series and applications booting a variety of operating take advantage of its enhanced systems including a complete Two 33/66/100 MHz PMC-X performance features. range of real-time operating sites allow the addition of systems and kernels. A VxWorks industry-standard, application- board support package and specifi c modules Linux support are available for Dual Gigabit Ethernet interfaces the MVME6100 series. for high performance networking The MVME6100 series is the fi rst VMEbus single-board computer (SBC) designed with the Tundra Tsi148 VMEbus interface chip offering two edge source synchronous transfer (2eSST) VMEbus performance. The 2eSST protocol enables the VMEbus to run at a practical bandwidth of 320MB/s in most cases.
    [Show full text]
  • Mp C305sp Mp C305spf
    MP C305SP MP C305SPF Desktop Digital Full Color Multi Function Printer Copier Printer Facsimile Scanner Aficio MP Aficio MP C305SP C305SPF B/W B/W 30 Color 30 Color ppm ppm High performance A4 colour The MP C305SP/MP C305SPF provide all the colour printing, scanning and copying functions you need from the comfort of your desktop. Operation is easy via the tiltable 4.3-inch colour touch panel. Ricoh’s next-generation platform including the new GWNX controller gives you the same capabilities as the newly launched A3 devices. The simple cube design optimises space. Simple to use The customisable 4.3-inch colour touch panel takes usability to a new level. You can customise the home screen by inserting your company logo and changing the icons. You can also register other applications, such as GlobalScan NX to display large and clearly visible buttons for easy input of email or folder addresses on the operation panel. Ultra productive With a short warm-up time and high print speeds you can accelerate your work. The MP C305SP/MP C305SPF’s extra paper trays make sure frequent refills are no longer required. Furthermore, these are the first A4 desktop MFP models to support a 1-bin tray which fits inside the standard catch tray. It can be used to separate important output such as inbound fax communication. High-end scanning Scanning capabilities include colour scanning, and scan to email, folder and USB. For compliance procedures, use Scan to PDF to create a digitally signed PDF. With the reduce/enlarge scan function you can adapt the paper size.
    [Show full text]
  • Overview of Xilinx JTAG Programming Cables and Reference Schematics for Legacy
    R Overview of Xilinx JTAG Programming Cables and Reference Schematics for Legacy XTP029 (v1.0) March 28, 2008 Parallel Cable III (PC3) Summary This technical publication provides an overview of Xilinx JTAG Cables and a reference schematic for the legacy Xilinx Parallel Cable III product (PC3) for educational use. Description Xilinx offers the Hi-Speed Platform Cable USB (PCUSB) and the Parallel Cable IV (PC4) cables. The PC4 cable supports both the IEEE 1284 parallel port interface and IEEE STD 1149.1 (JTAG) standards for in-system programming or embedded debug. These cables are more thoroughly described in the “Overview of Xilinx JTAG Solutions.” For reference purposes, the PC3 product schematic is also provided in this document. Note: The PC3 cable product has been discontinued and replaced by PCUSB and PC4. Both the PCUSB and PC4 cables have expanded capabilities, superior download performance, and robust immunity to system interface sensitivities when compared to the legacy PC3 cable. The PC3 product was first introduced in 1998 and then discontinued in 2002. Software support for PC3 was removed starting in March 2008 with the 10.1 release of Xilinx iMPACT software. Versions of iMPACT software after 10.1 release do not support the PC3 cable. See “Notice of Disclaimer” regarding warranty and support of the PC3 schematic information. Overview of Xilinx recommends the Platform Cable USB (PCUSB) or Parallel Cable IV (PC4) for new Xilinx JTAG designs. The PCUSB and PC4 offer reliable operation, higher speed download, voltage support down to 1.5V, keyed ribbon cable connector for error-free insertion, and improved ground/signal Solutions integrity.
    [Show full text]
  • Mp C307sp Mp C307spf Mp C407spf
    A4 Colour Multifunction Printer MP C307SP MP C307SPF MP C407SPF Copier Printer Facsimile Scanner MP C307SP MP C307SPF 30 Full Colour 30 Full Colour ppm ppm MP C407SPF 35 Full Colour ppm Powerful solutions at your fingertips. We know you demand only the best quality in everything you do. And at Ricoh, we’ve designed these A4 colour multifunction products to give you compact yet powerful solutions to improve workflow. Control job specific applications and get quick access to the functions you need most with our intuitive, touch-screen, Smart Operation Panel. All models come complete with a powerful Intel processor and high-speed Single Pass Document Feeder, keeping your office performance and productivity high. Powerful and solution-ready thanks to new Intel processor Easy to use and operate with intuitive 10.1 inch Smart Operation Panel Lower your company’s expenditure with competitive TCO and low printing costs High Speed SPDF capable of handling high demand scan jobs Print from any device, anywhere with Smart Device connectivity via AirPrint, Mopria and Ricoh applications Designed to enhance your performance. Compact solution. With hidden depths. Each MFP’s compact nature means you can position them almost anywhere in an office or branch environment. And there’s always a place for these simple to set-up and easy-to-use, yet advanced devices. The powerful Intel processor gives the devices the capability to run enhanced software faster so you can start using them quickly and make the most out of their intuitive interface. Reduce costs in a powerful way. Offering a low Total Cost of Ownership combined with a level of output that will help you reach your goals, you get low power consumption and a quick warm-up from sleep mode.
    [Show full text]
  • Serial Communication Buses
    Computer Architecture 10 Serial Communication Buses Made wi th OpenOffi ce.org 1 Serial Communication SendingSending datadata oneone bitbit atat oneone time,time, sequentiallysequentially SerialSerial vsvs parallelparallel communicationcommunication cable cost (or PCB space), synchronization, distance ! speed ? ImprovedImproved serialserial communicationcommunication technologytechnology allowsallows forfor transfertransfer atat higherhigher speedsspeeds andand isis dominatingdominating thethe modernmodern digitaldigital technology:technology: RS232, RS-485, I2C, SPI, 1-Wire, USB, FireWire, Ethernet, Fibre Channel, MIDI, Serial Attached SCSI, Serial ATA, PCI Express, etc. Made wi th OpenOffi ce.org 2 RS232, EIA232 TheThe ElectronicElectronic IndustriesIndustries AllianceAlliance (EIA)(EIA) standardstandard RS-232-CRS-232-C (1969)(1969) definition of physical layer (electrical signal characteristics: voltage levels, signaling rate, timing, short-circuit behavior, cable length, etc.) 25 or (more often) 9-pin connector serial transmission (bit-by-bit) asynchronous operation (no clock signal) truly bi-directional transfer (full-duplex) only limited power can be supplied to another device numerous handshake lines (seldom used) many protocols use RS232 (e.g. Modbus) Made wi th OpenOffi ce.org 3 Voltage Levels RS-232RS-232 standardstandard convertconvert TTL/CMOS-levelTTL/CMOS-level signalssignals intointo bipolarbipolar voltagevoltage levelslevels toto improveimprove noisenoise immunityimmunity andand supportsupport longlong cablecable lengthslengths TTL/CMOS → RS232: 0V = logic zero → +3V…+12V (SPACE) +5V (+3.3V) = logic one → −3V…−12V (MARK) Some equipment ignores the negative level and accepts a zero voltage level as the "OFF" state The "dead area" between +3V and -3V may vary, many receivers are sensitive to differentials of 1V or less Made wi th OpenOffi ce.org 4 Data frame CompleteComplete one-byteone-byte frameframe consistsconsists of:of: start-bit (SPACE), data bits (7, 8), stop-bits (MARK) e.g.
    [Show full text]
  • USB to Parallel Printer Converter USB a to Cen36 Male, 1.8 M (6 Ft.) Part No.: 317016
    USB to Parallel Printer Converter USB A to Cen36 Male, 1.8 m (6 ft.) Part No.: 317016 Easily connects USB-equipped computers with IEEE 1284 parallel peripherals. The Manhattan USB to Parallel Printer Converter with bi-directional data transfer easily supports USB-to-parallel and parallel-to-USB communication. Ideal for connecting USB-equipped desktop or notebook computers to a parallel printer, it helps deliver faster data transfer rates than a standard parallel port. Meets USB Standards Manhattan USB to Parallel Printer Converter is fully compliant with USB 1.1 and IEEE 1284 specifications to help devices operate at maximum performance. Bus support and low power requirements permit its convenient and reliable use almost anywhere without the need for external power supplies. Quick and Easy Installation Plug-and-play capability and Windows compatibility help the Manhattan USB to Parallel Printer Converter to function on any USB-equipped computer or device. Features: Converts USB signals for use with IEEE 1284 devices – supports data transfer speeds up to 12 Mbps Ideal for connecting a computer USB port to parallel printer Bus power support requires no external power supply Windows7/8 compatible; plug and play; hot-swappable Lifetime Warranty Specifications: Standards and Certifcations • CE • FCC • USB 1.0 For more information on Manhattan products, consult your local dealer or visit www.manhattan-products.com. All names of products or services mentioned herein are trademarks or registered trademarks of their respective owners. Distribution
    [Show full text]
  • PC 97 Hardware Design Guide
    Part 4 — Device Design Guidelines CHAPTER 21 Printers This chapter presents the requirements and recommendations for printers under the Microsoft Windows family of operating systems. Version 1.1 Includes changes to References for Printers Contents Overview for Printers.............................. ............... 312 Basic Printer Features............................. ................ 312 Basic Features for IEEE 1394 Printers. ................. 312 Basic Features for USB Printers . ............... 312 Basic Features for IEEE 1284 Printers. ................. 313 PC 97 Design for Printers .......................... ................ 314 Plug and Play for Printers. ............... 314 Power Management for Print Components . .............. 315 Device Drivers and Installation for Printers . .................... 315 References for Printers ............................ ................ 318 Checklist for Printers ............................. ................ 320 312 PC 97 Design — Part 4 Device Design Guidelines Overview for Printers This section presents the key design issues for printers under Microsoft Windows. Printers and other devices attached to parallel ports should be capable of high- speed, bidirectional data transfers. The design criteria for parallel devices follow those for parallel ports described in the “Serial, Parallel, and Wireless Support” chapter. The PC 97 requirements for printers and parallel ports seek to ensure the following: • Ensure maximum speed for transfer of parallel data between the system and the peripheral. • Ensure a true Plug and Play experience for users. Basic Printer Features This section summarizes the basic hardware requirements for printers for PC 97. Basic Features for IEEE 1394 Printers This section defines requirements for printers that use IEEE 1394. 1. Compliance with PC 97 requirements for IEEE 1394 Required This bus is recommended in PC 97 for support of fast, high-density data transfer. For information about implementing IEEE 1394 for PC 97, see the “IEEE 1394” chapter in Part 3 of this guide.
    [Show full text]
  • Dataman 48Pro Specification
    Dataman 48Pro www.dataman.com • Universal 48 pin ZIF socket accepts both 300/600 mil DIP devices up to 48 pin • Intelligent pin drivers allow varying voltages to be applied to any pin delivering signals without overshoot, increasing The Dataman 48Pro is a universal 48pin driver, PC based programmer programming yield with ISP capabilities with USB 2.0 and parallel connectivity. The 48Pro is built to meet the demands of development labs and field engineers • Pin drivers operate for universal programming. down to 1.8V so you'll Supporting over 22,000 devices with new support being added monthly, be ready to program the Dataman 48Pro can program without the need for a family-specific the full range of module, giving you the freedom to choose the optimal device for your design. Using the built-in, in-circuit serial programming (ISP) connector, tomorrow’s advanced the programmer is able to program ISP compatible chips in circuit. low-voltage devices • ISP capable using the Hardware General JTAG interface • FPGA based totally reconfigurable 48 powerful TTL pindrivers provide H/L/pull_up/pull_down and read capability for each pin of the socket. Advanced pindrivers incorporate high-quality high-speed circuitry to • Multiprogramming deliver signals without overshoot or ground bounce for all supported devices. Pin drivers operate down to 1.8V so you'll be ready to program the full range of today's advanced low-voltage devices support allows one PC • The programmer performs device insertion tests and contact checks before device programming. These to control up to eight capabilities, supported by overcurrent protection and signature-byte check help prevent chip damage due to operator error units programming • Built-in protection circuits eliminates damage to programmer and/or device due to environment or independently or as a operator failure.
    [Show full text]